Loading...
AST-0390-2022 Office Use Only it '0. ` ' ACCESSORY.STRUCTURE Permit#: AST- O29O - 2- 2-2- PERMIT APPLICATION e � Town of Quecnsbury Permit Fee:$ 742 Bay Road,Queensbury,NY 12804 Invoice#: 5°1 P:518-761-8256 www.queensburv.net Flood Zone? Y Reviewed By: CMS Project Location: 708 Quaker Road Tax Map ID#: 303.15-1-12 Subdivision Name: PROJECT INFORMATION: TYPE: ❑ Residential ® Commercial, Proposed Use: STRUCTURE: ❑ Boathouse(with or w/o sundeck) ® Canopy ❑ Carport ❑ Cell Tower ❑ Deck ❑ Detached Garage(>300 s.f.) . ❑ Dock ❑ Gazebo ❑ Pavilion 0 Pole Barn ❑ Porch ❑ Ramp ❑Shed(<300 s.f.) ❑Solar Panels(w/o rafter upgrades) ❑ 3-Season Porch ❑ Other: SQUARE FOOTAGE OF STRUCTURE: 1st floor: 6,004 SF 2nd floor: - Total square feet: 6,004 SF - Brief description of scope of project: Construction of a canopy for vacuuming vehicles. Accessory Structure Application Revised March 2022 ADDITIONAL PROJECT INFORMATION: 1. Estimated Cost of Construction:$ 6-07k 2. Are there any structures not shown on the plot plan? ® YES ❑ NO Explain: Carwash 3. Are there any easements on the property? 0 YES tI NO DECLARATION: 1. I acknowledge that no construction shall be commenced prior to the issuance of a valid permit and will be completed within a 12 month period.Any changes to the approved plans prior to/during construction will require the submittal of amended plans,additional reviews and re-approval. 2. lf,for any reason,the building permit application is withdrawn,30%of the fee is retained by the Town of Queensbury.After 1 year from the initial application date,100%of the fee is retained. 3. Ifthework is not completed by the 1 year expiration date the permit may be renewed, subject to fees and department approval. 4. I certify that the application, plans and supporting materials are a true and a complete statement and/or description of the work proposed,that all work will be performed in accordance with the NYS Building Codes,local building laws and ordinances, and in conformance with local zoning regulations. 5. I acknowledge that prior to occupying the facilities proposed I, or my agents, will obtain a certificate of occupancy. 6. I also understand that I/we are required to provide an as-built survey by a licensed land surveyor of all newly constructed facilities prior to issuance of a certificate of occupancy. I have read and agree to the above: PRINT NAME: IVLOrir- -1(All-1A ('7 SIGNATURE: .'d DATE: 0770. Accessory Structure Application Revised March 2022 / 4 CONTACT INFORMATION: PLEASE PRINT LEGIBLY OR TYPE, PLEASE INCLUDE AN EMAIL • Applicant: Name(s):Tidal Wave Auto Spa(Martie Murphy) Mailing Address, C/S/Z: 124 East Thompson St., PO Drawer 311,Thomaston, GA 30286 Cell Phone: 706-647-0414 Land Line: 706-975-6682 Email: martie@shjconstructiongroup.com • Primary Owner(s): Name(s): Ars, Mailing Address, C/S/Z: c� Cell Phone: Land Line: Email: 0 Check if all work will be performed by property owner only, • Contractor(s): (List all additional contractors on the back of this form) Contractor Name(s): Contractor Trade: Mailing Address, C/S/Z: ' Cell Phone: Land Line: Email **Workers' Comp documentation must be submitted with this application** • Architect(s)/Engineer(s): Business Name: JARRETT Engineers, PLLC Contact