Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
CC-000331-2015
TOWN OF QUEENSBURY 742 Bay Road;Queensbury,NY 12804-5904 (518)761-8201 — - - Community Development-Building&Codes (518)761-8256 CERTIFICATE OF OCCUPANCY Permit Number: CC-000331-2015 Date Issued: Thursday, September 1, 2016 This is to certify that work requested to be done as shown by Permit Number CC-000331-2015 has been,completed. Tax Map Number: 288.12-1-15 Location: 1498 State Rte 9� Owner: Lake George Associates Applicant: Bast Hatfield LLC This structure may be occupied as a:Commercial Alterations By Order of Town Board TOWN OF QUEEN BURY Issuance of this Certificate of Occupancy DOES NOT relieve the property owner of the responsibility for compliance with Site Plan, Variance,or other issues and conditions as a result of approvals by the Director of Building&Code Enforcement Planning Board or Zoning Board of Appeals. TOWN OF QUEENSBURY 742 Bay Road,Queensbury,NY 12804-5904 (518)761-8201 Community Development-Building&Codes (518)761-8256 BUILDING PERMIT Permit Number: CC-000331-2015 lb-P 2015- b10 Tax Map No: 288.12-1-15 Permission is hereby granted to: Bast Hatfield LLC REVISEU For property located at: 1498 State Rte 9 In the Town of Queensbury,to construct or place at the above location in accordance with application together with plot plans and other information hereto filed and approved and in compliance with the NYS Uniform Building Codes and the Queensbury Zoning Ordinance Type of Construction Owner Name: Lake George Associates Retail-Mercantile-Alteration $500,000.00 Owner Address: 50 State ST,6th Floor Total Value $500,000.00 Albany,NY 12207 Contractor or Builder's Name/Address Electrical Inspection Agency Plans&Specifications Commercial Alterations 288.12-1-15 PERMIT FEE PAID-THIS PERMIT EXPIRES: Tuesday,July 26,2.016 (If a longer period is required,an application for an extension must be made to the code Enforcement Officer of the Town of Queensbury before the expiration date.) Dated at the Town of Queensbury; Monday J ly 7,2015 SIGNED BY: for the Town of Queensbury. Director of Building&Code Enf cement PRINCIPAL STRUCTURE APPLICATION Office Use Only Received Date: jgly /S 2-AF Tax Map ID -� S3100 -ermit No. Z016- 510 �n��c5in -1 . Tax Map ID c i '1' A4fi8Sii�!.-. Pewit Fee 3oOD . . flia.qO LIMO Zone Red Fee Historic Site Yes _No «Z j inr it' Plan# Subdivision Name of u�division# TOWN BD. RESOLUTION 86-2013: $850 RECREATION`FEE-FOR NEW DWELLING UNITS - SINGLE FAMILY, DUPLEXES/TWO-FAMILY, MULTIPLE FAMILY, APARTMENTS, CONDOMINIMUMS, TOWNHOUSES,AND/OR MANUFACTURED&MODULAR HOMES,BUT NOT MOBILE HOMES. THIS IS IN ADDITION TO THE PERMIT FEE. Applicant 7 /l��TFf6 &P Owner. c�i4,�► y1, a,'Z� c°�d��a' Address �a�9 �, Address Phone/E-mail f Phone/E-mail Contact Person for Building&Codes Compliance: Phone TYPE OF CONSTRUCTION ✓Check all that apply New Addition Alteration l It floor sf 2"a floor sf Total sf Height Single Family Two-Family Multi-Family (#of units_) Townhouse Business Office Retail-Mercantile Factory-Industrial Attached Garage (1, 2, 3, .4+) Other Town of Queensbury Building&Codes Principal Structure Application Revised September 2014 If commercial or industrial please indicate of business Proposed use of building or addition Source of Heat(circle one) Gas Oil Propane Solar Other Fireplace: Complete a separate application for Fuel Burning Appliances &Chimneys Are there structures not shown on plot plan? Are there easements on the property? Site Information a. Dimensions or acreage of lot b. Is this a corner lot? c. Will the grade be changed as a result of construction Yes No d. Public water or Private well e. Sewer or Private Septic.System Value of all work to be performed(labor or materials) $ ;`"00,0670 DECLARATION.- 1. I acknowledge no construction shall be commenced prior to issuance of a valid permit and will be completed within a 12 month period. 2. If work is not complete by the 1 year expiration date the permit may be renewed, subject to fees and department approval. 3.. 1 certify that the application,plans and supporting materials are a true and complete statement/description of the work proposed,that all work will be performed in accordance with the NYS Building Codes,local building laws and ordinances,and in conformance with local zoning regulations 4. I acknowledge that prior to occupying the facilities proposed, I or my agents will obtain a certificate of occupancy. 5. 1 also understand that I/we are required to provide an as-built survey by a licensed land surveyor of all newly constructed facilities prior to issuance of a certificate of occupancy. I have read and agree to the above: PRINT NAME: 7 A0f'3'4 -00 �Jac': DATE: SIGNATURE DATE: For office use only Operating Permit Issued: Yes No Occupancy Type Construction Classification Assembly.Occupancy Limit Special Conditions Town of Queensbury Building&Codes Principal Structure Application Revised September 2014 Town of Queensbury Building & Code Enforcement Office No. (518) 761-8256 Framing 1 Firestopping Inspection Report Inspection request received: c�l Name: A5-:f /474�71W-b Inspected on: Location: Arrive: `.m. Permit No.: — ZU LS Inspector's Initials: TYPE OF STRUCTURE: Y N /NIACOMMENTS: Framing Attic Access 22"x 30"minimum Jack Studs/Headers Truss Specification Provided Bracing I Bridging Joist hangers Jack Posts/Main Beams Exterior sheeting nailed properly 12"O.C. Headroom 6 ft.8 in. Stairwells 36 in.or more ---Exterior-Deck-Bracing — - - - — --- - - — ------ - - - - - - --- -- - -- - - -- Headroom 6 ft.8 in. Notches/Holes/Bearing Walls Metal Strapping for Notches Top Plate 1 '/z(w)16 gauge(8) 16D nails each side Draft stopping 1,000 sq.ft.floor trusses Anchor Bolts 6 ft.or less on center Ice and water shield 24 inches from wall Fire separation 1,2,3 hour Fire wall 2,3,4 hour Firestopping Penetration sealed 16 inch insulation in cavity min. Garage Fire Separation House side%inch or 5/8 inch Type X Garage side 5/8 inch Type X °Ceiling/wall Windows Habitable Space I Bedrooms 24 in. (H) 20 in.(W) 5.7 sf above/below grade 5.0 sf grade Design Professional Sign-off,if required Framing/Firestopping Inspection Report Mod Town of Queensbury Building &Code Enforcement Office No. (518)761-8256 Framing I Firestopping Inspection Report Inspection request received: 9 12A?-Q6 �. Name: L6 Inspected on: tZ12t�Lf�1� Location: lztq 6 stt- 9- . Ve-� Arrive: - - a. .�P- � Permit No.: Ck,-bco Inspector's Initials: TYPE OF STRUCTURE: -,-, -A T—. Y N NIA COMMENTS: Framing Attic Access 22"x 30"minimum Jack Studs/Headers Truss Specification Provided Bracing/Bridging Joist hangers Jack-Posts/Main Beams Exterior sheeting nailed properly 12"O.C. Headroom 6 ft.8 in. Stairwells 36 in.or more Exterior Deck Bracing Headroom 6 ft.8 in. --� Notches/Holes/Bearing Walls Metal Strapping for Notches Top Plate 1 Yz(w)16 gauge(8) 16D nails each side Draft stopping 1,000 sq.ft.floor trusses Anchor Bolts 6 ft.or less on center Ice and water shield 24 inches from wall Fire separation 1,2,3 hour Fire wall 2,3,4 hour Firestopping Penetration sealed 16 inch insulation in cavity min. Garage Fire Separation House side''/z inch or 5/8 inch Type X Garage side 5/8 inch Type X Ceiling/wall Windows Habitable Space/Bedrooms 24 in.(H) 20 in.(W) 5.7 sf above/below grade 5.0 sf grade Design Professional Sign-off,if required Framing /Firestopping Inspection Report ENGINEER I-N6 PLLc structural solutions December 29, 2015 Keystone Architectural Services 198 Delaware Ave. Delmar, New York 12054 Attention: Mr. Charlie Meyer Regarding: Gordon Development 1500 Route 9, Lake George, NY Dear Charlie: Based on my site observation., and to the best of my knowledge and belief,the fagade renovations at Gordon Development have been constructed in general conformance with the approved construction documents,specifications, and addenda insofar as the structural components are concerned. If you have any questions, please do not hesitate to call.. Sincerely, Scott Burlingame, PE cam 331 Scott Burlingame,P.E. 900 Rt..146,Clifton Park, NY 12065 .T: 518-724-0733 scott@sbengineeringpllc.com V'VC`U Town of Queensbury Building &Code Enforcement �— Office No.(518)761-8256 Framing 1 Firestopping Inspection Report Inspection request received: `S � � �f Name: �e A'(�� �'�i�_ �"c�, Inspected on: Location: PVl Arrive: a.m.l P.M. Permit No.: C-6— Inspector's Initials: e TYPE OF STRUCTURE: Y N NIA COMMENTS: Framing Attic Access 22"x 30"minimum Jack Studs I Headers Truss Specification Provided Bracing/Bridging Joist hangers Jack Posts/Main Beams Exterior sheeting nailed properly 12"O.C. Headroom 6 ft.8 in. Stairwells 36 in.or more Exterior Deck Bracing Headroom 6 ft.8 in. Notches/Holes/Bearing Walls Metal Strapping for Notches Top Plate 1 '/2(w) 16 gauge(8)16D nails each side Draft stopping 1,000 sq.ft.floor trusses Anchor Bolts 6 ft.or less on center fJe and water shield 24 inches from wall Fire separation 1,2,3 hour Fire wall 2,3,4 hour Firestopping �� Penetration sealed ti 16 inch insulation in cavity min. Garage Fire Separation House side''/z inch or 5/8 inch Type X Garage side 5/8 inch Type X Ceiling/wall Windows Habitable Space/Bedrooms 24 in, (H) 20 in.(W) 5.7 sf above/below grade 5.0 sf grade Design Professional Sign-off,if required Framing /Firestopping Inspection Report Town of Queensbury Building &Code Enforcement Office No. (518) 761-8256 Framing 1 Firestopping Inspection Report Inspection request received: l �✓ �� �� p Name: ���n -Q �sS�x-`�-T�' Inspected on: l Z/yam Location: Arrive: 1 .m P. Permit No.: C( r)Gl'��'��_�`S Inspector's Initials: TYPE OF STRUCTURE: Y N NIA COMMENTS: Framing Attic Access 22"x 30"minimum Jack Studs/Headers Truss Specification Provided Bracing/Bridging Joist hangers Jack Posts/Main Beams Exterior sheeting nailed properly 12"O.C. Headroom 6 ft.8 in. Stairwells 36 in.or more Exterior Deck Bracing Headroom 6 ft.8 in. Notches/Holes/Bearing Walls Metal Strapping for Notches Top Plate 1 Yz w 16 gauge 8 16D nails each side Draft stopping 1,000 sq.ft.floor trusses ,,Anchor Bolts 6 ft.or less on center and water shield 24 inches from wall Fire separation 1,2,3 hour Fire wall 2,3,4 hour Firestopping Penetration sealed 16 inch insulation in cavity min. \C, Garage Fire Separation House side Yz inch or 5/8 inch Type X Garage side 5/8 inch Type X �� t Ceiling/wall Windows Habitable Space/Bedrooms l� 24 in.(H) 20 in.(W) 5.7 sf above/below grade 5.0 sf grade Design Professional Sign-off,if required Framing/Firestopping Inspection Report Town of Queensbury Building &Code Enforcement Office No. (518) 761-8256 Framing 1 Firestopping Inspection Report Inspection request received: Name: 0gGT-- Nb3DC Inspected on: Location: ��l i�i �c�Z� Arrive: 9 U Permit No.: C C_- GDp 131 1 —z J3\1\11) Inspector's Initials. TYPE OF STRUCTURE: Y N NIA COMMENTS: Framing Attic Access 22"x 30"minimum Jack Studs/Headers Truss Specification Provided Bracing/Bridging Joist hangers Jack Posts/Main Beams Exterior sheeting nailed properly 12"O.C. Headroom 6 ft.8 in. Stairwells 36 in.or more Exterior Deck Bracing Headroom 6 ft.8 in. Notches/Holes/Bearing Walls Metal Strapping for Notches Top Plate 1 '/2(w)16 gauge(8)16D nails each side Draft stopping 1,000 sq.ft.floor trusses Anchor Bolts 6 ft.or less on center Ice and water shield 24 inches from wall Fire separation 1,2,3 hour Fire wall 2,3,4 hour Firestopping Penetration sealed 16 inch insulation in cavity min. Garage Fire Separation House side''/z inch or 5/8 inch Type X Garage side 5/8 inch Type X Ceiling/wall Windows Habitable Space/Bedrooms 24 in.(H) 20 in.(W) 5.7 sf above/below grade 5.0 sf grade Design Professional Sign-off,if required Framing/Firestopping Inspection Report Rough Plumbing / Insulation Inspection Report Inspection request received Name E , Inspected on r— Location y� Arrive v pm Permit No. Dl g Inspector's Initials Type of Structure (—C/OhMMENTS Y N NA Plumbing under slab Rough Plumbing/Nail Plates Plumbing Vent/Vents in Place 1 % inch minimum Drain Size Washing Machine Drain 2 inch minimum Cleanout every 100 feet/change of direction Pressure Test Drain /Vent Air/Head 5 P.S.I.or 10 ft.above highest connection for 15 minutes Pressure Test Water Supply Piping Air/Head 50 P.S.I for 15 minutes Insulation / Residential Check/Commercial Check a t Window Sealing Z 1� Tyvek or Similar Exterior Sealant Proper Vent,Attic Vent Door/Window Sealed(No Insulation) Duct/Hot Water Piping Insulation If required unheated spaces Combustion Air Supply for Furnace Duct work sealed properly/No duct tape Blower Door Test Air Sealing Town of Queensbury Building & Code Enforcement Office No. (518)761-8256 Town of Queensbury Building & Code Enforcement Office No. (518)761-8256 — Framing / Firestopping Inspection Report Inspection request received: 11 ff � Name: L-� � C�C�` (�� 1�. Inspected on: 2-- Location: LA C� ���t'�-�� —� Arrive: a.m. p.mm- Permit No.: c 3 \ Inspectors Initials: > TYPE OF STRUCTURE: 'Jt� Y N N/A COMMENTS: Framing Attic Access 22"x 30"minimum Jack Studs/Headers Truss Specification Provided Bracing/Bridging Joist hangers Jack Posts/Main Beams Exterior sheeting nailed properly 12"O.C. Headroom 6 ft.8 in. Stairwells 36 in.or more Exterior Deck Bracing Headroom 6 ft.8 in. Notches/Holes/Bearing Walls Metal Strapping for Notches Top Plate 1 '2(w) 16 gauge(8) 16D nails each side aft stopping 1,000 sq.ft.floor trusses Anchor Bolts 6 ft.or less on center Ice and water shield 24 inches from wall Fire separation 1,2,3 hour . Fire wall 2,3,4 hour 01:sGE: Firestopping Penetration sealed 16 inch insulation in cavity min. Garage Fire Separation House side''/z inch or 5/8 inch Type X 1 Garage side 5/8 inch Type X Ceiling/wall Windows Habitable Space/Bedrooms 24 in.(H) 20 in.(W) 5.7 sf above/below grade 5.0 sf grade Design Professional Sign-off,if required Framing/Firestopping Inspection Report Town of Queensbury Building &Code Enforcement Office No. (518)761-8256 Commercial Final Inspection Report Inspection request received:, ` h Name: Inspected on: 4e cLocation: V Arrive: m.1 Permit No.: — Inspector's Initials: ZO 1 S COMMENTS Y_ N NA Chimney/"B"Vent/Direct Vent Location Plumbing Vent Through Roof 6"/Roof Complete Exterior Finish/Grade Complete 6"in 10'or Equivalent Interior/Exterior Guardrails 42 inch Platform/Decks Interior/Exterior Balusters 4 inch Spacing Platform/Decks Stair Handrail 34 inch—38 inch/Step Risers 7"/Treads 11" Vestibules For Exit doors>3000 sq.ft. All Doors 36 inch w/Lever Handles/Panic Hardware, if required Exits At Grade Or Platform 36"(w)x 44"(1)/Canopy or Equiv. Gas Valve Shut-off Exposed&Regulator(18")Above Grade Floor Bathroom Watertight/Other Floors Okay Relief Valve, Heat Trap/Water Temperature 110 Degrees Maximum Boiler/Furnace Enclosure 1 hour or Fire Extinguishing System Fresh Air Supply for Occupancy/Ventilation Combustion Low Water Shut Off For Boilers Gas Furnace Shut Off Within 30 ft.or Within Line Of Site Oil Furnace Shut Off at Entrance to Furnace Area Stockroom/Storage/Receiving/Shipping Room(2 hr.), 1 '/z doors > 10%> 1000 sq.ft. 3/4 Hour Corridor Doors&Closers Firewalls/Fire Separation,2 Hour,3 Hour Complete/Fire Dampers/Fire Doors Ceiling Fire Stopping,3,000 sq.ft.Wood Frame Attic Access 30"x 20"x 30"(h),Crawl Space Access 18"x 24" Smoke Vents Or Fan, if required Elevator Operation and Signage/Shaft Sealed Handicapped Bathroom Grab Bars/Sinks/Toilets/Mirrors Handicapped Bath/Parking Lot Signage Public Toilet Room Handicapped Accessible Handicapped Service Counters,34 inch,Checkout 36 inch Handicapped Ramp/Handrails Continuous/12 inch Beyond [Both sides] ��C�lj�jt✓� �jt1 Active Listening System and Signage Assembly Space Final Electrical/Flex Gas Piping Bonded V" Site Plan/Variance required Final Survey, New Structure/Flood Plain certification,if req. As-built Septic System Layout Required or On File Building Number or Tenant Address on Building or Driveway 4" Water Fountain or Cooler Building Access All Sides by 20'/Drivable Surface 20'wide Special Inspections/Engineer or Architect Approval Okay To Issue Temporary or Permanent C/O Okay To Issue C/C Commercial Final Inspection_11 2712 Foundation Inspection Report Office No. (518) 761-8256 Date InspectioraDepart: 912 12-g5 Queensbury Building&Code Enforcement Arrive: _A742 Bay Rd., Queensbury,NY 12864 Inspector's IniNAME: L6.N�cl - I�J'�1<D !) LOCATION: �{ U siza-f- k. , INSPECT ON: 91 7-6 2-0 'IS TYPE OF STRUCTURE: tiQ�(,l Lyt Comments Y N N/A Footings Piers Monolithic Slab Reinforcement in Place The contractor is responsible for providing protection from.freezing for 4 t:8 hours following the placement of the concrete. Materials for this purpose on site. Foundation/Wallpour Reinforcement in Place Footing Dowels or Keyway in place Foundation Dampproofing Foundation Waterproofing Footing Drain Daylight or Sump Footing Drain Stone: 12 inch width 6 inches above footing 6 mil poly for wet areas under slab Backfill Approval Plumbing Under Slab PVC/Cast/Copper Foundation Insulation Interior/Exterior R- Rough Grade 6 inch drop within 10 ft. L:\Building &Codes Forms\Building &Codes\Inspection Forms\Foundation Inspection Report.doc Last printed 12/9/2014 Town of Queensbury Building &Code Enforcement Office No. (518)761-8256 1 Framing 1 Firestopping Inspection Report Inspection request received: 9 Name: Inspected on: 9 I'll I zoicz) Location: 1 ige) a q Arrive: a.mC Permit No.: l �1� Inspector's Initials: TYPE OF STRUCTURE: &"YYyc'1V-C;-z ,l Y N NIA COMMENTS: Framing Attic Access 22"x 30"minimum Jack Studs I Headers Truss Specification Provided Bracing/Bridging Joist hangers Jack Posts/Main Beams Exterior sheeting nailed properly 12"O.C. Headroom 6 ft.8 in. Stairwells 36 in.or more Exterior Deck Bracing - Headroom 6 ft.8 in. Notches/Holes/Bearing Walls Metal Strapping for Notches Top Plate 1 '/2(w)16 gauge(8) 16D nails each side Draft stopping 1,000 sq.ft.floor trusses Anchor Bolts 6 ft.or less on center Ice and water shield 24 inches from wall Fire separation 1,2,3 hour VEON, n Fire wall 2,3,4 hour Firestopping Penetration sealed 16 inch insulation in cavity min. Garage Fire Separation House side''/2 inch or 5/8 inch Type X Garage side 5/8 inch Type X Ceiling/wall Windows Habitable Space/Bedrooms 24 in.(H) 20 in.(W) 5.7 sf above/below grade 5.0 sf grade Design Professional Sign-off,if required Framing/Firestopping Inspection Report 44 Foundation Inspection Report Office No. (518)761-8256 Date Inspection reques e iv d: l I"� 7-0 Queensbury Building&Code Enforcement Arrive: I��a ,Depart: ���a pm 742 Bay Rd., Queensbury,NY 12804 Inspector's Initials NAME: L� !Nsax ,uk s P T#: LOCATION: �' _ 9 INSPECT ON: 9 I Zit) TYPE OF STRUCTURE: LAI y �- - Comments Y N N/A Piers Monolithic Slab Reinforcement in Place The contractor is responsible for providing protection from freezing for 48 hours following-the placement of the concrete. aterials for this purpose on site. Reinforcement in Place Footing Dowels or Keyway in place Foundation Dampproofing Foundation Waterproofing Footing Drain Daylight or Sump Footing Drain Stone: 12 inch width 6 inches above footing 6 mil poly for wet areas under slab Backfill Approval Plumbing Under Slab PVC/Cast/Copper Foundation Insulation Interior/Exterior R- Rough Grade 6 inch drop within 10 ft. L:\Building &Codes Forms\Building &Codes\Inspection Forms\Foundation Inspection Report.doc Last printed 12/9/2014 Foundation In:'pection Report Office No. (518) 761-8256 Date Inspection re uest r 1 Queensbury Building&Code Enforcement Arrive: a Depart: % m/ 742 Bay Rd., Queensbury. NY 12804 Inspector's Initials NAME: PERMIT#: LOCATION: _Ii � �, �� INSPECT ON: I TYPE OF STRUCTURE: Comments Y --N N/A Footings 1 �rj�- 5 j-2— Piers v Monolithic Slab Reinforcement in Place The contractor is responsible for providing protection from freezing -for 48 hours following the placement of the concrete. _ Materials for this purpose on site. Foundation/Wallpour Reinforcement in Place Footing Dowels or Keyway in place Foundation Dampproofing Foundation-Waterproofing Footing Drain Daylight or Sump Footing Drain Stone: 12 inch width -- - - 6 inches-above-footing - - - -- 6 mil poly for-wet areas under slab Backfill Approval Plumbing Under Slab- - - PVC/Cast/Copper Foundation Insulation Interior/Exterior R- Rough Grade 6 inch drop within 10 ft. L:\Building &Codes Forms\Building&Codes\Inspection Forms\Foundation Inspection Report.doc Last printed 12/9/2014 Q Statement of Special Inspections FILE COPY CASECouncil of American Structural Engineers Project: Gordon Development—Fagade Modifications n lJ V Location: 1500 Route 9, Lake George, NY12845 Owner: David Ray, The Gordon Companies JUL 15 2015 Owner's Address: 50 State Street, e Floor TOWN OF QUEE BURY Albany, NY 12207 BUILDING &CODES Design Professional in Responsible Charge: SB Engineering, PLLC 900 Route 146 Clifton Park, NY Architect of Record: Keystone Architectural Services 198 Delaware Ave., Delmar, NY 12054 This Statement of Special Inspections is submitted as a condition for permit issuance in accordance with the Special Inspection and Structural Testing requirements of the Building Code. It includes a schedule of Special Inspection services applicable to this project as well as the name of the Special Inspection Coordinator and the identity of other approved agencies to be retained for conducting these inspections and tests. This Statement of Special Inspections encompass the following disciplines: ® Structural ❑ Mechanical/Electrical/Plumbing ❑ Architectural ❑ Other: The Special Inspector shall keep records of all inspections and shall furnish inspection reports to the Building Official and the Registered Design Professional in Responsible Charge. Discovered discrepancies shall be brought to the immediate attention of the Contractor for correction. If such discrepancies are not corrected, the discrepancies shall be brought to the attention of the Building Official and the Registered Design Professional in Responsible Charge. The Special Inspection program does not relieve the Contractor of his or her responsibilities. Interim reports shall be submitted to the Building Official and the Registered Design Professional in Responsible Charge. A Final Report of Special Inspections documenting completion of all required Special Inspections, testing and correction of any discrepancies noted in the inspections shall be submitted prior to issuance of a Certificate of Use and Occupancy. This document shall be prepared and signed by the licensed Design Professional acting as the Special Inspector. Job site safety and means and methods of construction are solely the responsibility of the Contractor. Interim Report Frequency: Monthlv or❑ per attached schedule. Prepared by: OF NEW y Scott E. Burlingame �P���.BUR 4y�O.p� (type or print name) O 9 _r co m w 6125115 2 ` UJ T Signature Date ��,o 085186 v De R t gS0 A ea/ Owner's Authorization: Building Official's Acceptance: Signature Date Signature Date CASE Form 101 • Statement of Special Inspections • ©CASE 2004 • New York State 2010 L Sheet 2 of 8 Project: 1500 Route 9, Lake-George Schedule of Inspection and Testing Agencies Statement of Special Inspections includes the following building systems: ® Soils and Foundations, ❑ Prefabricated Wall Panels ® Cast-in-Place Concrete ❑ Spray Fire Resistant Material ❑ Precast Concrete ❑ Wood Construction ❑ Shotcrete ❑ Prefabricated Wood Trusses ❑ Masonry Level 1 ❑ Exterior Insulation and Finish System ❑ Masonry Level 2 ❑ Mechanical & Electrical Systems ® Structural Steel ❑ Architectural Systems ® Cold-Formed Steel Framing ❑ Special Cases ❑ Prefabricated Cold-Formed Trusses Special Inspection Agencies Firm Address, Telephone 1. Special Inspector To be determined and hired by owner. 2 Testing Laboratory CME Associates, Inc. 439 North Pearl St. -pre-approved list. Albany,NY 12204 518-432-5820 Professional Services Industries 104 Erie Blvd Schenectady, NY 12305 518-377-9841 SJB Services, Inc PO Box 2199 Ballston Spa, NY 12020 518-899-7491 Trans Tech QCQA Laboratories 1594 State St. Schenectady, NY 12304 518-372-4067 Evergreen Testing 594 Broadway Watervliet, NY 12189 518-266-0310 3 Geotechnical Engineer Note: The inspection and testing agent shall be engaged by the Owner or the Owner's Agent, and not by the Contractor or Subcontractor whose work is to be inspected or tested. Any conflict of interest must be disclosed to the Building Official, prior to commencing work. Seismic Design Category: B Basic Wind Speed (3 Second Gust): 90 Wind Exposure Category: B CASE Form 101 • Statement of Special Inspections • ©CASE 2004 • New York State 2010 L Sheet 3 of 8 Project: 1500 Route 9, Lake George Qualifications of Inspectors and Testing Technicians The qualifications of all personnel performing Special Inspection and testing activities are subject to the approval of the Building Official. The credentials of all Inspectors and testing technicians shall be provided if requested. Key for Minimum Qualifications of Inspection Agents: When the Registered Design Professional in Responsible Charge deems it appropriate that the individual performing a stipulated test or inspection have a specific certification or license as indicated below, such designation shall appear below the Agency Number on the Schedule. PE/SE Structural Engineer—a licensed SE or PE specializing in the design of building structures PE/GE Geotechnical Engineer—a licensed PE specializing in soil mechanics and foundations. EIT Engineer-In-Training—a graduate engineer who has passed the Fundamentals of Engineering examination American Concrete Institute (ACI).Certification ACI-CFTT Concrete Field Testing Technician—Grade 1. ACI-CCI Concrete Construction Inspector ACI-LTT Laboratory Testing Technician—Grade 1&2. ACI-STT Strength Testing Technician. American Welding Society(AWS) Certification AWS-CWI Certified Welding Inspector. AWS/AISC-SSI Certified Structural Steel Inspector American Society of Non-Destructive Testing (ASNT) Certification ASNT Non-Destructive Testing Technician—Level II or III International Code Council (ICC) Certification ICC-SMSI Structural Masonry Special Inspector ICC-SWSI Structural Steel and Welding Special Inspector [CC-SFSI Spray-Applied Fireproofing Special Inspector ICC-PCSI Prestressed Concrete Special Inspector ICC-RCSI Reinforced Concrete Special Inspector National Institute for Certification in Engineering Technologies (NICET) NICET-CT Concrete Technician—Levels I, II, III & IV NICET-ST Soils Technician- Levels I, II, III & IV NICET-GET Geotechnical Engineering Technician - Levels I, II, III & IV Exterior Design Institute (EDI) Certification EDI-EIFS EIFS Third Party Inspector Other SCSI Smoke Control Special Inspector PE/ME Mechanical/Electrical/Plumbing Engineer—a licensed PE specializing in the design of mechanical, electrical and plumbing building systems RA Registered Architect specializing in the design of architectural building systems CASE Form 101 • Statement of Special Inspections • ©CASE 2004 New York State 2010 c Schedule of Special Inspection Services Sheet 4 of 8 Soils and Foundations Project: I500 Route 9, Lake George Item Agent No. Scope (Qualif.) 