Name(s):Robert U. Holmes II, P.E. Mailing Address, C/S/Z: 12 East Washington St., Glens Falls, NY 12801 Cell Phone: 518-769-0455 Land Line: 518-792-2907 Email bholmes@jarrettengineers.com - Contact Person for any questions regarding this project: Martie Murphy Cell Phone: 706-647-0414 Land Line: 706-975-6682 Email martie@shjconstructiongroup.com Accessory Structure Application Revised March 2022 0 0 Tidal Wave Canopy—Queensbury, L ���Y I a NY W ,p Design Loads: n� tO - Cr+ Dead Load: 2 psf+ Self weight < X 7C N Live Load: 20 psf n CL IonC 73 Wind Loads (ultimate): 24.1 psf(downward), -18.2 psf(upward), 16 psf(lateral) C O Snow Loads: 42 psf(balanced), 67.3 psf(unbalanced), 12.6 psf(windward) ' v Applied Loads to Purlins: o ' 0 Length = 26'-0", braced at third-points o A ‘p 0 Tributary width = 2'-3 3/4"— use 2'-4" C Dead Load = 2 psf*2'-4" =4.7 plf I N Live Load = 20 psf*2'-4" = 47 plf Unbalanced Snow Loads: Leeward from 6.5' to eave (Balanced Snow Load) = 42 psf*2'-4" = 98 plf Leeward from ridge to 6.5' = 67.3 psf* 2'-4" = 157 plf Windward = 12.6 psf*2'-4" = 30 plf Wind Loads: 2022.06. Downward = 24.1 psf*2'-4" = 57 plf oF-NEW" , Windward =-18.2 psf*2'-4" = -43 plf ~gym °'4, 1— 20 O a1. :,' Applied Loads to Canopy Frames: l�� "7824!» 4'-''' . .Tributary width = 26-0 ti` 09 40 1 8 F Dead Load = 2 psf*26'-0" = 52 plfAROFEs3�oe��., Live Load = 20 psf*26'-0" = 520 plf —0400' Unbalanced Snow Loads: Leeward from 6.5' to eave (Balanced Snow Load) = 42 psf*26'-0" = 1092 plf Leeward from ridge to 6.5' = 67.3 psf*26'-0" = 1750 plf Windward = 12.6 psf*26'-0" = 328 plf Wind Loads:Downward (Cnw) = 23.2 psf* 26'-0" = 604 plf I y� �! ‘,1 Downward (Cnl) = 4.0 psf*26'-0" = 104 plf JUN 2 0 2022 Upward (Cnw) = -16.4 psf*26'-0" =-427 plf Upward (Cnl) = -1.9 psf*26'-0" = -50 plf TOWN OF OU%EIti BtURY BUILDING 8 CODES Lateral = 8 psf*26'-0" = 208 plf " 1 Applied Loads to Portal Frames: Longitudinal Wind Load on Open Building: Base pressure (qh) = 22.6 psf Width B = 38'-0" #of frames (n) = 7 Solid area of end wall (As) = 105 sf Roof ridge height= 23'-6" Roof eave height= 14'-0" Total end wall area if solid (Ae) = 712.5 sf Longitudinal Directional Force (F) = pAe p = qh [GCpf)windward—(GCpf)leeward)] KB Ks Solidarity ratio (c) = 0.147 Ks = 1.8-0.01B = 1.42 Ks = 0.60 + 0.073(n-3) + (1.25 CI "$) = 0.932 p = 21.6 psf F = 15.4 kips Apply 7.7 kips at each portal frame Limit deflection to 1 inch Diaphragm Design: Transverse Direction: Use minimum 8 psf horizontal wind load 2.9 kips (ultimate, from Risa) 2.9 kips* 0.6/38'-0" =46 plf Longitudinal Direction: F = 15.4 kips (ultimate) (15.4 kips/2) *0.6/ 158'-0" = 30 plf Use 46 plf 1-1/4" deep steel R-Panel, 26 gage with (5) sidelap fasteners at panel edges 2 Purlin Bracing Design: From CFS12 Report: Weak axis moment= 8.18 k-in T= 8.18 k-in / 10 in = 0.818 k Total Tension at end of bracing = 0.818 k* 8 purlins = 6.544 k 6.544 k/cos(24.52°) = 7.193 k at diagonal brace T = 0.6 * Fy*A= 0.6 * 50ksi *A = 7.2k*A = 0.24in2 Try 14 gage strap-t= 0.0713 in b = 0.24 in2/0.0713 in = 3.37 in -> Use 4"x 14 ga strap Screw connections: Shear capacity of 1/4" screw= 867 lbs ALS] CALCULATED ALLOWABLE LOADS FOR SCREW CONNECTION Material Design 1AatetuStrenith i'8-18 HWH Screw I AI0-16 HWH Screw 012.14 HWH Screw 114--14 HWH Screw thiclncss thickness Dia-=0.1E0 l Di2-=0.190 Dir.