1. Site Preparation 2 Section I704.7.Site preparation.Prior to placement of the (PE or EIT) prepared fill, determine that the site has been prepared in accordance with the Contract Documents. Inspect soils below footings for adequate bearing capacity and consistency with the Contract Documents. 2. Controlled Structural Fill 2 Section 1704.7.During fill placement. During placement and (PE or EIT) compaction of the fill material, determine that the material being used and the maximum lift thickness comply with the Contract Documents. verb extent and slope offill placement. 2 (PE or EIT) Section 1803.5. Compacted fill material. Perform sieve tests and modified Proctor tests of each source of fill material. Through testing, verb that the compacted fill to be used under footings and under slabs complies with the Contract Documents. 2 (PE or EIT) Section 1704.7.Evaluation of in place density. Review that the in place dry density of the compacted fill complies with the Contract Documents. 3. Deep Foundations Not applicable. 4. Underpinning Not applicable. 5. Other CASE Form 101 • Statement of Special Inspections ©CASE 2004 New York State 2010 r 'e y, Schedule of Special Inspection Services Sheet 5 of 8 Cast-in-Place Concrete Project: 1500 Route 9, Lake George Item Agent No. Scope (Qualif.) 1. Mix Design I Table 1704.4.4. Review concrete mix design submittals for all (PE or EIT) classes of concrete specified on the structural drawings. Reference standard ACI 318: Ch,4, 5.2-5.4. BC-NYS Reference Sections 1904, 1905.2-1905.4, 1914.2 and 1914.3. 2 Review concrete batch tickets and verb compliance with (ACI) approved mix design. Verb that water added at the site does not exceed that allowed by the mix design. 2. Material Certification I Section 1704.4.1.Materials. Review material certificates of (PE or EIT) compliance or other acceptable documentation for all materials used in the concrete mix designs for conformance with ACI 318 Chapter 3. In the absence of sufficient data or documentation providing evidence of conformance to quality standards of materials in chapter 3 of ACI 318, materials shall be tested in accordance with the appropriate standards and criteria. 3. Reinforcement Installation I Table 1704.4.1. Review the following percentages of installed & reinforcement for compliance with approved shop drawings, 2 project specifications and AC1318: Ch. 3.5, 7.1-7.7. BC-NYS (ACI) Reference Sections 1903.5, 1907.1, 1907.7 and 1914.:Footings 50%, Foundation Walls 50%. 4. Post-Tensioning Operations Not applicable 5. Anchor Rods I Table 1704.4.3. Review 100%of bolts to be installed in concrete & prior to and during placement of concrete where allowable loads 2 have been increased. BC-NYS Reference Section 1912.5. (ACI) 6. Concrete Placement 2 Table 1704.4.6. Continuous inspection of concrete placement for (ACI) proper application techniques as specified in ACI 318. 5.9 and 5.10. BC-NYS Reference Sections 1905.9, 1905.10, 1914.6, 1914.7 and 1914.8. Verb that concrete conveyance and depositing avoids segregation or contamination. Verify that concrete is properly consolidated. 7. Sampling and Testing of 2 Table 1704.4.5. Make one strength test for each 50 cubic yards or Concrete (ACI) fractions thereoffrom each mix design ofconcrete placed in any one day. (ASTM C 172, ASTM C 31,ASTM C39). Also, test each specimen for slump(ASTM C143), air content(ASTM C231 or C173), and temperature (ASTMC1064).ACI Reference ACI 318: Ch. 5.6 and 5.8. BC-NYS Reference Sections 1905.6 and 1914.10. 8. Curing and Protection 1 Table 1704.4.7. Review periodically for maintenance ofspecified curing temperature and protection techniques, in accordance with ACI 318:5.11-5.13. BC-NYS Sections 1905.11, 1905.13 and 1914.9. Further, when hot weather concrete conditions exist, verb that the procedure outlined in ACI 305R for Hot Weather Concreting is followed. These conditions will exist when the rate of evaporation approaches 0.21 lb.Ift.21hr. For Cold Weather Concreting,follow ACI306.1 standard spec. CASE Form 101 • Statement of Special Inspections • ©CASE 2004 9 New York State 2010 t Schedule of Special Inspection Services Sheet 6 of 8 Structural Steel Project: 1500 Route 9, Lake George Item Agent No. Scope (Qualif.) 1. Fabricator Certification/ I Section 1704.2. Verify Fabricator holds.a current AISC Quality Control Procedures (PE or EIT) certification for Standard for Steel Buildings Structures(STD). If ❑ Fabricator Exempt so, special inspections as required by Section 1704.2 shall not be required. If not,perform the following: 1 Prior to fabrication, verb that the fabricator maintains detailed (PE or EIT) fabrication and quality control procedures that provide a basis for inspection control and workmanship and the fabricator's ability to conform to the approved construction documents and referenced standards. Review the procedures for completeness and adequacy relative to the code requirements for the fabricator's scope of work. I At the completion of fabrication, the approved fabricator shall (PE or EIT) submit a certificate of compliance to the code official stating that the work was performed in accordance with the approved construction documents. 2. Material Certification 2 Table 1704.3.1; Table 1704.3.3; Table 1704.3.4. Intermittent (AWS) observation of 50%of structural steel, high-strength bolts, nuts, washers and weld filler materials for proper materials identification markings for(conformance with ASTMstandards specified in the approved contract documents. The inspector shall be present in the area where the work has been or is being performed, and also at the completion of the work. Review structural steel manufacturer's certified mill test reports; I high-strength bolts, nuts, washers and weld filler materials for (EIT) manufacturer's certificate of conformance with ASTMstandards specift in the approved contract documents. 3. Open Web Steel Joists 1 . Visual inspection of the erected joists and joist girders to verb compliance with the bracing requirements of the Steel Joist Institute. Verb that web stiffeners are in conformance with the approved contract documents. 4. Bolting 2 Section 1704.3.3.; Table 1704.3.2. High-strength, bearing—type (AWS) connections: Intermittent observation of 50%of bolted connections for required size, location and number of bolts and also for contact of plies. The minimum bolt tension, method of tightening and method of inspecting installed bolts shall be as specified in AISC "Specifications for Structural Joints Using ASTMA-325 or A-490 Bolts", and the commentary that follows. Use of a calibrated torque wrench on a previously tightened bolt is not an acceptable method of inspection. High-strength, slip-critical connections: continuous observation of all bolted connections for required size, location and number of bolts. Verb that the specified procedure for installation is properly used for tightening bolts. CASE Form 101 • Statement of Special Inspections 9 ©CASE 2004 9 New York State 2010 Schedule of Special Inspection Services Sheet 7 of 8 Structural Steel (cont'd.) Project: 1500 Route 9, Lake George 5. Welding 2 Prior to fabrication, verb that Welding Procedures Specifications (AWS) (WPS)are followed and are performed by qualified welders, both in the shop and in the field. Section 1704.3.1.; Table 1704.3.5. 2 Complete and partial penetration groove welds:submit all (ASNT) Prequalified Complete and/or Partial Joint Penetration Joint Details. Udrasonic test 100%of all welds. 2 Multi pass fillet welds: visual inspection of 100%of all shop (AWS) welds if fabricator is not certified as noted in Item 1. Visual inspection of 100%of all welds and all passes being performed every third working day iffabricator is certified as noted in Item 1. Visual inspection of 100%of all field welds and all passes. Magnetic particle test 5%of all field welds for each pass. 2 Single pass fillet welds larger than'/16": see Multi pass fillet (AWS) welds for details except that there is only a single pass to be inspected. Also, Magnetic particle test 10%of all field welds. 2 Single pass fillet welds smaller than'/16": visual_inspection of (AWS) 50%of all shop welds if fabricator is not certified as noted in Item 1; this percentage may be reduced after fabrication starts if approved by the SER. Visual inspection of 50%of all welds being performed every third working day.iffabricator is certified as noted in Item 1;this percentage may be reduced after fabrication starts if approved by the SER. Visual inspection of 50%of all field welds. .Magnetic particle test 5%of all field welds. 2 All Welds: Submit welder Qualification record(WQR) including (AWS) location,position, torch, size and type of weld along with verification of welder's certification. Before welding.starts, confirm that fit-up base metal tolerances are in conformance with AWS D1.1; see above for the required percentage 6. Shear Connectors 2 Not applicable. (AWS) 7. Structural Details 1 Section 1704.3.2; Table 1704.3.6. Visual inspection of the erected steel frame to verb compliance with AISC "Code of Standard Practice"Section 7.12, 7.13 and with details shown on the approved shop drawings, such as bracing, stiffening, member locations and proper application of joint details at each connection. 8. Metal Deck 2 Not applicable. (AWS) 9. Other CASE Form 101 . • Statement of.Special Inspections ©CASE 2004 New York State 2010 Schedule of Special Inspection Services Sheet 8 of 8 Cold-Formed Steel Framing Project: 1500 Route 9, Lake George Item Agent No. Scope: (Qualif.) 1. Member Sizes I Visual inspection of 50%of the erected cold formed steel framing to verb compliance with details shown on the contract documents and approved shop drawings. 2. Material Thickness 2 Verb that 25%of the material thicknesses are in conformance with the contract documents and approved shop drawings. 3. Material Properties and 1 Review material certification submittals to verify conformance Material Certification with contract documents I Inspect cold formed steel members,fasteners, and weld filler material for proper materials identification markings as required by the approved drawings. 4. Mechanical Connections 2 Inspect 25%of threaded fasteners, bolting, anchoring,powder actuated fasteners, and other fastening of components to verify conformance with the contract documents and approved shop drawings. 5. Welding 2 Verb that welders are certified in accordance with AWS D1.3-98. (AWS) Inspect 50%of all welds to verb conformance with the contract documents and approved shop drawings. 6. Framing Details I Visual inspection of the erected cold formed steel frame to verb compliance with details shown on the contract documents and approved shop drawings, such as bracing stiffening, member locations and proper application ofjoint details at each connection 7. Other I Review design calculations by manufacturer's engineer and shop drawings to verb adequacy of design and details for conformance with the contract documents. The manufacturer's engineer will seal design calculations. CASE Form 101 • Statement of Special Inspections • ©CASE 2004 • New York State 2010 198.DELAWARE AVENUE K YSTONE DELMAR,.NY 12054 ARCHITECTURAL T:518.439.4795 SERVICES p F:5i8.478.9468 FILE COPY July 24,2015 Building Code Official Town of Queensbury Building Department' 742 Bay Road Queensbury,NY 12804 RE:Gordon Development:Lake George Retail:Code Comment This letter is written in response to the code comment received on July 23,2015 regarding the replacement of the asphalt shingles at 1500 NYS Route 9,Lake George,NY 12845 and is to be considered part of the construction documents dated 7.14.15. Per The NYS Building Code in reference to water and ice protection, "a membrane that consists of at least two layers of underlayment cemented together or of a self-adhering polymer-modified bitumen sheet shall be used in lieu of normal underlayment and extend from the eave's edge to a point at least 24 inches inside the exterior wall line of the building." Structural calculations were also requested and are attached hereto. Please let me know if any clarification or additional information is required. Respectfully submitted, Charles T.Meyer Senior Project Manager TOWN OF QUE Keystone Architectural Services BUILDING & ReViewed Ply ' Date: attachments: Structural Calculations dated 7.23.15 cc: William Matuszek,Keystone Architectural Services Scott Burlingame,SB Engineering Tom Pratico,Bast Hatfield Construction David Ray,Gordon Development Page 1 of 1 ENGINEERING PLLC r. structural solutions Structural Calculations Calculations for Gordon Development Fa5ade Renovations 1500 Rt. 9, Lake George, NY OF NEW Y ��P��E.Bu�t ..� Cr W �O 085186 v AR°�Ess�oNP � 7-23-15 Prepared By: Scott Burlingame, P.E. July 1,2015 Scott Burlingame,P.E. 900 Rt.146;Clifton Park,NY 12665 T:518-724-0733 scoff@sbengineeringpllc.com F JOB NAME Gordon Development qENG IN EERI N G PLLC SHEET# 1 OF 2 structural solutions CALC.BY Scott Burlingame, P.E. DATE 7/1/15 BUILDING DESIGN LOADS Roof Dead Load: 3/4"Sheathing = 3 psf Roofing and Insulation = 8 psf Ceiling &Lights = 4 psf Light Gage Truss Structure = 7 psf Misc. Mechanical = .3 psf -25 psf Roof Live Load: Flat Roof Snow Load = 46.2 psf Total Roof Design Load 71.2 psf Seismic Roof Dead Load: 3/4"Sheathing = 3 psf Roofing and Insulation = 8 psf Ceiling &Lights = 4 psf Light Gage Truss Structure = 7 psf Misc. Mechanical = 3 psf 20.