=0.210 Du-=0.240 (sni L) (40 rY'(k:2 (F l S(acs) Tnthi. C Smzlr icno S(hI5e:ar Tc(b» S(hes) I ltln _ 33 0.0346 33 _ 45 162 71 1 177 84 186 B3 199 106 43 0.0451 33 lI 45 241 92 1 262 109 277 121 296 128 0.0568 5 I 65 333 167 G 467 54 198 562 i 259 y 603 0.0713 33 45 - _- 1 467 173 550 _ 191 _ _ 588 _ 218 0.0713 50 65 - - 1 46'7 249 667 276 849 315 97 0.1017 33 f 45 - - i 467 246 667 272 867 311 0.1017 SO I 65 - - I 467 356 667 293 1111 450 118 0.1242 33 45 667 333 •o C 280 00.12422 S0 I 65 - - - -l M7 480 867 l 649 At Z purlin: 818 lbs/867 lbs = 1.0-Use (2) 1/4" screws At eave purlin: 6544 lbs/867 lbs = 7.6- Use (8) 1/4" screws 7193 lbs/867 lbs = 8.3- Use (10) 1/4" screws At ridge: 7193 lbs *sin(24.52°) = 2986 lbs/867 lbs = 3.5-Use (4) 1/4" screws Hilti X-U connection: Shear capacity of Hilti X-U to Frame = 720 lbs Ultimate and allowable loads in minimum ASTM A36(Fs,a 36 ksl;F.a 58 ksi)steel1.2.4•, Steel thickness in. S Fastener diameter Load type nk 3/8 1J2 T_3/4' In.(mm) Tension Shear Tension Shear Tension Shear lb(kN) lb(kN) lb(kN) lb(kN) lb(kN) lb(kN) Ultimate 5688 (25.3) 4426 (19.7) 4690 (20.9) 3761 (16.7) 1899 (8.5) 2046 (9.1) • X-U 0.157 (4.0) � Allowable 935 (4.2) 720 (3.2) 900 (4.0) rr4'i (3.2) 350 (1.6) 375 (1.7) 7193 lbs/720 lbs = 9.99- Use (10) Hilti X-U 3 Top Running Purlin to Beam Detail: 5/8" dia. A325 Bolt Shear capacity= 8.29 k.(AISC Table 7-1) Check capacity with AISC Table 7-4 and Table 7-5 3" spacing: 48.8 k/in of bolt(Table 7-5) 2" edge distance: 48.8 k/in of bolt (Table 7-4) 48.8 k/in *0.105 in = 5.12 k< 8.29 k Values from CFS12 at splice locations: M = 160.2 k-in V= 4.83 k Vuplift= 2.7 k d = 1'-9" + 1'-9" =42" T = (M /d) + V= (160.2 k-in/42 in) + 4.83 k= 8.65 k 8.65 k/2 bolts = 4.33 k< 5.12 k (2) 5/8" dia. A325 bolts OK 5.12 k>Vuplift= 2.7 k—> (2) 5/8" dia. A325 bolts OK Kicker Check: Wind Load on cold-formed infill = 0.6*26.1 psf* 9'-6" *2'-4" = 350 lbs 350 lbs/sin(30°) = 700 lbs < 5.12 k—> (1) 5/8" dia. A325 bolts OK Ridge Plate Detail: Diaphragm Shear Load = 46 plf* 19'-0" = 874 lbs Ridge Shear Load from purlins = 2986 lbs Shear capacity of 1/4" screw = 867 lbs 8 screws*867 lbs/screw= 6800 lbs > 2986 lbs — (8) 1/4" screws OK 4 JOB TITLE Tidal Wave Canopy-Queensbury, NY Willett. Engineering JOB NO. 221285 SHEET NO. CALCULATED BY KAG DATE A GRAY COMPANY CHECKED BY BJH DATE CS2018 Ver 2018.11.30 www.struware.com STRUCTURAL CALCULATIONS FOR Tidal Wave Canopy - Queensbury, NY 5 Company JOB TITLE Tidal Wave Canopy-Queensbury, NY Address City, State JOB NO. 221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE www.struware.com Code Search Code: International Building Code 2018 Occupancy: Occupancy Group= B Business Risk Category& Importance Factors: Risk Category= II Wind factor= 1.00 Snow factor= 1.00 Seismic factor= 1.00 Type of Construction: Fire Rating: Roof= 0.0 hr Floor= 0.0 hr Building Geometry: Roof angle (0) 6.00/12 26.6 deg Building length(L) 158.0 ft Least width (B) 38.0 ft Mean Roof Ht (h) 18.8 ft Parapet ht above grd 0.0 ft Minimum parapet ht 0.0 ft Live Loads: Roof 0 to 200 sf: 18 psf 200 to 600 sf: 21.6-0.018Area, but not less than 12 psf over 600 sf: 12 psf Floor: Typical Floor 40 psf Partitions 15 psf Lobbies&first floor corridors 100 psf Corridors above first floor 80 psf Balconies(1.5 times live load) 60 psf 6 Company JOB TITLE Tidal Wave Canopy-Queensbury, NY Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY B.JH DATE Wind Loads : ASCE 7- 16 Ultimate Wind Speed 108 mph Nominal Wind Speed 83.7 mph Risk Category II Exposure Category C Enclosure Classif. Open Building Internal pressure +/-0.00 Directionality (Kd) 0.85 Kh case 1 0.890 Kh case 2 0.890 Type of roof Gable ) Topographic Factor (Kzt) \AZ Topography Flat Speed-up Hill Height (H) 80.0 ft Half Hill Length(Lh) 100.0 ft (2) x(upwind) _ x(downwind) Actual H/Lh = 0.80 G ''y""'"' Use H/Lh = 0.50 HJ2 H Modified Lh = 160.0 ft ,,? Lh HJ2 From top of crest:x= 50.0 ft ' .w.-Av : ''' Bldg up/down wind? downwind ESCARPMENT H/Lh= 0.50 Ki= 0.000 x/Lh= 0.31 K2= 0.792 V(Z) z/Lh= 0.12 K3= 1.000 Z At Mean Roof Ht: V(Z) (upwind) [l/_SPeed-uP = x(downwind) Kzt=(1+K1K2K3)"2= 1.00 I Q I a HJ2 H LI, , HJ2 2D RIDGE or 3D AXISYMMETRICAL HILL Gust Effect Factor Flexible structure if natural frequency<1 Hz(T>1 second). h= 18.8 ft If building h/B>4 then may be flexible and should be investigated. B= 38.0 ft h/B= 0.49 Rigid structure(low rise bldg) /z(0.6h)= 15.0 ft G = 0.85 Using rigid structure default Rigid Structure Flexible or Dynamically Sensitive Structure e= 0.20 34 icy (rli)= 0.0 Hz £ = 500 ft Damping ratio(f3)= 0 Zmin= 15 ft /b= 0.65 c= 0.20 /a= 0.15 ga,gv= 3.4 Vz= 91.2 LZ= 427.1 ft Ni = 0.00 Q= 0.92 Rn= 0.000 lZ= 0.23 Rh= 28.282 q= 0.000 h= 18.8 ft G= 0.88 use G=0.85 RB= 28.282 rl= 0.000 RL= 28.282 ri= 0.000 gR = 0.000 R = 0.000 Gf = 0.000 Enclosure Classification 7 Company JOB TITLE Tidal Wave Canop y-Queensbury, NY Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Test for Enclosed Building: Ao<0.01Ag or 4 sf,whichever is smaller Test for Open Building: All walls are at least 80%open. Ao>_ 0.8Ag Test for Partially Enclosed Building: Predominately open on one side only Input Test Ao 500.0 sf Ao >_ 1.1Aoi NO Ag 600.0 sf Ao>4'or 0.01Ag YES Aoi 1000.0 sf Aoi/Agi s 0.20 YES Building is NOT Agi 10000.0 sf Partially Enclosed Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following: Ao>_1.1Aoi Ao> smaller of 4'or 0.01 Ag Aoi/Agi<_ 0.20 Where: Ao=the total area of openings in a wall that receives positive external pressure. Ag=the gross area of that wall in which Ao is identified. Aoi=the sum of the areas of openings in the building envelope(walls and roof)not including Ao. Agi=the sum of the gross surface areas of the building envelope(walls and roof)not including Ag. Test for Partially Open Building: A building that does not qualify as open,enclosed or partially enclosed. (This type building will have same wind pressures as an enclosed building. Reduction Factor for large volume partially enclosed buildings (Ri) : If the partially enclosed building contains a single room that is unpartitioned,the internal pressure coefficient may be multiplied by the reduction factor Ri. Total area of all wall&roof openings (Aog): 0 sf Unpartitioned internal volume (Vi): 0 cf Ri= 1.00 Ground Elevation Factor(Ke) Grd level above sea level= 0.0 ft Ke= 1.0000 Constant= 0.00256 Adj Constant= 0.00256 8 Company JOB TITLE Tidal Wave