%of flat roof snow load = 10 psf 35 psf Scott Burlingame,P.E..1 900 Rt.146,Clifton Park,NY 12065 T:518-724-0733 scoff@sbengineeringpllc.com ENGINEERING PLt[ JOB NAME Gordon Development � structural solutions SHEET# 2 OF CALL.BY Scott Burlingame, P.E. DATE - 7/1/15 Bldg.Area: Entire Roof Ground Snow Load: 60 psf (At elevations up to 1000 feet) Project Site Elevation: 550 ft Adj. Ground Snow(p9): 60 psf . Building Occupancy Terrain Category p I-Agricultural QA.Large City Centers * II-General *B.General Urban/Suburban Q III-Assembly QC.Open Terrain p IV-Critical Services 2 OD.Open Shoreline 2 Roof Exposure Thermal Factor *Fully Exposed. *Structures Not Noted Below *Partially Exposed ©Poorly Heated/Well Insulated *Sheltered 2 *Unheated Structures 2 Importance Factor(Is): 1.0 Thermal Factor(Ct): 1.1 Exposure Factor(Ce): 1.0 Snow Density(g): 21.8 psf Flat Roof Snow Load(pf):- 46.2 psf Height of.Uniform Snow(hb): 2.1 ft Note: This spreadsheet calculates the flat-roof snow load based on the "Building Code of New York State" (2010)&ASCE 7-05 criteria. To use,. enter the ground snow load and select the appropriate building criteria. Scott Burlingame,P.E. 900 Rt.146,Clifton Park,NY 12065 I T:518-724-0733 1'sco8@sbengineeringpllc.com �— JOB NAME Gordon Development ENGINEERING PLLC SHE ET# 1 of 2 structural solutions CALC.BY Scott Burlingame, P.E. DATE 7/1/15 Note: 1. This spreadsheet calculates the seismic design coefficients and building design category per the"Building Code of New York State - 2010". 2. Use spectral accelerations based on a 2% PE in 50 years. 3. Not valid for Site Class F or E w/Ss>1.0, S1>0.4. 4.To determine SS&S1,input project.address in USGS online ground hazard application Site Address: 1500 Route 9, Lake George, NY Data: S., Mapped spectral acceleration for short periods S,FmMapped spectral acceleration for a 1-second period Site Class Occupancy Category Q Site Class A I/II-General/Agricultural O Site Class B O III-Assembly Q Site Class C Q IV-Critical Services Q Site Class D Q Site Class E Q Site Class F Fa= 1.60 F„= 2.40 SMs= 0.382, Smi= 0.197 Sos= 0.255 Sp,.= 0.131 SD Cat B SD Cat B Seismic Design Category B Scott Burlingame,P.E. 1900 Rt.146,Clifton Park,NY 12065 1 T:518-724-0733 scoff@sbenginee.dngpllc.com Design Maps Summary Report Page 1 of 2 s t MUSGS Design Maps-Summary Report User-Specified Input Report Title Gordon Development Fri July 24, 2015 01:36:53 UTC Building Code Reference Document 2009 NEHRP Recommended Seismic Provisions (which utilizes USGS hazard data available in 2008) Site Coordinates 43.368270N, 73.69730W Site Soil Classification Site Class D -"Stiff Soil" Risk Category I/II/III �Swun! ;; Lake George Village W`r'�Fa�st Q LiF G0"V SsyarL r $ Wf(,� V��rdrwi ! , atfir�tL'rsFiiSuit�r7 f, 149 3Lr 1,r o - r - - 4, � �' Queensbury, ev . - • 9 O . �r r4 'N1 E ,I C A r j ir I FymtrYdtc�rr r� � GlenE lmapquest 0_.2...-_-M _Quest_ --V- _ . ._.� 11 -O MapQuest.� USGS-Provided Output SS = 0.239 g S,,s = 0.382 g Sos = 0.255 g Sl = 0.082 g S,,1 = 0.197 g Sol = 0.131 g For information on how the SS and S, values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please view the detailed report. MCER Spectrum Design Response Spectrum 0.11 0.10 0.2i 0.36 0.21 0.32 0.21 o.za 0.19 0.21 Im LA 0.20 N 0.15 0.16 0.12 0.12 0.09 0.09 0.06 0.01 0.03 0.00 0.00 0.00 0.20 0.40 0.60 0.90 1.00 1.20 1.40 1.60 1.90 2.00 0.00 0.20 0.10 0.60 0.20 .1.00 1.20 1.40 1.60 1.90 2.00 Period,T(sec) Period,T(sec) For PGA,,,T,, CRs, and CR,values, please view the detailed report. http://ehp4-earthquake.cr.usgs.gov/designmaps/us/summary.php?template=minimal&latitu... 7/23/2015 Design Maps Summary Report Page 2 of 2 V T Although this information is a product of the U.S. Geological Survey,we provide no warranty, expressed or implied, as to the accuracy of the data contained therein.This tool is not a substitute for technical subject-matter knowledge. http://ehp4-earthquake.cr.usgs.gov/designmaps/us/summary.php?template=minimal&latitu... 7/23/2015 RAM Modeler V14.07 Floor Plan: High Steel DataBase: 2015-02-16 Gordon Large Tower 07/23/15 21 : 42 :47 ti r 4 _ 5 B3 M r- C9 2 7 �AA Gravity Beam Design RAM Steel 14.07.01.01 RAM- DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:42:47 Building Code: IBC Steel Code:.AISC360-05 LRFD Floor Type: High Steel Beam Number SPAN INFORMATION.(ft): I-End (17.30,0.00). J-End (17.30,18.85) Beam Size (User Selected) = W MX22 '. Fy = 50.0 ksi Total Beam Length(ft) = 18.85 Mp (kip-ft) _. 138.33 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.233 0.000 --- Snow -0.000 18.854 0.233 0.000' 0.000 2 0.000 0.000 0.559 --- Snow 0.000 l&854 0.000 0:559 0.000 3 0.000 0.022 0.000. --- NonR - 0.000 18.85.4 0.022 0.000 0.000 SHEAR(Ultimate): Max Vu (1.2DL+1.6LL)= 11.32 kips '1:00Vn=94.53 kips .MOMENTS (Ultimate); Span Cond LoadCombo Mu @: Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max+ 1.2DL+1.6LL 53.3 9.4. 0.0 1.00 0.90 - 124.50 :Controlling 1.2DL+1.6LL 53.3 9.4.. 0.0 1.00 0.90 124.50 REACTIONS (kips): Left. Right DL reaction 2.40 2.40 Max+LL reaction 5.27 5.27 Max+total reaction(factored) 11.32 11.32 DEFLECTIONS: Dead toad.(in) at 9:43 ft -_. -0.126 L/D 1801 Live load.(in) . at. .9.43 ft -0:275 L/D- 821 Net Total load (in) at 9.43-ft = -0.401 L/D = 564 > Gravity Beam Design } RAM Steel 14.07.01.01 RAM DataBase: 2015-02-16_Gordon—Large Tower 07/23/15 21:42:47 Building Code: IBC Steel Code: AISC360-05.LRFD Floor Type: High Steel , Beam Number=2 SPAN INFORMATION.(ft): I-End (0.00,0.00) J-End (17.30,0.00) Beam Size(User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 17.30 Mp (kip-ft) = 102.92 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 1.7.302 0.050. 0.000 0.000 2 0,000 0.000 0.120 --- Snow 0.000 17.302 0.000 0.120 0.000 3 0.000 0.019 0.000 --- NonR 0.000 17.302 0.019 0.000 0.000 SHEAR(Ultimate): Max Vu (1.2DL+1.6LL)=2.38 kips 1.00Vn=86.01 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @. Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max+ 1.2DL+1.6LL 10.3 8.7 17.3. 1.14 0.90 22.82 Controlling 1.2DL+1.6LL 10.3 8.7 17.3 1.14 0.90 2182. REACTIONS.(kips): Left Right DL reaction 0.60 0.60 Max+LL reaction 1.04 1.04 . Max+total reaction (factored) 2.38 2.38 DEFLECTIONS: Dead load.(in) at 8.65 ft -0.037 L/D = 5630 Live load(in) at 8.65 ft = 0.064 L/D = 3221 Net Total load (in) at 8.65 ft = -0.101 L/D = 2049 Gravity Beam Design RAM Steel 14.07.01.01 - RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:42:47 Building Code: IBC Steel Code: AISC360-05 LRFD Floor Type:.High Steel Beam Number=3 SPAN INFORMATION(ft): I-End (0.00,0.00) J-End (0.00,18.85) Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length(ft) = 18.85 Mp (kip-ft) = 138.33 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.075 0.000 --- Snow 0.000 18.854 0.075 0.000 0.000 2 0.000 0.000 0.180 --- Snow 0.000 18.854 0.000 0.180 0.000 3 0.000 0.216 0.000 --- Snow 0.000 18.854 0.216 0.000 0.000 4 0.000 0:000 0.519 --- Snow 0.000 18.854 0.000 0.519 0.000 5 0.000 0.022 0.000 --- NonR 0.000 18.854 0.022 0.000 0.000 SHEAR(Ultimate): Max Vu (1.2DL+1.6LL)= 14.10 kips 1.00Vn=94.53 kips MOMENTS (Ultimate): . Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max+ 1.2DL+1.6LL 66.4 9.4 0.0 1.00 0.90 124.50 Controlling 1.2DL+1.6LL 66.4 9.4 0.0 1.00 0.90 124.50 REACTIONS (kips): Left Right DL reaction 2:95 2.95 Max+LL reaction 6.59 6.59 Max+total'reaction (factored) 14.10 14.10 DEFLECTIONS: Dead load (in) at 9.43 ft = -0.154 L/D = 1465 Live load (in) at 9.43 ft . = -0.345 L/D = 656 Net Total load (in) at 9.43 ft -0.499 L/D = 453 Gravity Beam Design Fill RAM Steel 14.07.01.01 RAMDataBase: 2015-02-1.6_Gordon :Large Tower 07/23/15 21:42:47 Building Code:IBC Steel Code: AISC360-05 LRFD Floor Type: High Steel . Beam Number=4- SPAN INFORMATION.(ft): I-End (0.00,18.85) J-End.(17.30,18.85) Beam Size (User Selected) W12X19., Fy = 50.0 ksi Total Beam Length(ft) = 17.30 Mp (kip-ft) = 102.92 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.00.0 0.050 0.000 --- Snow 0.000 17.302 0.050 0.000 0.000 2 0.000 0.000 0.121 --- Snow 0.000 17.302 0.000 0:121 0.000 3 -0.000 0.019 0:000 --- NonR . 0.000 17.302 0.019 0.000 0.000 SHEAR(Ultimate): Max Vu (1.2DL+1.6LL)=2:38 kips 1.00Vn=86.01 kips MOMENTS (Ultimate): Span Cond LoadCombo ' Mu @ Lb Cb Phi Phi*Mn kip-ft ft . ft kip-ft Center Max+ 1.2DL+1.6LL 10.3 8.7 17.3 1.14 0.90 22.82 Controlling 1.2DL+1.6LL 10.3 8.7 17.3 1:14 0.90 22.82- REACTIONS(kips): Left Right DL reaction 0.60 0.60- Max+LL reaction L04 1.04. Max+total reaction(factored) 2.38 2.38 DEFLECTIONS: Dead load(in) at: 8.65 ft = --0.037 .L/D = 5630 Live load(in) at 8.65 ft = -0:064 L/D = 3221- Net Total load (in) at 8.65 ft = -0.101 L/D = 2049 Gravity Beam Design RAM Steel 14.07.01.01 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:42:47 Building Code: IBC Steel Code: AISC360-05 LRFD Floor Type: High Steel Beam Number=5 . SPAN INFORMATION(ft): I-End (17.30,18.85) J-End.(34.60,18.85) . Beam Size(User Selected,) = W12X19 Fy 50.0 ksi Total Beam Length (ft) = 17.30 Mp (kip-ft) = 102.92 POINT LOADS (kips): Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.333 2.25 0.00 0.0 0.00 0.00 0.0 4.89 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 17.302 0.050 0.000 0.000 2 0.000 0.000 0.121 --- Snow 0.000 I TA2 0.000 0.121 0.000 3 0.000 0.019 0.000 --- NonR 0.000 17.302 0.019 0.000 0.000 SHEAR(Ultimate): Max Vu (1.2DL+1.6LL)= 12.10 kips 1.00Vn=86.01 kips MOMENTS (Ultimate): Span -Cond LoadCombo Mu @ Lb Cb Phi Phi Wn kip-ft ft ft kip-ft Center. Max+ 1.2DL+1.6LL 18.5 5.7 16.0 1-16 0.90 25.19 Controlling 1.2DL+1.6LL 19.5 5.7 16.0 1.16 0.90 25.79 REACTIONS (kips): Left Right DL reaction 2.67 0.77 Max+LL reaction 5.56 1.42 Max+total reaction(factored) 12.10 3.19 .DEFLECTIONS: Dead load(in) at 8.13 ft. = 0.063 L/D = 3316 Live load(in) at 8.13 ft = -0.121 L/D = 1722 Net Total load (in) at 8.13 ft = -0.183 L/D = 1133 u RAM Steel 14.07.01.01 Gravity Beam Design RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:42:47 Building Code: IBC Steel Code: AISC360-05 LRFD Floor Type: High Steel Beam Number=6 SPAN INFORMATION (ft): I-End (34.60,0.00)' J-End (34.60,18.85) Beam Size(User Selected) = W14X22 Fy .. = 50.0 ksi Total Beam Length (ft) _. 18.85 Mp (kip-ft) = 138.33 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.200 0.000 --- Snow 0.000 18:854 0.200 0.000 0.000 2 0.000. 0.000 0.479 --- Snow 0.000 18.854 0.000 0.479 0.000 3 0.000 0.075 0.000 -- Snow 0.000 18.854 0:075 0.000 .0.000 4 0.000 0.000 0.180 --- Snow 0.000 18.854 0.000 0.180 0:000 5 0.000 0.022 0.000 --- NonR 0.000 18.854 0.022 0.000 0.000 SHEAR(Ultimate): Max Vu (1.2DL+1.6LL)=13.30 kips 1.00Vn=94.53 kips MOMENTS.(Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max+ 1.2DL+1.6LL 62.7 9.4 0.0 1.00 0.90 124.50 Controlling 1.2DL+1.6LL 62.7 9.4 0.0 1.00 0.90 1.24.50 REACTIONS (kips): Left Right DL reaction 2.80 2.80 Max+LL reaction 6.22 6.22 Max+total reaction (factored) 13.30 13.30 DEFLECTIONS: Dead load (in) at 9.43 ft = -0.146 . L/D = 1548 Live load.(in) at 9.43 ft = -0.325 L/D = 696 Net Total load (in) at 9.43 ft = -0.471 L/D = 480 Gravity Beam Design RAM Steel 14.07.01.01 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:42:47 Building Code: IBC Steel Code:AISC360-05 LRFD Floor Type: High Steel Beam Number=7 SPAN INFORMATION (ft): I-End (17.30,0.00) J-End (34.60,0.00) Beam Size(User Selected) = W12X19 Fy = 50.0 ksi Total Beam Length (ft) = 17.30 Mp (kip-ft) = 102.92 POINT LOADS (kips):. Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% PartL 1.333 2.25 0.00 0.0 0.00 0.00 0.0 4.89 Snow 0.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.050 0.000 --- Snow 0.000 17.302 0.050 0.000 0.000 2 0.000 0.000 0.120 --- Snow 0.000 17.302 0.000 0.120 0.000 3 0.000 0.019 0.000 --- NonR 0.000 17.302 0.019 0.000 0.000 SHEAR(Ultimate): Max Vu (1.2DL+1.6LL)= 12.10 kips 1.00Vn=86.01 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max+ 1.2DL+1.6LL 18.5 5.7 16.0 1.16 0.90 25.79 Controlling l.2DL+L6LL 18.5 5.7 16.0 1.16 0.90 25.79 REACTIONS (kips): Left Right DL reaction 2.67 0.77 Max+LL reaction 5.56 1.42 Max+total reaction (factored) 12.10 3.19 DEFLECTIONS: - Dead load (in) at 8.13 ft = -0.063 L/D 3316 Live load(in) at 8.13 ft = -0.121 L/D 1722 Net Total load (in) at 8.13 ft = -0.183 L/D = 1133 Gravity Beam Design RAM Steel 14.07.01.01 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:42:47 Building Code: IBC Steel Code:AISC360-05 LRFD Floor Type: High Steel Beam Number=8 SPAN INFORMATION (ft): I-End (18.64,0.00) J-End (18.64,18.85) Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length(ft) = 18.85 Mp (kip-ft) = 138,33 LINE LOADS (k/ft): Load Dist DL LL Red% Type PartL 1 0.000 0.216 0.000 --- Snow 0.000 18.854 0.216 0.000 0.000 2 . 0.000 0.000 0.519 --- Snow 0.000 18.854 0.000 0.519 0.000 3 0.000 0.022 0.000 --- NonR 0.000 18.854 0.022 0.00.0 0.000 SHEAR(Ultimate): Max Vu (1.2DL+1.6LL)= 10.53 kips 1.00Vn=94.53 kips. MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft A ft kip-ft Center Max+ 1.2DL+1.6LL 49.6 9.4 0.0 1:00 0.90 124.50 Controlling 1.2DL+1.6LL 49.6 9.4 0.0 1.00 0.90 124.50 REACTIONS.(kips): Left Right DL reaction 2.25 2.25 Max+LL reaction 4.89 4.89 Max+total reaction(factored) 10.53 10.53 DEFLECTIONS: Dead load (in) at 9.43 ft .= -0.117 L/D = 19274 Live load (in) at 9.43 ft = -0.256 L/D = 885 Net Total load (in) at 9.43 ft = -0.373 L/D = 606 RAM Modeler V14 .07 - Floor Plan: High Steel DataBase: - 2015-02-16_Gordon_Large Tower 07/23/15 21:42 :47 B3 W12x19 W12x19, N N N X XX X :AA*- W12x19 W12x19 RAM Modeler. V14.07 - Floor Plan: Low Steel DataBase: .2015-02-16 Gordon_Large Tower 07/213/15 21 :42 :47 a W12x19 W12x19 B3 N N N N N N X x X d. b- d' W12x19 h W12x19 Fn AA 4:7 5.4 6.3 RAM Modeler V14 .07 - Floor Plan: High Steel DataBase: 2015-02-16 Gordon Large Tower 07/23/15 21:42 :47 1 B3 AA Flr Gravity Column Design RAM Steel 14.07.01.01 RANI DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:50:37 Building Code: IBC Steel Code: AISC360-05 LRFD Story level High Steel, Column Line 4.7-113, Column# 1 Fy (ksi) = 46.00 Column Size =. HSS6X6X3/8 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu (ft) 12.22 12.22 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity(in) Top 5..50 5.50 Bottom 5.50 5.50 CONTROLLING AXIAL COLUMN LOADS Skip-Load Case 2: Dead Live Roof Axial (kip) 3.87 0.00 7.64 DEMAND CAPACITY RATIO: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 16.86 0.90Pnx(kip) = 237.76 Pu/0.90Pnx = 0.071 0.90Pny(kip) = 237.76 Pu/0.90Pny = 0.071 CONTROLLING COMBINED COLUMN LOADS -Skip-Load Case 1: Dead Live Roof Axial (kip) 3.87 0.00 7.64 Moments Top Mx(kip-ft) 0.27 0.00 0.48 My(kip-ft) 1.35 0.00 3.02 Bot Mx(kip-ft) 0.04 0.00 0.00 My (kip-ft) 0.05 0.00 0.00 Reverse curvature about X-Axis Reverse curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+0.5LL+ 1.6RF) Pu (kip) 16.86 0:90*Pn (kip) = 237.76 Mux(kip-ft) = 1.09 0.90*Mnx(kip-ft) = 54.51 Muy (kip-ft) = 6.46 0.90*Mny (kip-ft) = 54.51 Rm = 1.00 Cbx = 1.71 Cby = 1.68 Cmx = 0.58 Cmy = 0.60 . Pex(kip) = 525.87 Pey(kip) = 525.87 Blx = 1.00 Bly = 1.00 INTERACTION EQUATION Pu/0.90*Pn = 0.071 Eg141-1b: 0.035 +0.020+0.119=0.174 F Gravity Column Design 1 RAM Steel 14.07.01.01 Page 2/2 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:50:37 Building Code: IBC Steel Code: AISC360-05 LRFD Story level Low Steel, Column Line 4.7-133, Column # 1 Fy(ksi) = 46.00 Column Size = HSS6X6X3/8 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu(ft) 11.00 11.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING AXIAL COLUMN LOADS -Skip-Load Case 2: Dead Live Roof Axial (kip) 4.52 0.00 7.64 DEMAND CAPACITY RATIO: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 17.64 0.90Pnx(kip) _ _ 250.60 Pu/0.90Pnx = 0.070 0.90Pny(kip) 250.60 Pu/0.90Pny = 0.070 CONTROLLING COMBINED COLUMN LOADS -Skip-Load Case 1: Dead Live Roof Axial(kip) 4.52 0.00 7.64 Moments Top Mx(kip-ft) 0.04 0.00 0.00 My(kip-ft) 0.05 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 My(kip-ft) 0.00 0.00. 0.00 Single curvature about-X-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 17.64 0.90*Pn(kip) = 250.60 Mux(kip-ft) = 0.05 0.90*Mnx(kip-ft) . = 54.51 Muy (kip-ft) = 0.06 0.90*Mny(kip-ft) = 54.51 Rm =. . 1.00 Cbx 1.67 Cby = 1.67 Cmx 0.60 Cmy = 0.60 Pex(kip) = 648.85 Pey(kip) = 648.85 Blx = 1.00 Bly = 1.00 INTERACTION EQUATION Pu/0.90*Pn = 0.070 Eq H1-1b: 0.035 + 0.001 +0.001 =0.037 F. Gravity Column Design FiIRAM Steel 14.07.01.01 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:51:25 Building Code: IBC Steel Code:A-ISC360-05 LRFD Story level High Steel, Column Line 5.4-B3, Column#2 Fy (ksi) = 46.00 Column Size = HSS6X6X3/8 Orientation (deg.) = 0.0 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu (ft) 12.22 12.22 K .1 1 Braced Against Joint Translation Yes. Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 5.50 5.50 CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 2: Dead Live Roof Axial (kip) 5.99 0.00 11.87 DEMAND CAPACITY RATIO: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 26.18 0.90Pnx(kip) 237.76 Pu/0.90Pnx = 0.110 0.90Pny(kip) = 237.76 Pu/0.90Pny = 0.110 CONTROLLING COMBINED COLUMN LOADS -Skip-Load Case 8: Dead Live Roof Axial(kip). 5-.99 0.00 10.83 Moments Top Mx (kip-ft) 0.95 0.00 2.55 My (kip-ft) 1.10 0.00 2.42 Bot Mx(kip-ft) 0.00 0.00- 0.00 My(kip-ft) 0.05 0.00 0.00 Single curvature about X-Axis Reverse curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+0.5LL+ 1.611F) Pu (kip) = 24.51 0.90*Pn(kip) = 237.76 Mux(kip-ft) = 5.22 0.90*Mnx(kip-ft) = 54.51 Muy(kip-ft) = 5.19 0.90*Mny(kip-ft) = 54.51 Rm = 1.00 Cbx = 1.67 Cby = 1.68 Cmx = 0.60 Cmy = 0.60 Pex(kip) = 525.87 Pey(kip) = 525.87 Blx = 1.00 Bly = 1.00 INTERACTION EQUATION Pu/0.90*Pn = 0.103 Eq H1-lb: 0.052+0.096+0.095 =0.242 _Gravity Column Design RAM Steel 14.07.01.01 Page 2/2 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:51:25 Building Code: IBC Steel Code: AISC360=05 LRFD Story level Low Steel, Column Line 5.4-B3, Column#2 Fy(ksi) = 46.00 Column Size = HSS6X6X3/8 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu(ft) 11.00 11.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING AXIAL COLUMN LOADS -Skip-Load Case 2: Dead Live Roof Axial (kip) 6.81 0.00 11.87 DEMAND CAPACITY RATIO: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 27.16 0.90Pnx (kip) = 250.60 Pu/0.90Pnx = 0.108 0.90Pny (kip) = 250.'60 Pu/0.90Pny = 0.108 CONTROLLING COMBINED COLUMN LOADS -,Skip-Load Case 1: Dead Live Roof Axial (kip) 6.81 0.00 11.87 Moments Top Mx (kip-ft) 0.00 0.00 0.00 My (kip-ft) 0.05 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 My (kip-ft) 0.00 0.00 0.00 Single curvature about X-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 27.16 0:90*Pn(kip) = 250.60 Mux(kip-ft) = 0.00 0.90*Mnx(kip-ft) = 54.51 . Muy (kip-ft) = 0.06 0.90*Mny (kip-ft) = 54.51 Rm = 1.00 Cbx = 1.00 Cby = 1.67 Cmx = 1.00 Cmy = 0.60 Pex(kip) = 648.85 Pey(kip) _ 648.85 Blx = 1.04 Bly = 1.00 INTERACTION EQUATION Pu/0.90*Pn 0.108 Eq 141-1b: 0.054+0.000+0.001 =0.055 Gravity Column Design FiIIRAM Steel 14.07.01.01 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:52:05 Building'Code: IBC Steel Code:-AISC360-05 LRFD Story level High Steel, Column Line 6.3-B3, Column#3 Fy(ksi) = 46.00 Column Size = HSS6X6X3/8 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu (ft) 12.22 12.22 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 5.50 5.50 CONTROLLING AXIAL,COLUMN LOADS- Skip-Load Case 2: Dead Live Roof Axial (kip) 3.88 0.00 7.64 DEMAND CAPACITY RATIO: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 16188 0.90Pnx(kip) 237.76- Pu/0.90Pnx = 0.071 0.90Pny (kip) = 237.76 Pu/0.90Pny = 0.071 CONTROLLING COMBINED COLUMN LOADS -Skip-Load Case 1: Dead Live Roof Axial (kip) 3.88 0.00 7.64 Moments Top Mx (kip-ft) -0.35 0.00 -0.65 My (kip-ft) 1.28 0.00 2.85 Bot Mx(kip-ft) -0.04 0.00 0.00 My (kip-ft) 0.05 .0.00 0.00 Reverse curvature about X-Axis Reverse curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 16.88 0:90*Pn(kip) = 237.76 Mux(kip-ft) = 1.46 0.90*Mnx(kip-ft) = 54.51. Muy (kip-ft) = 6.10 0.90*Mny(kip-ft) = 54.51 Rm = 1.00 Cbx = 1.70 Cby = 1.68 . Cmx = 0.59 Cmy = 0.60 Pex(kip). = 525.87 . Pey(kip) = 525.87 Blx = 1.00 Bly = 1.00. INTERACTION EQUATION Pu/0.90*Pn = 0.071 EgHl-lb: 0.035 +0.027+0.112=0.174 Gravity Column Design RAM Steel 14.07.01.01 Page 2/2 RAM DataBase: 2015-02-16_Gordon-Large Tower 07/23/15 21:52:05 Building Code:IBC Steel Code: AISC360-05 LRFD Story level Low Steel, Column Line 6.3-133, Column#3 Fy (ksi) = 46.00 Column Size = HSS6X6X3/8 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: . X-Axis Y-Axis Lu (ft) 11.00 11.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity(in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 2: Dead Live Roof Axial (kip) 4.54 0.00 7.64 DEMAND CAPACITY RATIO: (1.2DL+0.5LL+ 1.6RF) Pu(kip) = 17.66 0.90Pnx(kip) = 250.60 Pu/0.90Pnx = 0.070 0.90Pny (kip) = 250.60 Pu/0.90Pny 0.070 CONTROLLING COMBINED COLUMN LOADS -Skip-Load Case 1: Dead Live Roof Axial (kip) 4.54 0.00 7.64 Moments Top Mx (kip-ft) -0.04: 0.00 0.00 My(kip-ft) 0.05 0.00 0.00 Bot Mx(kip-ft) 0.00 -0.00 -0.00 My (kip-ft) 0.00 0.00 0.00 Single curvature about X-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 17.66 0.90*Pn(kip) = 250.60 Mux(kip-ft) = 0.05 0.90*Mnx(kip-ft) = 54.51 Muy (kip-ft) = 0.06 0.90*Mny (kip-ft) = 54.51 Rm = 1.00 Cbx = 1.67 Cby = 1.67 Cmx. = 0.60 Cmy = 0.60 Pex(kip) = 648.85 Pey(kip) = 648.85 Blx = 1.00 Bly = 1.00 INTERACTION EQUATION Pu/0.90*Pn = . 0.070. Eq H1-lb: 0.03.5 + 0.001 +0.001 = 0.037 FiIRAM Gravity Column Design Steel 14.07.01.01 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:52:24 Building Code: IBC Steel Code: AISC360-05 LRFD Story level High Steel, Column Line 6.3-AA, Column #4 Fy (ksi) = 46.00 Column Size = HSS6X6X3/8 Orientation (deg.) = 0.0 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu (ft) 12.22 12.22 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top_ 5.50 5.50 Bottom 5.50 5.50 CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 2: Dead Live Roof Axial (kip) 3.88 0.00 7.64 DEMAND CAPACITY RATIO: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 16.88 0.90Pnx(kip) 237.76 Pu/0.90Pnx = 0.071 0.90Pny (kip) = 237.76 Pu/0.90Pny = 0.071 CONTROLLING COMBINED COLUMN LOADS -Skip-Load Case 1: Dead Live Roof Axial (kip) 3.88 0.00 7.64 Moments Top Mx(kip-ft) -0.35 0.00 -0.65 My (kip-ft) -1.28 0.00 -2.85 Bot Mx(kip-ft) -0.04 0.00 0.00 My (kip-ft) -0.05 0.00 0.00 Reverse curvature about X-Axis Reverse curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 16.88 0.90*Pn (kip) = 237.76 Mux(kip-ft) = 1.46- 0.90*Mnx(kip-ft) = 54.51 Muy (kip-ft) = 6.10 0.90*Mny (kip-ft) = 54.51 Rm = 1.00 Cbx = 1.70 Cby = 1.68 Cmx = 0.59 Cmy = 0.60 Pex(kip) = 525.87 Pey (kip) = 525.87 Blx = 1.00 Bly = 1.00 INTERACTION EQUATION Pu/0.90*Pn = 0.071 EgHI-lb: 0.035 +0.027+0.112=0.174 Gravity Column Design FiIRAM Steel 14.07.01.01 Page 2/2 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:52:24 Building Code: IBC Steel Code: AISC360-05 LRFD Story level Low Steel, Column Line 6.3-AA, Column#4 Fy (ksi) = 46.00 Column Size = HSS6X6X3/8 Orientation (deg.) = 0.0 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu(ft) 11.00 11.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING AXIAL COLUMN LOADS -Skip-Load Case 2: Dead Live Roof Axial (kip) 4.54 0.00 7.64 DEMAND CAPACITY RATIO: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 17.66 0.90Pnx(kip) = 250.60 Pu/0.90Pnx = 0.070 0.90Pny(kip) = 250.60 Pu/0.90Pny = 0.070 CONTROLLING COMBINED COLUMN LOADS -Skip-Load Case 1: Dead Live Roof Axial (kip) 4.54 0.00 7.64 Moments Top Mx(kip-ft) -0.04 0.00 0.00 My(kip-ft) -0.05 0.00 0.00 Bot Mx(kip-ft) 0.00 -0.00 -0.00 My (kip-ft) 0.00 -0.00 -0.00 Single curvature about X-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 17.66 0.90*Pn(kip) = 250.60 Mux(kip-ft) = 0.05 0.90*Mnx(kip-ft) = 54.51 Muy (kip-ft) = 0.06 0.90*Mny (kip-ft) = 54.51 Rm = 1.00 Cbx = 1.67 Cby = 1.67 Cmx = 0.60 Cmy = 0.60 Pex(kip). = 648.85 Pey (kip) = 648.85 Blx = 1.00 Bly = 1.00 INTERACTION EQUATION Pu/0.90*Pn = 0.070 Eq HI-Ib: 0.035 + 0.001.+0.001 = 0.037 Gravity Column Design RAM Steel 14.07.01.01 RAM, DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:51:44 Building Code: IBC Steel Code: AISC360-05 LRFD Story level High Steel, Column Line 5.4-AA, Column#5 Fy (ksi) = 46.00 Column Size = HSS6X6X3/8 Orientation (deg.) = 0.0 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu (ft) 12.22 12.22 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 5.50 5.50 CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 2: Dead Live Roof Axial (kip) 5.99 0.00 11.87 DEMAND CAPACITY RATIO: (1.2DL+0.5LL+ 1.6RF) - Pu (kip) = 26.18 0.90Pnx (kip) = 237.76 Pu/0.901?nx = 0.110 . 0.90Pny (kip) = 237.76 Pu/0.90Pny = 0.110 CONTROLLING COMBINED COLUMN LOADS - Skip-Load Case 8: Dead Live Roof Axial (kip) 5.99 0.00 10.83 Moments Top Mx (kip-ft) 0.95 0.00 2.55 My (kip-ft) -1.10 0.00 -2.42 Bot Mx(kip-ft) 0.00 0.00 0.00 My(kip-ft) -0.05 0.00 0.00 Single curvature about X-Axis Reverse curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 24.51 0.90*Pn (kip) = 237.76 Mux(kip-ft) = 5.22 0.90*Mnx(kip-ft) = 54.51 Muy (kip-ft) = 5.19 0.90*Mny(kip-ft) = 54.51 Rm = 1.00 Cbx = 1.67 Cby = 1.68 Cmx = 0.60 Cray = 0.60 Pex(kip) = 525.87 . Pey(kip) = 525.87 Blx = 1.00 Bly = 1.00 INTERACTION EQUATION Pu/0.90*Pn = 0.103 Eq HI-lb: 0.052+0.096+0.095 =0.242 Gravity Column Design FiIRAM Steel 14.07.01.01 Page 2/2 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:51:44 Building Code: IBC Steel Code: AISC360-05 LRFD Story level Low Steel, Column Line 5.4-AA, Column #5 Fy(ksi) = 46.00 Column Size = HSS6X6X3/8 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu(ft) 11.00 11.00 K 1 1 Braced Against Joint Translation Yes Yes . Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING AXIAL COLUMN LOADS -Skip-Load Case 2: Dead Live Roof Axial (kip) 6.81 0.00 11.87 DEMAND CAPACITY RATIO: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 27.16 0.90Pnx(kip) = 250.60 Pu/0.90Pnx = 0.108 0.90Pny (kip) = 250.60 Pu/0.90Pny = 0.108 CONTROLLING COMBINED COLUMN LOADS -Skip-Load Case 1: Dead Live Roof Axial (kip) 6.81 0.00 11.87 Moments Top Mx(kip-ft) 0.00 0.00 0.00 My (kip-ft) -0.05 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 My (kip-ft) 0.00 -0.00. -0.00 Single curvature about X-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 27.16 0.90*Pn(kip) = 250.60 Mux(kip-ft) = 0.00 ' 0.90*Mnx(kip-ft) = 54.51 Muy (kip-ft) = 0.06 0.90*Mny.