Canopy-Queensbury,NY Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Wind Loads -Open Buildings: 0.25 <_ h/L<_ 1.0 Ultimate Wind Pressures Type of roof= Pitched Free Roofs G= 0.85 Wind Flow= Clear Roof Angle= 26.6 deg NOTE:The code requires the MWFRS be Main Wind Force Resisting System designed for a minimum pressure of 16 psf. Kz=Kh(case 2)= 0.89 Base pressure(qh)= 22.6 psf Roof pressures-Wind Normal to Ridge Wind Load Wind Direction Flow Case y=0&180 deg Cnw Cni ____Cn 1.21 0.21 Clear Wind A _ �p= 23.2 psf 4.0 psf Flow B Cn= -0.10 -0.85 p= -1.9 psf -16.4 psf NOTE: 1).Cnw and Cnl denote combined pressures from top and bottom roof surfaces. 2).Cnw is pressure on windward half of roof.Cnl is pressure on leeward half of roof. 3).Positive pressures act toward the roof.Negative pressures act away from the roof. Roof pressures-Wind Parallel to Ridge,y=90 deg Procedure not allowed h/L is less than 0.25 Wind Load Horizontal Distance from Windward Flow Case Edge h= 18.8 ft sh >h 5 2h >2h 2h= 37.5ft Cn= -0.80 -0.60 -0.30 Clear Wind FA p= -15.4 psf -11.5 psf -5.8 psf Flow B Cn= 0.80 0.50 0.30 p= 15.4 psf 9.6 psf __ 5.8psf Fascia Panels-Horizontal pressures Fascia pressures not applicable-roof angle exceeds 5 degrees. qp= 0.0 psf Windward fascia: 0.0 psf (GCpn=+1.5) Leeward fascia: 0.0 psf (GCpn=-1.0) Components&Cladding-roof pressures Kz=Kh(case 1)= 0.89 a=3.8 ft a2= 14.4 sf Base pressure(qh)= 22.6 psf 4a2= 57.8 sf G= 0.85 Clear Wind Flow Effective Wind Area zone 3 zone 2 zone 1 positive negative positive negative positive negative 5 14.4 sf 2.51 -1.89 _1.93 -1.47 _ . 1.25 -0.95 , CN >14.4,5 57.8 sf 1.93 -1.47 _ 1.93 -1.47 1.25 -0.95 >57.8 sf 1.25 -0.95 1.25 -0.95 1.25 -0.95 5 14.4 sf 48.1 psf -36.3 psf __37.1_psf___ -28.2 psf 24.1 psf -18.2 psf Wind ____>14.4,5 57.8 sf 37.1 psf -28.2 psf 37.1 psf -28.2 psf 24.1 psf -18.2 psf pressure • >57.8 sf 24.1 psf -18.2 psf 24.1 psf -18.2 psf 24.1 psf -18.2 psf 9 Company JOB TITLE Tidal Wave Canopy-Queensbury,NY Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Location of Wind Pressure Zones L L CNvT iiINL CIRT7 C WIND WIND 10..-" DIRECTION .q DIRECTION .0 y=0*,180' y=0',180• PITCHED TROUGH L L 0 ST. . . A IT. Ar CNW Lem. 11111 i CNL WIND iri. DIRECTION 8- i WIND DIl2ECTION Y=0' .4 .0 y= 180• C> < I '- MON06 LOPE WIND DIRECTION y= 0°. 180° I ` L/ / L / 41VI L A. ��� � ��C�'^i WIND ' DIRECTION, WIND , WIND DIRECTION DIRECTION, MONOSLOPE PITCHED TROUGH WIND DIRECTION y= 90° MAIN WIND FORCE RESISTING SYSTEM 3 r: 3 r; 3 3 -) �': -> cc': 2 2 1 1 1 1 1 • 7 2 2 3 3 3 3 e<10' a>10° MONOSLOPE PITCHED ORTRGUGHED ROOF COMPONENTS AND CLADDING 10 Company JOB TITLE Tidal Wave Canopy-Queensbury,NY Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Snow Loads : ASCE 7- 16 Nominal Snow Forces Roof slope = 26.6 deg Horiz.eave to ridge dist ON)= 19.0 ft Roof length parallel to ridge(L)= 158.0 ft Type of Roof Hip and gable w/trussed systems Ground Snow Load Pg = 50.0 psf Risk Category = II Importance Factor I = 1.0 Thermal Factor Ct = 1.20 Exposure Factor Ce = 1.0 Pf=0.7*Ce*Ct*I*Pg = 42.0 psf Unobstructed Slippery Surface no Sloped-roof Factor Cs = 1.00 Balanced Snow Load = 42.0 psf Near ground level surface balanced snow load= 50.0 psf Rain on Snow Surcharge Angle 0.38 deg Code Maximum Rain Surcharge 5.0 psf Rain on Snow Surcharge = 0.0 psf Ps plus rain surcharge = 42.0 psf Minimum Snow Load Pm = 0.0 psf NOTE:Alternate spans of continuous beams shall be loaded with half the design roof snow Uniform Roof Design Snow Load = 42.0 psf load so as to produce the greatest possible effect-see code for loading diagrams and exceptions for gable roofs.. Unbalanced Snow Loads-for Hip&Gable roofs only Required if slope is between 7 on 12= 30.26 deg and 2.38 deg= 2.38 deg Unbalanced snow loads must be applied Windward snow load= 12.6 psf =0.3Ps Leeward snow load from ridge to 6.59'= 67.3 psf =hdy/'S+Ps Leeward snow load from 6.59'to the eave= 42.0 psf =Ps Windward Snow Drifts 1 -Against walls,parapets,etc Upwind fetch lu = 220.0 ft Projection height h = 5.2 ft Snow density g = 20.5 pcf Balanced snow height hb = 2.05 ft hd = 4.29ft he = 3.15 ft Surcharge Load hc/hb>0.2= 1.5 Therefore,design for drift Due to Drifting Drift height(hc) = 3.15 ft Drift width w = 23.40 ft hLPd pd=y*hd= 64.6 psf � iZ Sa Balanced snow Load Balanced Snow load: = 42.0 psf 106.6 psf • Windward Snow Drifts 2-Against walls,parapets,etc w Upwind fetch lu = 160.0 ft Lu Projection height h = 4.0 ft Snow density g = 20.5 pcf Balanced snow height hb = 2.05 ft Note:If bottom of projection is at least 2 feet hd = 3.75 ft above hb then snow drift is not required. hc = 1.95ft hc/hb>0.2= 1.0 Therefore,design for drift Drift height(hc) = 1.95 ft Drift width w = 15.61 ft Surcharge load: pd=y*hd= 40.0 psf Balanced Snow load: = 42.0 psf 82.0 psf 11 Company JOB TITLE Tidal Wave Canopy-Queensbury,NY Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Snow Loads -from adjacent building or roof: ASCE 7- 16 Nominal Snow Forces Higher Roof Lower Roof Roof slope = 26.6 deg 0.25/12=1.2 deg Horiz.eave to ridge dist(W)= 19.0 ft 24.0 ft Roof length parallel to ridge(L)= 158.0 ft 24.0 ft Projection height(roof step) h = 10.0 ft Building separation s = 0.0 ft Type of Roof Hip and gable w/rafters Hip and gable w/rafters Ground Snow Load Pg = 20.0 psf 20.0 psf Risk Category = II II Importance Factor I = 1.0 1.0 Thermal Factor Ct = 1.10 1.20 Exposure Factor Ce = 1.2 1.2 Pf=0.7*Ce*Ct*I*Pg = 18.5 psf 20.2 psf Unobstructed Slippery Surface no no Sloped-roof Factor Cs = 1.00 1.00 Balanced Snow Load Ps = 18.5 psf 20.2 psf Rain on Snow Surcharge Angle 0.38 deg 0.48 deg Code Maximum Rain Surcharge 5.0 psf 5.0 psf Rain on Snow Surcharge = 0.0 psf 0.0 psf NOTE:Alternate spans of continuous beams and Ps plus rain surcharge = 18.5 psf 20.2 psf other areas shall be loaded with half the design Minimum Snow Load Pm = 0.0 psf 20.0 psf roof snow load so as to produce the greatest possible effect-see code. Uniform Roof Design Snow Load = 18.5 psf 20.2 psf Building Official Minimum = Leeward Snow Drifts-from adjacent higher roof Upper roof length lu = 48.0 ft Snow density y = 16.6 pcf I., Lu .I 1 Balanced snow height hb = 1.21 ft Surcharge Load hc = 8.79 ft Due to Drifting hc/hb>0.2=7.2 Therefore,design for drift Adj structure factor = 1.00 h hc hd pd Drift height(hd) = 2.16 ft 1,-gtr, M _ Balanced Snow Load Drift width w = 8.63 ft h. 111111111111.11111111111 Surcharge load: pd=y*hd= 35.8 psf Balanced Snow load: = 20.2 psf I. W '{ 56.0 psf Leeward drift controls Windward Snow Drifts-from