(kip-ft) = 54.51 Rm = 1.00 Cbx = 1.00 Cby = 1.67 Cmx = 1.00 Cmy = 0.60 Pex(kip) = 648.85 Pey(kip) = 648.85 Blx = 1.04 Bly = 1.00 INTERACTION EQUATION Pu/0.90*Pn = 0.108 Eq HI-1b: 0.054+0.000+0.001 =0.055 Gravity Column.Design ., RAM Steel 14.07.01.01 RAM DataBase: 2015-02-16 ..Gordon Large Tower 07/23/15 21:51:06 Building Code: IBC Steel Code: AISC360-05 LRFD Story level High Steel, Column Line 4.7-AA, Column#6 Fy (ksi) . = 46.00 Column Size = HSS6X6X3/8 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu (ft) 12.22 12.22 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 5.50 5.50 CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 2: Dead Live Roof Axial (kip) 3.87 0.00 7.64 DEMAND CAPACITY RATIO: (1.2DL+ 0.5LL+ 1.6RF) Pu (kip) = 16.86 0.90Pnx(kip) = 237.76 Pu/0.90Pnx = 0.071 0.90Pny(kip) = 237.76 Pu/0.90Pny = 0.071 CONTROLLING COMBINED COLUMN LOADS -Skip-Load Case 1: Dead Live Roof Axial (kip) 3.87 0.00 7.64 Moments Top Mx(kip-ft) 0.27 0.00 0.48 My (kip-ft) -1.35 0.00 -3.02 Bot Mx(kip-ft) 0:04 0.00 0.00 My (kip-ft) -0.05 0.00 0.00 Reverse curvature about X-Axis Reverse curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 16.86 0.90*Pn(kip) = 237.76. Mux(kip=ft) = 1.09 0.90*Mnx(kip-ft) = 54.51 Muy (kip-ft) = 6.46 0.90*Mny (kip-ft) = 54.51, Rm = .1.00 Cbx = 1.71 Cby = 1.68 Cmx = 0.58 Cmy = 0.60 Pex(kip) = 525.87 Pey (kip) = 525.87 Blx 1.00 Bly = 1.00 .INTERACTION EQUATION Pu/0.90*Pn - 0.071 EgHl-lb: 0.035 +0.020+0.119=0.174 N Gravity Column Design RAM Steel 14.07.01.01 Page 2/2 RAM DataBase: 2015-02-16_Gordon-Large Tower 07/23/15 21:51:06 Building Code: IBC Steel Code: AISC360-05 LRFD Story level Low Steel, Column Line 4.7-AA, Column #6 Fy(ksi) = 46.00 Column Size = HSS6X6X3/8 Orientation(deg.) = 0.0 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu(ft) 11.00 11.00 K 1 1 Braced Against Joint Translation Yes Yes Column Eccentricity (in) Top 5.50 5.50 Bottom 0.00 0.00 CONTROLLING AXIAL COLUMN LOADS - Skip-Load Case 2: Dead Live Roof Axial(kip) 4.52 0.00 7.64. DEMAND CAPACITY RATIO: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 17.64 0.90Pnx(kip) = 250.60 Pu/0.90Pnx = 0.070 . 0.90Pny (kip) = 250.60 Pu/0.90Pny = 0.070 CONTROLLING COMBINED COLUMN LOADS -Skip-Load Case 1: Dead Live Roof Axial (kip) 4.52 0.00 7.64 Moments Top Mx (kip-ft) 0.04 0.00 0.00 My (kip-ft) -0.05 0.00 0.00 Bot Mx(kip-ft) 0.00 0.00 0.00 My (kip-ft) 0.00 -0.00 -0.00 Single curvature about X-Axis Single curvature about Y-Axis CALCULATED PARAMETERS: (1.2DL+0.5LL+ 1.6RF) Pu (kip) = 17.64 0.90*Pn(kip) = 250.60 Mux(kip-ft) = 0.05 0.90*Mnx(kip-ft) = 54.51 Muy (kip-ft) = 0.06 0.90*Mny (kip-ft) = 54.51 Rm = 1.00 Cbx = 1.67 Cby = 1.67 Cmx = 0.60 Cmy = 0.6.0 Pex(kip) = 648.85 Pey(kip) = 648.85 Blx = 1.00 Bly = 1.00 INTERACTION EQUATION Pu/0.90*Pn = 0.070 Eq Hl-lb: 0.035 +0.001 +0.001 =.0.037 DataBase: 2015-02-16 Gordon Large Tower 07/23/2015 21:45:11 l 4. Loads and Applied Forces RAM RAM Frame 14.07.01.01 DataBase: 2015-02-16_Gordon Large Tower 07/23/15 21:53:12 LOAD CASE: Wind Wind ASCE 7-05 /IBC2006/2009 Exposure: C Basic Wind Speed (mph): 90.0 Importance Factor: 1.000 Apply Directionality Factor,Kd=0.85 Use Topography Factor,Kzt: 1.00 . Use Calculated Frequency for X-Dir. Use Calculated Frequency for Y-Dir. Gust Factor for Rigid Structures, G: Use Calculated G for X-Dir. Gust Factor for Rigid Structures, G: Use Calculated G for Y-Dir. Damping Ratio for Flexible Structures=0.01 Mean Roof Height(ft): Top Story Height+Parapet= 26.33 Ground Level: Base WIND PRESSURES: X-Direction: Natural Frequency=5.021 Structure is Rigid Y-Direction: Natural Frequency 5.145 Structure is Rigid CpWindward=0.80 gLeeward (qh)= 16.84 psf GCpn(Parapet): Windward= 1.50 Leeward=-1.00 Height Kz Kzt qz Gust Factor G CpLeeward Pressure(psf) ft psf X Y X Y X Y 26.33. 0.956 1.000 16.843 ---- --- ---- ---- 42.109 42.109 23.22 0.931 1.000 16.404 -0.887 0.880 -0.345 -0.500 16.798 18.968 0.00 0.849 1.000 14.962 0.887 0.880 -0.345 -0.500 15.774 17.952 APPLIED DIAPHRAGM.FORCES Type: Wind_IBC09_1 X Level Diaph.# Ht . Fx Fy X Y ft kips kips ft ft High Steel 1 23.22 7.36 0.00 17.30 9.43 Low Steel --- --- --- --- --- --- APPLIED STORY FORCES Type: Wind_IBC09_1_X Level Ht Fx Fy ft kips. kips High Steel 23.22 7.36 0.00, Low Steel 11.00 --- --- 7.36 0.00 APPLIED DIAPHRAGM FORCES Type: Wind_IBC09_1 _Y Level Diaph.# Ht Fx Fy X Y Loads and Applied Forces RAM RAM Frame 14.07.01.01 Page 2/6 DataBase: 2015-02-16 Gordon Large Tower 07/23/15 21:53:12 ft kips kips ft ft High Steel 1 23.22 0.00 14.10 17.30 9.43 Low Steel --- --- --- --- APPLIED STORY FORCES Type: Wind_IBC09_1_Y Level Ht Fx Fy ft kips kips High Steel 23.22 0.00 14.10 Low Steel 11.00 --- --- 0.00 14.10 APPLIED DIAPHRAGM FORCES Type: Wind_IBC09_2_X+E Level Diaph.# Ht Fx Fy X Y ft kips kips ft ft High Steel 1 23.22 5.52 0.00 17.30 12.86 Low Steel --- --- --- --- --- APPLIED STORY FORCES Type: Wind_IBC09_2_X+E Level Ht Fx Fy ft kips kips High Steel 23.22 5:52 0.00 Low Steel 11.00 --- --- 5.52 0.00 APPLIED DIAPHRAGM FORCES Type: Wind_IBC09_2 X-E Level. Diaph.# Ht Fx Fy X Y ft kips kips ft ft High Steel 1 23.22 5.52 0.00 17.30. 6.00 Low Steel --- --- --- --- --- --- APPLIED STORY FORCES Type: Wind_IBC09_2_X-E Level Ht Fx Fy ft kips kips High Steel 23.22 5.52 0.00 Low Steel 11.00 - ---. Loads and Applied Forces RAM RAM Frame 14.07.01.01 Page 3/6 DataBase: 2015-02-16_Gordon Large Tower 07/23/15 21:53:12 5.52 0.00 APPLIED DIAPHRAGM FORCES Type: Wind_IBC09_2_Y+E Level Diaph.# Ht Fx Fy X Y ft kips kips ft ft High Steel 1 23.22 0.00 10.57 23.39 9.43 Low Steel --- --- -=- --- --- APPLIED STORY FORCES Type: Wind_IBC09_2_Y+E Level Ht Fx Fy ft kips kips High Steel 23.22 0.00 10.57 Low Steel 11.00 --- --- 0.00 10.57 APPLIED DIAPHRAGM FORCES Type: Wind_IBC09_2_Y-E Level Diaph.# Ht Fx Fy X Y ft kips kips ft ft High Steel 1 23.22 0.00 10.57 11.21 9..43 Low Steel --- --- --- --- --- --- APPLIED STORY FORCES Type: Wind_IBC09_2_Y-E Level Ht Fx Fy ft kips kips High Steel 23.22 . 0.00. 10.57 Low Steel 11.00 --- --- 0.00 10.57 APPLIED DIAPHRAGM FORCES Type: Wind_IBC09_3_X+Y' Level Diaph.# Ht Fx Fy X Y ft kips kips ft ft High Steel 1 23.22 5.52 10.57 17.30 9.43 Low Steel --- --- --- --- --- --- Loads and Applied Forces RAM RAM Frame 14.07.01.01 - Page 4/6 DataBase: 2015=02-16_Gordon_Large Tower 07/23/15 21:53:12 APPLIED STORY FORCES Type: Wind_IBC09_3_X+Y Level Ht Fx Fy ft kips kips High Steel 23.22 5.52 10.57 Low Steel 11.00 -- 5.52 10.57 APPLIED DIAPHRAGM FORCES Type: Wind_IBC09_3_X-Y Level Diaph.# Ht Fx Fy X Y ft kips kips ft ft High Steel 1 23.22 5.52 -10.57 17.30 9.43 Low Steel --- --- --- --- APPLIED STORY FORCES Type: Wind_IBC09_3_X-Y Level Ht Fx Fy 'ft kips kips High Steel 23.22 5.52 -10.57 Low Steel 11.00 --- 5.52 -10.57 APPLIED DIAPHRAGM FORCES Type: Wind_IBC09_4- X+Y CW Level Diaph.# Ht Fx Fy X Y ft kips kips ft ft High Steel •1 23.22 4.14 7.93 11.21 12.86 Low Steel --- --- --- --- --- --- APPLIED STORY FORCES Type: Wind_IBC 09_4_X+Y CW Level Ht Fx . Fy ft kips kips High Steel 23.22 4.14 7..93 Low Steel 11.00 --- --- 4.14 7.93 Loads and Applied Forces RAM RAM Frame 14.07.01.01 Page 5/6 DataBase: 2015-02-16_Gordon Large Tower 07/23/15 21:53:12 APPLIED DIAPHRAGM FORCES Type: Wind_IBC09_4_X+Y CCW Level Diaph.# Ht Fx Fy X Y ft kips kips ft ft High Steel 1 23.22 4.14 7.93 23.39 6.00 Low Steel --- --- --- --- APPLIED STORY FORCES Type: Wind_IBC09_4_X+Y CCW Level Ht Fx Fy ft kips kips High Steel 23.22 4.14 7.93 Low Steel 11.00 --- --- 4.14 7.93 APPLIED DIAPHRAGM FORCES Type: Wind_IBC09_4 X-Y_CW Level Diaph.# Ht Fx Fy X Y ft kips kips ft ft High Steel 1 23.22 4.14 -7.93 23.39 12.86 Low Steel --- --- --- --- --- APPLIED STORY FORCES Type: Wind_IBC09 4_X-Y_CW Level Ht Fx Fy ft kips kips High Steel 23.22 4.14 -7.93 Low Steel 11.00 --- 4.14 -7.93 APPLIED DIAPHRAGM FORCES Type: Wind_IBC09_4_X-Y_CCW Level Diaph.# Ht Fx Fy X Y ft kips kips ft ft High Steel 1 23.22 4.14 -7.93 11.21 6.00 Low'Steel --- --- --- --- --- APPLIED STORY FORCES Type: Wind_IBC09_4_X-Y_CCW Level Ht Fx Fy r Loads and Applied Forces RAM RAM Frame 14.07.01.01 Page 6/6 DataBase: 2015-02-16_Gordon Large Tower 07/23/15 21:53:12 ft . kips kips High Steel 23.22 4.14 -7.93 Low Steel 11.00 --- --- 4.14 -7.93 Member Code Check iRAM Frame 14.07.01.01 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD COLUMN INFORMATION: Story Level = High Steel - Frame Number = 0 Column Number = 1 Fy (ksi) = 46.00 Column Size = HSS6X6X3/8 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 12.22 12.22 Lu for Bending(ft) 12.22 12.22 K 1.00 1.00 CONTROLLING COLUMN FORCES -SHEAR Load Combination: 1.200 D+ 0.500 Sp+ 1.600 W6 Shear Top Vux(kip) 0.36 Vuy(kip) 4.74 Shear Bot. Vux(kip) 0.36 Vuy(kip) 4.74 SHEAR CHECK: Vux (kip) = 0.36 0.90Vnx (kip) = 85.88 Vux/0.90Vnx = 0.004 Vuy(kip) = 4.74 0.90Vny (kip) = 85.88 Vuy/0.90Vny = 0.055 CONTROLLING COLUMN FORCES-AXIAL Load Combination: 1.200 D+ 1.600 Sp-0.800 W8 AXIAL CHECK: Pu (kip) = 17.49 0.90Pnx(kip). = 237.76 Pu/0.90Pnx = 0.074 0.90Pny(kip) = 237.76 Pu/0.90Pny = 0.074 CONTROLLING COLUMN FORCES -FLEXURE Load Combination: 1.200 D+0.500 Sp+ 1.600 W9 Axial Load (kip) 9.29 Moment Top Mux(kip-ft). -7.64 Muy (kip-ft) -25.18 Moment Bot. Mux(kip-ft) 6.99 Muy(kip-ft) 19.12 CALCULATED PARAMETERS: Pu (kip) = 9.29 0.90Pn (kip) = 237.76 Mux(kip-ft) _ -7.64 . 0.90Mnx (kip-ft) = 54.51 Muy(kip-ft) _ -25.18 0.90Mny (kip-ft) = 54.51 KL/Rx = 64.23 KL/Ry . = 64.23 Cbx = 2.26 INTERACTION EQUATION: Pu/�Pn = 0.039 Eq Hl-lb: 0.020+ 0.140+0.462.= 0.622 Member Code Check RAM Frame 14.07.01.01- Page 2/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code:'IBC Steel Code: AISC360-05 LRFD COLUMN INFORMATION: Story Level = High Steel Frame Number = 0 Column Number = 2 Fy (ksi) = 46.00 Column Size = HSS6X6X3/8 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 12.22 12.22 Lu for Bending(ft) 12.22 12.22 K 1.00 1.00 CONTROLLING COLUMN FORCES -SHEAR Load Combination: 1.200 D+ 0.500 Sp+ 1.600 W2 Shear Top Vux (kip) -0.13 Vuy(kip) 4.50 Shear Bot. Vux(kip) -0.13 Vuy(kip) 4.50 SHEAR CHECK: Vux(kip) _ -0.13 0.90Vnx (kip) = 85.88 Vux/0.90Vnx = 0.001 Vuy(kip) 4.50 0.90Vny(kip) = 85.88 Vuy/0.90Vny = 0.052 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp+ 0.800 W2 AXIAL CHECK: Pu (kip) = 28.90 0.90Pnx(kip) 237.76 Pu/0.90Pnx = 0.122 0.90Pny(kip) = 237.76 Pu/0.90Pny = 0.122 CONTROLLING COLUMN FORCES -FLEXURE Load Combination: 1.200 D+0.500 Sp - 1.600 W8 Axial Load (kip) 15.75 Moment Top Mux(kip-ft) 11.76 Muy(kip-ft). -22.20 Moment- Bot. Mux(kip-ft) -10.55 Muy (kip-ft) 17.19 CALCULATED PARAMETERS: Pu (kip) = 15.75 0.90Pn (kip). _ . 237.76 Mux(kip-ft) = 11.76 0.90Mnx (kip-ft) = 54.51 Muy(kip-ft) _ -22.20. 0.90Mny- (kip-ft) = 54.51 KL/Rx = 64.23 KL/Ry = 64.23 Cbx = 2.25 INTERACTION EQUATION: Pu/�Pn = 0.066 Eq H1-lb: 0.033 + 0.216 +0.407=0.656 Member Code Check RAM Frame 14.07.01.01 Page 3/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD COLUMN INFORMATION: Story Level = High Steel Frame Number = 0 Column Number = 3 Fy(ksi) = 46.00 Column Size = HSS6X6X3/8 INPUT DESIGN PARAMETERS: X-Axis Y-Axis . Lu for Axial (ft) 12.22 12.22 Lu for Bending(ft) 12.22 12.22 K 1.00 1.00 CONTROLLING COLUMN FORCES -SHEAR Load Combination: 1.200 D+ 0.500 Sp+ 1.600 W5 Shear Top Vux(kip) . -0.24 Vuy(kip) 4.69 Shear Bot. . Vux(kip) -0.24 Vuy(kip) 4.69 SHEAR CHECK: Vux(kip) = -0.24 0.90Vnx(kip) = 85.88 Vux/0.90Vnx = 0.003 Vuy(kip) = 4.69 0.90Vny (kip) = 85.88 Vuy/0.90Vny = 0.055 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp+ 0.800 W7 AXIAL CHECK: Pu (kip) = 17.50 0.90Pnx(kip) _ - 237.76 Pu/0.90Pnx = 0.074 0.90Pny(kip) = 237.76 Pu/0.90Pny = 0.074 CONTROLLING COLUMN FORCES -FLEXURE Load Combination: 1.200 D+ 0.500 Sp+ 1.600 W7 Axial Load (kip)' 10.82 Moment Top Mux(kip-ft) -9.27 Muy (kip-ft). -23.21 Moment Bot. Mux(kip-ft) 7.47 Muy (kip-ft) 17.54 CALCULATED PARAMETERS: Pu (kip) = 10.82 0.90Pn (kip) 237.76 Mux(kip-ft) _ -9.27 ' 0.90Mnx (kip-ft) = 54.51 Muy(kip-ft) _ -23.21 0.90Mny (kip-ft) = 54.51 KL/Rx = 64.23 KL/Ry = 64.23 Cbx = 2.23 INTERACTION EQUATION: Pu/�Pn = 0.046 Eq H1-lb: 0.023 +0.170+0.426= 0.619 Member Code Check RAM Frame 14.07.01.01 Page 4/26 RAM DataBase: 2015-02-16_Gordon-Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD COLUMN INFORMATION: Story Level = High Steel Frame Number = 0 Column Number = 4 Fy (ksi) = 46.00 Column Size = HSS6X6X3/8 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 12.22 12.22 Lu for Bending(ft) 12.22 12.22 K 1.00 1.00 CONTROLLING.COLUMN FORCES -SHEAR Load Combination: 1.200 D+0.500 Sp- 1.600 W5 Shear Top Vux(kip) -0.24 Vuy(kip) -4.69 Shear Bot. Vux(kip) -0.24 Vuy(kip) -4.69 SHEAR CHECK: Vux.