low roof against high roof Lower roof length lu = 24.0 ft Adj structure factor = 1.00 Drift height hd = 1.05 ft Drift width w = 4.21 ft Surcharge load: pd=y*hd= 17.5 psf Balanced Snow load: = 20.2 psf ��r 37.6 psf l Sliding Snow-onto lower roof Upper Roof Sliding snow=0.4 Pf W= 140.4 plf Distributed over 15 feet= 9.4 psf 15' hd+hb= 1.78 ft Sliding hd+hb<=h therefore sliding snow= 9.4 psf Snow Load Balanced snow load= 20.2 psf Balanced Uniform snow load within 15'of higher roof= 29.5 psf Snow Load I` w= 15.00 ft l S w Lower Roof 12 Company JOB TITLE Tidal Wave Canopy-Queensbury,NY Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Seismic Loads: IBC 2018 Strength Level Forces Risk Category: II Importance Factor(I): 1.00 Site Class: C Ss(0.2 sec)= 23.20%g S1 (1.0 sec)= 6.80%g Fa= 1.300 Sms= 0.302 SDs= 0.201 Design Category= B Fv= 1.500 Sm1 = 0.102 SD1= 0.068 Design Category= B Seismic Design Category= B ASCE7 Section 11.6 Exception Applies Redundancy Coefficient p= 1.00 Number of Stories: 1 Structure Type:All other building system: • Horizontal Struct Irregularities:No plan Irregularity Vertical Structural Irregularities:No vertical Irregularity Flexible Diaphragms:Yes Building System: Structural steel systems not specifically detailed for seismic resistance Seismic resisting system:Structural steel systems not specifically detailed for seismic resistance System Structural Height Limit:Height not limited Actual Structural Height(hn)=23.5 ft DESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient(R)= 3 Over-Strength Factor(Do)= 2.5 Deflection Amplification Factor(Cd)= 3 SOS= 0.201 SD1= 0.068 Seismic Load Effect(E)= Eh+/-Ev = p CE+/-0.2Sos D = Qe +/- 0.000D QE=horizontal seismic forc( Special Seismic Load Effect(Em)=Emh+/-Ev= Do CE+/-0.2SDS D =2.5Qe+/- 0.040D D=dead loac PERMITTED ANALYTICAL PROCEDURES Simplified Analysis -Use Equivalent Lateral Force Analysis Equivalent Lateral-Force Analysis - Permittec Building period coef. (CT)= 0.020 Cu= 1.70 Approx fundamental period(Ta): CThn's= 0.213 sec x=0.75 Tmax=CuTa= 0.363 User calculated fundamental period(T)= sec Use T= 0.213 Long Period Transition Period(TL)= ASCE7 map= 6 Seismic response coef.(Cs): Spsi/R= 0.067 need not exceed Cs= Sd1 I iRT= N/A but not less than Cs= 0.010 USE Cs= 0.067 Design Base Shear V=0.067W Model&Seismic Response Analysis - Permitted(see code for procedure) ALLOWABLE STORY DRIFT Structure Type: All other structures Allowable story drift Da= 0.020hsx where hsx is the story height below level x 13 i TC Hazards by Location Search Information - - - '�°Ingzon Rutland Address: 708 Quaker Rd,Queensbury, NY 12804,USA = , 333ft • Coordinates: 43.3180914,-73.616964 Lake;G:a i' t� Queen ry. _ t;"t Elevation: 333 ft `�' Glens.Ealls Timestamp: 2021-08-03T17:20:34.727Z .- Saratoga _ Hazard Type: Seismic iGloversiille Sprorugs _ _ - 0 Reference ASCE7-16Go ogle._-� _, ! ;Map data©2021 Google Document: Risk Category: II Site Class: C MCER Horizontal Response Spectrum Design Horizontal Response Spectrum Sa(g) Sa(g) 0.30 0.20 0.25 0.15 0.20 0.15 0.10 0.10 0.05 0.05 0.00 0.