(kip) = -0.24 0.90Vnx(kip) = 85.88 Vux/0.90Vnx = 0.003 Vuy (kip) = -4.69 0.90Vny(kip) = 85.88 Vuy/0.90Vny = 0.055 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp+ 0.800 W8 AXIAL CHECK: Pu (kip) = 17.50 0.90Pnx(kip) = 237.76 Pu/0.90Pnx = 0.074 0.90Pny(kip) = 237.76 Pu/0.90Pny = 0.074 CONTROLLING COLUMN FORCES-FLEXURE Load Combination: 1.200 D+ 0.500 Sp+ 1.600 W8 Axial Load (kip) 10.82 Moment Top Mux(kip-ft) -9.27 Muy (kip-ft) 23.21 Moment Bot. Mux(kip-ft) 7.47 Muy (kip-ft) -17.54 CALCULATED PARAMETERS: Pu (kip) = 10.82 0.90Pn (kip) = 237.76 Mux(kip=ft) _ -9.27 0.90Mnx (kip-ft) = 54.51 Muy(kip-ft) 23.21 0.90Mny (kip-ft) = 54.51 KL/Rx = 64.23 KL/Ry = 64.23 Cbx = 2.23 INTERACTION EQUATION: Pu/�Pn = 0.046 Eq Hl-lb: 0.023 +0.170+0.426=0.619 RAM Frame 14.07.01.01 Member Code Check Page 5/26 RAM DataBase: 2015-02-16_Gordon Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD COLUMN INFORMATION: Story Level = High Steel Frame Number = 0 Column Number = 5 Fy(ksi) = 46.00 Column Size = HSS6X6X3/8 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial-(ft) 12.22 .12.22 Lu for Bending(ft) 12.22 12.22 K 1.00 1.00 CONTROLLING COLUMN FORCES-SHEAR Load Combination: 1.200 D+0.500.Sp - 1.600 W2 Shear Top Vux(kip) -0.13 Vuy(kip) -4.50 Shear Bot. Vux(kip) -0.13 Vuy(kip) -4.50 SHEAR CHECK: Vux(kip) = -0.13 0.90Vnx(kip) = 85.88 Vux/0.90Vnx 0.001 Vuy (kip) = -4.50 0.90Vny(kip) = 85.88 Vuy/0.90Vny = 0.052 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp-0.800 W2 AXIAL CHECK: Pu (kip) = 28.90 0.90Pnx(kip) = 237.76 Pu/0.90Pnx = 0.122 0.90Pny (kip) = 237.76 Pu/0.90Pny = 0.122 CONTROLLING COLUMN FORCES -FLEXURE Load Combination: 1.200 D+0.500 Sp- 1.600 W7 Axial Load (kip) 15.75 Moment Top Muk(kip-ft) 11..76 Muy(kip-ft) 22.20 Moment Bot. Mux(kip-ft) -10.55 Muy(kip-ft) -17.19 CALCULATED PARAMETERS: Pu (kip) = 15.75 0.90Pn (kip) = 237.76 Mux(kip-ft) = 11.16 0.90Mnx (kip-ft) = 54.51 Muy(kip-ft) 22.20 0.90Mny (kip-ft) = 54.51 KL/Rx = 64.23 KL/Ry = 64.23 Cbx = 2.25 INTERACTION EQUATION: Pu/oPn = 0A66 Eq H1-lb: 0.033 +0.216+0.407=0.656 Member Code Check RAM Frame 14.07.01.01 Page 6/26 RAM DataBase: 2015-02-16_Gordon-Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD COLUMN INFORMATION: Story Level = High Steel Frame Number = 0 Column Number = 6 Fy (ksi) = 46.00 Column Size = HSS6X6X3/8 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 12.22 12.22 Lu for Bending(ft) 12.22 12.22 K 1.00 1.00 CONTROLLING COLUMN FORCES -SHEAR Load Combination: 1.200 D+0.500 Sp - 1.600 W6 Shear Top Vux (kip) 0.36 Vuy (kip) -4.74 Shear Bot. Vux(kip) 0.36 Vuy(kip) -4.74 SHEAR CHECK: Vux (kip) = 0.36 0.90Vnx(kip) = 85.88 Vux/0.90Vnx = 0.004 Vuy(kip) = -4.74 0.90Vny(kip) = 85.88 Vuy/0.90Vny = 0.055 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp -0.800 W7 AXIAL CHECK: Pu (kip) = 17.49 0.90Pnx(kip) = 237.76 Pu/0.90Pnx = 0.074 0.90Pny (kip) 237.76 Pu/0.90Pny = 0.074 CONTROLLING COLUMN FORCES -FLEXURE Load Combination: 1.200 D+ 0.500 Sp+ 1.600 W12 Axial Load (kip) Moment Top Mux(kip-ft) -7.64 Muy (kip-ft) 25.18 Moment Bot. Mux (kip-ft) 6.99 Muy (kip-ft) -19.12 CALCULATED PARAMETERS: Pu (kip) = 9.29 0.90Pn (kip) = 237.76 Mux (kip-ft) _. -7.64 0.90Mnx (kip-ft) = 54.51 Muy(kip-ft) = 25.18 0.90Mny (kip-ft) = 54.51 KL/Rx = 64.23 KL/Ry = 64.23 Cbx = 2.26 INTERACTION EQUATION: Pu/�Pn = 0.039 Eq H1-lb: 0.020+0.140+ 0.462=0.622 Member Code Check RAM Frame 14.07.01.01 Page 7/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION: Story Level = High Steel Frame Number = 0 Beam Number = 1 Fy(ksi) = 50.00 Beam Size = W14X22 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 18.85 18.85 Lu for Bending(ft) 18.85 18.85 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES -SHEAR Load Combination: 1.200 D+ 1.600 Sp+0.800 W2 Segment distance (ft) i - end 0.00 j -end 18.85 SHEAR CHECK: Vux(kip) _ -12.28 1.00Vnx(kip) = 94.53 Vux/l.00Vnx = 0.130 Vuy(kip) = 0.00 0.90Vny(kip) = 90.45 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 1.400 D Segment distance (ft) i - end 0.00 j -end 18.85 AXIAL CHECK: Pu (kip) = 0.00 0.90Pnx(kip) 292.05 Pu/0.90Pnx = 0.000 0.90Pny (kip) = 292.05 Pu/0.90Pny 0.000 CONTROLLING BEAM SEGMENT FORCES -FLEXURE Load Combination: 1.200 D+.0.500 Sp+ 1.600 W2 Segment distance (ft) i - end 0.00 j -end 18.85 CALCULATED PARAMETERS: Pu (kip) _ -0.00 0.90Pn (kip) = 292.05 . Mux(kip-ft) _ -28.19 0.90Mnx (kip-ft) = 45.86 Muy(kip-ft) = 0.00 0.90Mny (kip-ft) = 16.46 Cbx = 1.53 INTERACTION EQUATION: Pu/�Pn = . 0.000 EgHl-lb: 0.000+0.615 +0.000= 0.615 i Member Code Check RAM Frame 14.07.01.01 Page 8/26 RAM DataBase: 2.015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION: Story Level = High Steel Frame Number = 0 Beam Number = 2 Fy (ksi) = 50.00 Beam Size = W12X19 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 17.30 17.30 Lu for Bending(ft) 17.30 17.30 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES- SHEAR Load Combination: 1.200 D+ 1.600 Sp+ 0.800 W1 Segment distance (ft) i - end 0.00 j -end 17.30 SHEAR CHECK: Vux(kip) _ -3.58 1.00Vnx(kip) = 86.01 Vux/1.00Vnx = 0.042 Vuy (kip) = 0.00 0.90Vny (kip) = 75.79 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 1.400 D . Segment distance (ft) i - end 0.00 j -end 17.30 AXIAL CHECK: Pu (kip) = 0.00 0.90Pnx(kip) _ . 250.65 Pu/0.90Pnx = 0.000 0.90Pny(kip) = 250.65 Pu/0.90Pny = 0.000 CONTROLLING BEAM SEGMENT FORCES -FLEXURE Load Combination: 1.200 D+ 1.600 Sp+0.800 W1 Segment distance (ft) i-end 0.00 j -end* 17.30 CALCULATED PARAMETERS: Pu(kip) _ -0.00 0.90Pn (kip) = 250.65 Mux(kip-ft) -16.80 0.90Mnx (kip-ft) = 47.85 Muy(kip-ft) = 0.00 0.90Mny (kip-ft) = 11.18 Cbx 2.38 INTERACTION EQUATION: Pu/�Pn = 0.000 Eq HI-lb: 0.000+0.351 +0.000=0.351 Member Code Check , 'Fi RAM Frame 14.07.01.01 Page 9/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code:AISC360-05 LRFD BEAM INFORMATION: Story Level = High Steel Frame Number = 0 Beam Number = 3 Fy(ksi) _ _50.00 Beam Size = W14X22 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 18.85 18.85 Lu for Bending (ft) 18.85 18.85 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES- SHEAR Load Combination: 1.200 D+ 1.600 Sp+ 0.800 W6 Segment distance (ft) i - end 0.00 j -end 18.85 SHEAR CHECK: Vux (kip) _ -15.01 1.00Vnx(kip) = 94.53 Vux/l.00Vnx. = 0.159 Vuy(kip) = 0.00 0.90Vny (kip) , = 90.45 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 1.400 D Segment distance (ft) i - end 0.00 j -end 18.85 AXIAL CHECK: Pu (kip) = 0.00 0.90Pnx(kip) = 292.05 Pu/0.90Pnx = 0.000 0.90Pny (kip). = 292.05. Pu/0.90Pny = 0.000 CONTROLLING BEAM SEGMENT FORCES -FLEXURE Load Combination: 1.200 D+0.500 Sp- 1.600 W6 Segment distance (ft) i - end 0.00 j-end 18.85 CALCULATED PARAMETERS: Pu(kip) = 0.00 0.90Pn (kip) = 292.05 Mux(kip-ft) _ -29.78 0.90Mnx (kip-ft) = 40.91 Muy(kip-ft) = 0.00 0.90Mny (kip-ft) = 16.46 Cbx = 1.36 INTERACTION EQUATION: Pu/�Pn = 0.000 Eq HI-lb: 0.000+ 0.728 +0.000=0328 Member Code Check RAM Frame 14.07.01.01 Page 10/26 DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 RAM Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION: Story Level = High Steel Frame Number = 0 Beam Number = 4 Fy(ksi) = 50.00 Beam Size =. W12X19 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 17.30 17.30 Lu for Bending (ft) 17.30 17.30 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES- SHEAR Load Combination: 1.200 D+ 1.600 Sp+ 0.800 W1 Segment distance (ft) i - end 0.00 j - end 17.30 SHEAR CHECK: Vux(kip) _ -3.58 1.00Vnx(kip) = 86.01 Vux/1.00Vnx = 0.042 Vuy(kip) = 0.00 0.90Vny (kip) = 75.79 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load.Combination: 1.400 D Segment distance (ft) i- end 0.00 j -end 17.30 AXIAL CHECK: Pu (kip) = 0.00 0.90Pnx(kip) = 250.65 Pu/0.90Pnx = 0.000 0.90Pny(kip) = 250.65 Pu/0.90Pny = 0.000 CONTROLLING BEAM SEGMENT FORCES -FLEXURE Load Combination: 1.200 D+ 1.600 Sp+ 0.800 W1. Segment distance (ft) i- end 0.00 j -end 17.30 CALCULATED PARAMETERS: Pu (kip) _ -0.00 0.90Pn (kip) = 250.65 Mux(kip-ft) _ -16.80 0.90Mnx (kip-ft) = 47.85 Muy(kip-ft) = 0.00 0.90Mny (kip-ft) = 11.18 Cbx = 2.38 INTERACTION EQUATION: Pu/�Pn = 0.000 Eq H1-lb: 0.000+0.351 +0.000=0.351 FilRAM Member Code Check Frame 14.07.01.01 Page 11/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION:. Story Level = High Steel Frame Number = 0 Beam Number 5 Fy (ksi) = 50.00 Beam Size = W12X19 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 17.30 15.97 Lu for Bending(ft) 17.30 15.97 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES- SHEAR Load Combination:1.200 D+ 1.600 Sp -0.800 W1 Segment distance (ft) i- end 0.00 j -end 1.33 SHEAR CHECK: Vux(kip) = 13:30 1.00Vnx(kip) = 86.01 Vux/1.00Vnx = 0.155 Vuy(kip) = -0.00 0.90Vny (kip) = 75.79 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 1.400 D Segment distance (ft) i- end 1.33 j - end 17.36 AXIAL CHECK: Pu (kip) = 0.00 0.90Pnx(kip) = 250.65 Pu/0.90Pnx = 0.000 0.90Pny (kip) = 250.65 Pu/0.90Pny = 0.000 CONTROLLING BEAM SEGMENT FORCES -FLEXURE .Load Combination: 1.200 D+ 1.600 Sp+0.800 W1 Segment distance (ft) i -.end 1.33 j -end 17.30 CALCULATED PARAMETERS: Pu (kip) _ -0.00 0.90Pn (kip) = 250.65 Mux(kip-ft) _ -8.23 0.90Mnx (kip-ft) = 32.22 Muy(kip-ft) = 0.00 0.90Mny (kip-ft) = 11.18 Cbx = 1.44 INTERACTION EQUATION: PuWn = 0.000 Eq Hl-lb: 0.000+ 0.256+0.000=0.256 Member Code Check RAM Frame 14.07.01.01 Page 12/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION: Story Level = High Steel Frame Number = 0 Beam Number = 6 Fy(ksi) = 50.00 Beam Size = W14X22 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 18.85 18.85 Lu for Bending (ft) 18.85 18.85 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES - SHEAR Load Combination: 1.200 D+ 1.600 Sp+ 0.800 W5 . Segment distance (ft) i - end 0.00 j - end 18.85 SHEAR CHECK: Vux(kip) _ -14.24 1.00Vnx (kip) = 94.53 Vux/1.00Vnx = 0.151 Vuy (kip) _. 0.00 0.90Vny (kip) = 90.45 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 1.400 D. Segment distance (ft) i - end 0.00 j -end 18.85 AXIAL CHECK: Pu (kip) = 0..00 0.90Pnx(kip) = 292.05 Pu/0.90Pnx = 0.000 .0.90Pny(kip) = 292.05 . Pu/0.90Pny = 0.000 CONTROLLING BEAM SEGMENT FORCES -FLEXURE Load Combination: 1.200 D+0.500 Sp - 1.600 W5 Segment distance (ft) i - end 0.00 j -end 18.85 CALCULATED PARAMETERS: Pu (kip) = 0.00 0.90Pn (kip) = 292.05 Mux(kip-ft) _ -29.45 0.90Mnx (kip-ft) = 42.28 Muy(kip-ft) _ -0.00 0.90Mny (kip-ft) = 16.46 Cbx = 1.41 INTERACTION EQUATION: Pu/�Pn = 0.000. Eq H1-1b: 0.000+ 0.696 +0.000=0.696 ,i Member Code Check l RAM Frame 14.07.01.01 Page 13/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION: Story Level = High Steel Frame Number = 0 Beam Number = 7 Fy(ksi) = 50.00 Beam Size = W12X19 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 17.30 15.97 Lu for Bending(ft) 17.30 15.97 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES- SHEAR Load Combination: 1.200 D+ 1.600 Sp-0.800 Wl Segment distance (ft) i - end 0.00 j -end 1.33 SHEAR CHECK: Vux(kip) = 13.30 1.00Vnx(kip) = 86.01 Vux/1.00Vnx = 0.155 Vuy(kip) = -0.00 0.90Vny (kip) = 75.79 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 1.400 D Segment distance (ft) i- end 1.33 j -end 17.30 AXIAL CHECK: Pu (kip) = 0.00 0.90Pnx(kip) = 250.65 Pu/0.90Pnx . = 0.000 0.90Pny (kip) = 250.65 Pu/0.90Pny = 0.000 CONTROLLING BEAM SEGMENT FORCES -FLEXURE Load Combination: 1.200 D+ 1.600 Sp+0.800 W1 Segment distance (ft) i - end 1.33 j -end 17.30 CALCULATED PARAMETERS: Pu (kip) _ -0.00 0.90Pn (kip) = 250.65 Mux(kip-ft) _ -8.23 '0.90Mnx (kip-ft) = 32.22 Muy(kip-ft) = 0.00 0.90Mny (kip-ft) . = 11.18 Cbx = 1.44 INTERACTION EQUATION: Pu/�Pn = 0.000 Eq H1-lb: 0.000 +0.256+0.000=0.256 '. Member Code Check RAM Frame 14.07.01.01 Page 14/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD COLUMN INFORMATION: Story Level = Low Steel Frame Number = 0 Column Number = 1 Fy(ksi) = 46.00 Column Size = HSS6X6X3/8 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 11.00 11.00 Lu for Bending(ft) 11.00 11.00 K 1.00 1.00 CONTROLLING COLUMN FORCES - SHEAR Load Combination: 1.200 D+ 0.500 Sp- 1.600 W6 Shear Top Vux (kip) -0.49 Vuy (kip) -3.96 Shear Bot. Vux(kip) -0.49 Vuy(kip) -3.96 SHEAR CHECK: Vux(kip) = -0.49 0.90Vnx(kip) = 85.88 Vux/0.90Vnx = 0.006 Vuy (kip) = -3.96 0.90Vny (kip) = 85.88 Vuy/0.90Vny = 0.046 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp-0.800 W8 AXIAL CHECK: Pu (kip) = 20.61 0.90Pnx(kip) = .250.60 Pu/0.90Pnx = 0.082 0.90Pny (kip) = 250.60 Pu/0.90Pny = 0.082 CONTROLLING COLUMN FORCES -FLEXURE Load Combination: 1.200 D+0.500 Sp- 1.600 W9 Axial Load (kip) 5.66 Moment Top Muk(kip-ft) . 5.95 Muy (kip-ft) 14.18 Moment Bot. Mux(kip-ft) -9.59 Muy (kip-ft). -19.49 CALCULATED•PARAMETERS: Pu (kip) = 5.66 0.90Pn (kip) = 250.60 Mux(kip-ft) _ 79.59 0.90Mnx (kip-ft) = 54.51 Muy(kip-ft) _ -1.9.49 0.90Mny (kip-ft) = 54.51 KL/Rx = 57.82 KL/Ry = 57.82 Cbx = 2.20 INTERACTION EQUATION: Pu/�Pn = 0.023 Eq H1-lb: 0.011 +0.176+0.357=0.545 RAM Frame 14.07.01.01 Member Code Check Page 15/26 RAM DataBase: 2015-02-16_Gordon Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD COLUMN INFORMATION: Story Level = Low Steel Frame'Number = 0 Column Number = 2 Fy (ksi) = 46.00 Column Size = HSS6X6X3/8 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 11.00 11.00 . Lu for Bending (ft) 11.00 11.00 K 1.00 1.00 CONTROLLING COLUMN FORCES -SHEAR Load Combination: 1.200 D+0.500 Sp- 1.600 W2 Shear Top Vux(kip) 0.02 Vuy(kip) -3.86 Shear Bot. Vux(kip) . 0.02 Vuy(kip) -3.86 SHEAR CHECK: Vux(kip) = 0.02 0.90Vnx(kip) = 85.88 Vux/0.90Vnx = 0.000 Vuy(kip) = -3.86 0.90Vny (kip) = 85.88 Vuy/0.90Vny = 0.045 CONTROLLING COLUMN FORCES-AXIAL Load Combination: 1.200 D+ 1.600.Sp+ 0.800 W2 AXIAL CHECK: Pu (kip) = 31.92 0.90Pnx(kip) = 250.60 Pu/0.90Pnx = 0.127 0.90Pny (kip) = 250.60 Pu/0.90Pny = 0.127 CONTROLLING COLUMN FORCES -FLEXURE Load Combination: 1.200 D+0.500 Sp+ 1.600 W7 Axial Load (kip) 19.92 Moment Top Mux(kip-ft) -8.31 Muy(kip-ft) -11.44 Moment Bot. Mux(kip-ft) 10.31 Muy (kip-ft) 16.98 CALCULATED PARAMETERS: Pu (kip) = 19.92 0.90Pn (kip) = 250.60 Mux(kip=ft) 10.31 0.90Mnx (kip-ft) = 54.51 Muy(kip-ft) = 16.98 '0.90Mny (kip-ft) = 54.51 KL/Rx = 57.82 KL/Ry = 57.82 Cbx = 2.23 INTERACTION EQUATION: Pu/�Pn = 0.079 Eq H1-lb: 0.040+0.189+0.312=0.540 4FMember Code Check RAM Frame 14.07.01.01 Page 16/26 RAM DataBase: 2015=02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD COLUMN INFORMATION: Story Level = Low Steel Frame Number = 0 Column Number = 3 . . Fy (ksi) = 46.00 Column Size = HSS6X6X3/8 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 11.00 11.00 Lu for Bending (ft) 11.00 11.00 K 1.00 1.00 CONTROLLING COLUMN FORCES -SHEAR Load Combination: 1.200 D+0.500 Sp - 1.600 W5 Shear Top Vux(kip) 0.47 Vuy(kip) -3.96 Shear Bot. Vux(kip) 0.47 Vuy(kip) -3.96 SHEAR CHECK: Vux(kip) = 0.47 0.90Vnx (kip) = 85.88 Vux/0.90Vnx = 0.005 Vuy(kip) = -3.96 0.90Vny (kip) = 85.88 Vuy/0.90Vny = 0.046 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp+ 0.800 W7 AXIAL CHECK: Pu (kip) = 20.63 0.90Pnx(kip) _ . 250.60 Pu/0.90Pnx = 0.082 0.90Pny(kip) _ . 250.60 Pu/0.90Pny = 0.082 CONTROLLING COLUMN FORCES -FLEXURE Load Combination: 1.200 D+ 0.500 Sp+ 1.600 W11 Axial Load (kip) 5.67 Moment Top Mux(kip-ft) -5.77 Muy (kip=ft) 14.1.2 Moment 130t. Mux(kip-ft) 9.53 Muy (kip-ft) 19.45 CALCULATED PARAMETERS: Pu (-kip) = 5.67 0.90Pn (kip) = 250.60 Mux(kip-ft) = 9.53 0.90Mnx (kip-ft) = 54.51 Muy(kip-ft) 19.45 0.90Mny (kip-ft) = 54.51 KL/Rx = 57.82 KL/Ry = 57.82 Cbx = 2.19 INTERACTION EQUATION: Pu/�Pn = 0.023 Eq Hl-lb: 0.011 +0.175 +0.357=0.543 Member Code Check RAM Frame 14.07.01.01 Page 17/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD COLUMN INFORMATION: Story Level = Low Steel Frame Number = 0 Column Number = 4 Fy(ksi) = 46.00 Column Size = HSS6X6X3/8 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 11.00 11.00 Lu for Bending(ft) 11.00 11.00 K 1.00 1.00 CONTROLLING COLUMN FORCES -SHEAR Load Combination: 1.200 D+ 0.500 Sp+ 1.600 W5 Shear Top Vuk(kip) 0.47 ,Vuy (kip) 3.96 Shear Bot. Vux(kip) 0.47 Vuy (kip) 3.96 SHEAR CHECK: Vux(kip) = 0.47 0.90Vnx (kip) = 85.88 Vux/0.90Vnx = 0.005 Vuy(kip) = 3.96 0.90Vny (kip) = 85.88 Vuy/0.90Vny = 0.046 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp+ 0.800 W8 AXIAL CHECK! Pu (kip). = 20.63 0.90Pnx(kip) = 250.60 Pu/0.90Pnx = 0.082 0.90Pny(kip) = 250.60 _ Pu/0.90Pny = 0.082 CONTROLLING COLUMN FORCES -FLEXURE Load Combination: 1.200 D+ 0.500 Sp+ 1.660 W10 Axial Load (kip) 5.67 Moment Top Mux(kip-ft) -5.77 Muy (kip-ft) -14.12 Moment Bot. Mux(kip-ft) 9.53 Muy (kip-ft) 19.45 CALCULATED PARAMETERS: Pu (kip) = 5.67 0.90Pn (kip) = 250.60 Mux(kip-ft) = 9.53 0.90Mnx (kip-ft) = 54.51 Muy(kip-ft) = 19.45 0.90Mny (kip-ft) = 54.51 KL/Rx = 57.82 KL/Ry = 57.82 Cbx = 2.19 INTERACTION EQUATION: Pu/�Pn = 0.023 Eq Hl-lb: 0.011 + 0.175 +0.357= 0.543 ' Member Code Check RAM Frame 14.07.01.01 Page 18/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code:AISC360-05 LRFD COLUMN INFORMATION: Story Level = Low Steel Frame Number = 0 Column Number = 5 Fy (ksi) = 46.00 Column Size = HSS6X6X3/8 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 11.00 11.00 Lu for Bending(ft) 11.00 11.00 K 1.00 1.00. CONTROLLING COLUMN FORCES-SHEAR Load Combination: 1.200 D+0.500 Sp+ 1.600 W2 Shear Top Vux (kip) 0.02 Vuy(kip) 3.86 Shear Bot. Vux(kip) 0.02 Vuy(kip) 3.86 SHEAR CHECK: Vux(kip) = 0.02 0.90Vnx(kip) = 85.88 Vux/0.9.OVnx = 0.000 Vuy(kip) = 3.86 0.90Vny (kip) = 85.88 Vuy/0.90Vny = 0.045 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp -0.800 W2 AXIAL CHECK: Pu (kip) = 31.92. 0.90Pnx(kip) = 250.60' Pu/0.90Pnx = 0.127 0.90Pny (kip) = 250.60 Pu/0.90Pny = 0.127 CONTROLLING COLUMN FORCES :FLEXURE Load Combination: 1.200 D+0.500 Sp+ 1.600 W8 Axial Load (kip) 19.92 Moment Top Mux(kip-ft) -8.31 Muy(kip-ft) 11.44 Moment Bot. Mux(kip-ft) 10.31 Muy(kip-ft) -16.98 CALCULATED PARAMETERS: Pu (kip) = 19.92 0.90Pn (kip) = 250.60 Mux(kip-ft) = 10.31 0.90Mnx (kip-ft) = 54.51 Muy(kip-ft) _ -16.98 0.90Mny (kip-ft) = 54.51 KL/Rx = 57.82 KL/Ry = 57.82 Cbx = 2.23 INTERACTION EQUATION: Pu/�Pn = 0.079 Eq HI-lb: 0.040+0.189+0.312=0.540 RA Member Code CheckM Frame 14.07.01.01 Page 19/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD COLUMN INFORMATION: Story Level = Low Steel Frame Number = 0 Column Number = 6 Fy(ksi) = 46.00 Column Size = HSS6X6X3/8 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 11.00 11.00 Lu for Bending(ft) 11.00 11.00 K 1.00 1.00 CONTROLLING COLUMN FORCES - SHEAR Load Combination: 1.200 D+ 0.500 Sp+ 1.600 W6 Shear Top Vux(kip) Vuy(kip) 3.96 . Shear Bot. Vux(kip) -0.49 Vuy(kip) 3.96 SHEAR CHECK: Vux.(kip) = -0.49 0.90Vnx (kip). = 85.88 Vux/0.90Vnx = 0.006 Vuy (kip) = 3.96 0.90Vny (kip) = 85.88 Vuy/0.90Vny = 0.046 CONTROLLING COLUMN FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp-0:800 W7 AXIAL CHECK: Pu (kip) = 20.61 0.90Pnx(kip) = 250.60 Pu/0.90Pnx = 0.082 0.90Pny(kip) = 250.60 Pu/0.90Pny = 0.082 CONTROLLING COLUMN FORCES -FLEXURE Load Combination: 1.200 D+0.500 Sp- 1.600 W12 . Axial Load (kip) 5.66 Moment Top Mux(kip-ft) 5.95 Muy(kip-ft) -14.18 Moment Bot. Mux.(kip-ft) -9.59 Muy (kip-ft) 19.49 CALCULATED PARAMETERS: Pu (kip) = 5.66 0.90Pn (kip) = 250.60 Mux(kip-ft) _ . -9.59 0.90Mnx (kip-ft). = 54.51 Muy(kip-ft) = 19.49 0.90Mny (kip-ft) = 54.51 KL/Rx = 57.82. KL/Ry = 57.82 Cbx = 2.20 INTERACTION EQUATION: Pu/�Pn = 0.023 Eq Hl-lb: 0.011 +0.176+0.357=0.545 Member Code Check l RAM Frame 14.07.01.01 Page 20/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION: Story Level = Low Steel Frame Number = 0 Beam Number = 1 Fy (ksi) = 50.00 Beam Size = W12X19 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 17.30 17.30 Lu for Bending (ft) 17.30 17.30 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES-SHEAR Load Combination: 1.200 D+0.500 Sp- 1.600 W1 Segment distance (ft) i - end 0.00 j -end 17.30 SHEAR CHECK: Vux (kip) = 2.01 1.00Vnx (kip) = 86.01 Vux/1.00Vnx = 0.023 Vuy (kip) = 0.00 0.90Vny (kip) = 75.79 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 0.900 D - 1.600 W1 Segment distance (ft) i- end 0.00 j -end 17.30 AXIAL CHECK: Pu (kip) = 0.04 0.90Pnx(kip) = 218.99 Pu/0.90Pnx = 0.000 0.90Pny(kip) = 19.70 Pu/0.90Pny = 0.002 CONTROLLING BEAM SEGMENT FORCES-FLEXURE Load Combination: 1.200 D+0.500 Sp - 1.600 W1 Segment distance (ft) i-end 0.00 j -end 17.30 CALCULATED PARAMETERS: Pu (kip) _ -0.00 0.90Pnx (kip) = 218.99 0.90Pny (kip) = 19.70 Mux(kip-ft) _ -17.83 0.90Mnx (kip-ft) = 45.95 Muy(kip-ft) = 0.00 0.90Mny (kip-ft) .= 11.18 Mcx (kip-ft) = 45.95 Cbx = 2.29 INTERACTION EQUATION: Pu/�Pn = 0.000 Eq H1-2: .0.000+0.000=0.000 Eq Hl-lb Per H1.3: 0.000+0.388 +0.000=0.388 'd- iI � RAM Frame 14. Member Code Check 07.01.01 Page 21/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION: Story Level = Low Steel Frame Number = 0 Beam Number = 2 Fy(ksi) = 50.00 Beam Size = W12X19 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 17.30 17.30 Lu for Bending(ft) 17.30 17.30 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES-,SHEAR Load Combination: 1.200 D+0.500 Sp+ 1.600 W1 Segment distance (ft) i- end 0.00 j -end 17.30 SHEAR CHECK: Vux(kip) = -2.01 1.00Vnx(kip) = 86.01 Vux/1.00Vnx = 0.023 Vuy(kip) = -0.00 0.90Vny (kip) = 75.79 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp-0.800 W1 Segment distance (ft) i- end 0.00 j -.end 17.30 AXIAL CHECK: Pu (kip) = 0.49 0.90Pnx(kip) = 250.65 Pu/0.90Pnx = 0.002 0.90Pny-(kip) = 250.65 Pu/0.90Pny = 0.002 CONTROLLING BEAM SEGMENT FORCES -FLEXURE Load Combination: 1.200 D+0.500 Sp+ 1.600 W1 Segment distance (ft) i - end 0.00 j -end 17.30 CALCULATED PARAMETERS: Pu(kip) _ -0.15 0.90Pn (kip) = 250.65 Mux(kip-ft) _ -18.10 0.90Mnx (kip-ft) = 45.96 Muy(kip-ft) = 0.00 0.90Mny (kip-ft) = 11.18 L/r = 252.70 Cbx = 2.28 INTERACTION EQUATION: Pu/�Pn = 0.001 Eq H1-lb: 0.000+0.394+0.000=0.394 Member Code Check RAM Frame 14.07.01.01 Page 22/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION: Story Level = Low Steel Frame Number = 0 Beam Number = 3 Fy(ksi) = 50.00 Beam Size = W14X22 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 18.85 18.85 Lu for Bending(ft) 18.85 18.85 K 1.00 1.00 Top Flange Continuously Braced Yes. Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES-SHEAR Load Combination: 1.200 D+0.500 Sp+ 1.600 W5 Segment distance (ft) i - end 0.00 j - end 18.85 SHEAR CHECK: Vux(kip) = -4.61 1.00Vnx(kip) = 94.53 Vux/l.00Vnx = 0.049 Vuy(kip) = 0.01 0.90Vny(kip) = 90.45 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp Segment distance (ft) i - end 0:00 j -end 18.85 AXIAL CHECK: Pu (kip) = 2.02 0.90Pnx(kip) = 292.05 Pu/0.90Pnx = 0.007 0.90Pny (kip) = 292.05 Pu/0.90Pny = 0.007 CONTROLLING BEAM SEGMENT FORCES -FLEXURE Load Combination: 1.200 D+0.500 Sp- 1.600 W5 Segment distance (ft) i- end 0.00 j -end 18.85 CALCULATED PARAMETERS: Pu (kip)' _ -0.97 0.90Pnx (kip) = 258.49 0.90Pny (kip) = 30.89 Mux(kip-ft) _ -42.15 0.90Mnx (kip-ft) = 69.70 Muy(kip-ft) = 0.05 0.90Mny (kip-ft) = 16.46 L/r = 217.85 Mcx (kip-ft) = 69.70 Cbx = 2.30 INTERACTION EQUATION: Pu/�Pn = 0.003 Eq 141-2: 0.000+0.000=0.000 Eq H1-lb Per H1.3: 0.002+0.605 +0.000=0.601 Member Code Check RAM Frame 14.07.01.01 Page. 23/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION: Story Level = Low Steel Frame Number = 0 Beam Number = 4 Fy (ksi) = 50.00 Beam Size = W12X19 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial(ft) 17.30 17.30 Lu for Bending(ft) 17.30 17.30 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES - SHEAR Load Combination: 1.200 D+0.500 Sp+ 1.600 W1 Segment distance (ft) i - end 0.00 j -end 17.30 SHEAR CHECK: Vux(kip) = -2.01 1.00Vnx (kip) = 86.01 Vux/1.00Vnx = 0.023 Vuy(kip) = 0.00 0.90Vny(kip) = 75.79 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp-0.800 W1 Segment distance(ft) i-end 0.00 j -end 17.30 AXIAL CHECK: Pu (kip) = 0.49 0.90Pnx(kip) = 250.65 Pu/0.90Pnx = 0.002 0.90Pny(kip) = 250.65 Pu/0.90Pny = 0.002 CONTROLLING BEAM.SEGMENT FORCES -FLEXURE Load Combination: 1.200 D+ 0.500 Sp+ 1.600 W1 Segment distance (ft) i - end 0.00 j -end 17.30 CALCULATED PARAMETERS: Pu (kip) _ -0.15 .0.90Pn (kip) = 250.65 Mux(kip-ft) _ -18.10 0.90Mnx (kip-ft) = 45.96 Muy(kip-ft) _ -0.00 0.90Mny (kip-ft) = 11.18 L/r = 252.70 Cbx = 2.28 INTERACTION EQUATION: Pu/�Pn = 0.001 Eq HI-lb: 0.000+0.394+0.000= 0.394 Member Code Check RAM Frame 14.07.01.01- Page 24/26 RAM DataBase: 2015-02-1'6_Gordon Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION: Story Level = Low Steel Frame Number = 0 Beam Number = 5 Fy(ksi) = 50.00 Beam Size = W12X19 INPUT DESIGN PARAMETERS: X-Axis Y-Axis Lu for Axial (ft) 17.30 17.30 Lu for Bending(ft) '17.30 17.30 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES - SHEAR Load.Combination: 1.200 D+ 0.500.Sp- 1.600 Wl Segment distance (ft) i-end 0.00 j -end 17.30 SHEAR CHECK: Vux(kip) = 2.01 1.00Vnx(kip) = 86.01 Vux/l.0.0Vnx = 0.023 Vuy (kip) = -0.00' 0.90Vny(kip) = 75.79 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES-AXIAL Load Combination: 0.900 D - 1.600 Wl Segment distance(ft) i-end 0.00 j -end 17.30 AXIAL CHECK: Pu (kip) = 0.04 0.90Pnx(kip) = 218.99 Pu/0.90Prix = 0.000 0.90Pny (kip) = 19.70 Pu/0.90Pny = 0.002 CONTROLLING BEAM'SEGMENT FORCES-FLEXURE Load Combination: 1.200 D+ 0.500 Sp= 1.600 Wl Segment distance (ft) i - end 0.00 j -end 17.30 CALCULATED PARAMETERS: Pu (kip) _ -0.00 0.90Pnx (kip) _ . 218.99 0.90Pny (kip) = 19.70 Mux(kip=ft) _ -17.83 0.90Mnx (kip-ft) = 45.95 Muy(kip-ft) _ -0.00 0.90Mny (kip-ft) = 11.18 Mcx (kip-ft)' = 45.95 Cbx = 2.29 INTERACTION EQUATION: Pu/�Pn = 0.000 Eq H1-2: 0.000+0.000=0.000 Eq Hl4b Per H1.3: 0.000+0.388 +0.000=0.388 N Member Code Check RAM Frame 14.07.01.01 Page 25/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION: Story Level = Low Steel Frame Number = 0 Beam Number = 6 Fy (ksi) = 50.00 Beam Size = W 14X22 INPUT DESIGN PARAMETERS: . X-Axis Y-Axis Lu for Axial (ft) 18.85 18.85 Lu for Bending(ft) 18-85 18.85 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES- SHEAR Load Combination: 1.200 D+ 0.500 Sp+ 1.600 W6 Segment distance (ft) i - end 0.00 j - end 18.85 SHEAR CHECK: Vux(kip) _ -4.61 1.00Vnx(kip) = 94.53 Vux/1.00Vnx = 0.049 Vuy(kip) _ -0.01 0.90Vny (kip) = 90.45 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES -AXIAL Load Combination: 1.200 D+ 1.600 Sp Segment distance (ft) i-end 0.00 j -end 18.85 AXIAL CHECK: Pu (kip) = 2.14 0.90Pnx(kip) = 292.05 Pu/0.90Pnx = 0.007 0.90Pny (kip) = 292.05 Pu/0,90Pny = 0.007 CONTROLLING BEAM SEGMENT FORCES -FLEXURE Load Combination: 1:200 D+ 0300 Sp- 1.600 W6 Segment distance (ft) i - end 0.00 j -end 18.85 CALCULATED PARAMETERS: Pu(kip) _ -1.03 0.90Pnx (kip) = 258.49 0.90Pny (kip) = 30.89 Mux(kip-ft) _ -42.25 0.90Mnx (kip-ft) = 69.72 Muy(kip-ft) _ -0.05 0.90Mny (kip-ft) _ 16.46 L/r = 217.85 Mcx (kip-ft) = 69:72 Cbx = 2.30 INTERACTION EQUATION: Pu/�Pn. 0.004 Eq H1-2: 0.000+0.000=0.000 Eq H1-lb Per H1.3: 0.002+0.606+0.000=0.608 Member Code Check RAM Frame 14.07.01.01 Page 26/26 RAM DataBase: 2015-02-16_Gordon_Large Tower 07/23/15 21:54:17 Building Code: IBC Steel Code: AISC360-05 LRFD BEAM INFORMATION: Story Level = Low Steel Frame Number = 0 Beam Number = 7 Fy (ksi) = 50.00 Beam Size = W14X22 INPUT DESIGN PARAMETERS: . X-Axis Y-Axis Lu for Axial (ft) 18.85 18.85 Lu for Bending(ft) 18.85 18.85 K 1.00 1.00 Top Flange Continuously Braced Yes Bottom Flange Continuously Braced No CONTROLLING BEAM SEGMENT FORCES- SHEAR Load Combination: 1.200 D+ 0.500 Sp+1.600 W2 Segment distance (ft) i - end 0.00 j -end 18.85 SHEAR CHECK: Vux(kip) _ -4.53 1.00Vnx(kip) = 94.53 Vux/1.00Vnx = 0.048 Vuy(kip) = 0.00 0.90Vny(kip) = 90.45 Vuy/0.90Vny = 0.000 CONTROLLING BEAM SEGMENT FORCES-AXIAL Load Combination: 1.200 D+ 1.600 Sp Segment distance (ft) i - end 0.00 j -end 18.85 AXIAL CHECK: Pu (kip) = 1.71 0.90Pnx(kip) = 292.05 Pu/0.90Pnx = 0.006 0.90Pny (kip) = 292.05 Pu/0.90Pny = 0.006 CONTROLLING BEAM SEGMENT FORCES -FLEXURE Load Combination: 1.200 D+ 0.500 Sp- 1.60.0 W2 Segment distance (ft) i - end 0.00 j - end 18.85 CALCULATED PARAMETERS: Pu (kip) _ -0.83 0.90Pn .(kip) . = 292.05 Mux(kip-ft) _ -41.18 0.90Mnx (kip-ft) = 69.67 Muy(kip-ft) _ -0.00 0.90Mny (kip-ft) = 16.46 L/r = 217.85 Cbx = 2.30 INTERACTION EQUATION: Pu/�Pn = 0.003 Eq H1-lb: 0.001 + 0.591 +0.000= 0.593 w � r MALE - —/3NQI1LlL-- ;y�',_f, yr ' 1 +rl� - ����._ p ��i •c� a� �- li4 � '`� v"`_-ai`' L�,�Ytift'��''�` ;` r-s- �-- :,, �*c _ I. �. .a ;f�-,.; _�-'E,,, a: �►zY �� � Q a: �.� ����S 4t'ws�,'°j 4' k ELECTR4"ICAL INSPECTION MIDDLE DEPARTMENT INSPECTION AGENCY NK 777! INSPECT'o,R A G , E.ALED WIRI' GO.K. DATE dy UTILITY NOTIFI.ED ROVAL DATE FINALAPP_