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period(s) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period(s) Basic Parameters Name Value Description Ss 0.232 MCER ground motion(period=0.2s) Si 0.068 MCER ground motion(period=l.0s) SMs 0.301 Site-modified spectral acceleration value SM1 0.101 Site-modified spectral acceleration value SDS 0.201 Numeric seismic design value at 0.2s SA SD1 0.068 Numeric seismic design value at 1.0s SA Additional Information Name Value Description SDC B Seismic design category Fa 1.3 Site amplification factor at 0.2s F,, 1.5 Site amplification factor at 1.0s 14 CRs 0.939 Coefficient of risk(0.2s) CR1 0.92 Coefficient of risk(1.0s) PGA 0.128 MCEG peak ground acceleration FPGA 1.272 Site amplification factor at PGA PGAM 0.163 Site modified peak ground acceleration TL 6 Long-period transition period(s) SsRT 0.232 Probabilistic risk-targeted ground motion(0.2s) SsUH 0.247 Factored uniform-hazard spectral acceleration(2%probability of exceedance in 50 years) SsD 1.5 Factored deterministic acceleration value(0.2s) S1 RT 0.068 Probabilistic risk-targeted ground motion(1.0s) S1 UH 0.074 Factored uniform-hazard spectral acceleration(2%probability of exceedance in 50 years) S1D 0.6 Factored deterministic acceleration value(1.0s) PGAd 0.5 Factored deterministic acceleration value(PGA) The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are provided by the U.S.Geological Survey Seismic Design Web Services. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy,suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this information replace the sound judgment of such competent professionals,having experience and knowledge in the field of practice,nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use.Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. 15 ci-pcHazards by Location Search Information c Rutland Address: 708 Quaker Rd,Queensbury, NY 12804, USA i 333 ft , _. Coordinates: 43.3180914,-73.616964 Lake G I =_ l Queen. rp � - Elevation: 333 ft ` Glens Falls - Timestamp: 2021-08-03T17:19:09.149Z - - 5seatagd Hazard Type: Snow I sii Gloverl6e Springs .:-z' - oogle=:1' 11 _ ,' I Map data©2021 Google ASCE 7-16 ASCE 7-10 ASCE 7-05 Ground Snow Load A 50 Ib/sgft Ground Snow Load ___ A 50 lb/sqft Ground Snow Load A 50 lb/sqft The reported ground snow load applies at The reported ground snow load The reported ground snow load applies at the query location of 333 feet up to a applies at the query location of 333 the query location of 333 feet up to a maximum elevation of 700 feet. feet up to a maximum elevation of 700 maximum elevation of 700 feet. feet. The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy,suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this information replace the sound judgment of such competent professionals,having experience and knowledge in the field of practice,nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use.Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. 16 CTCHazards by Location Search Information _ ` mtanngron Rutland Address: 708 Quaker Rd, Queensbury, NY 12804, USA — —. 333 ft Coordinates: 43.3180914,-73.616964 Lalre'G` Queen. ry . Elevation: 333 ft Glens Fells Timestamp: 2021-08-03T17:16:25.591Z Saratoga' Hazard Type: Wind Gloversville Spring. ryGoogl a _( Map data©2021 Google ASCE 7-16 ASCE 7-10 ASCE 7-05 MRI 10-Year 73 mph MRI 10-Year 76 mph ASCE 7-05 Wind Speed 90 mph MRI25-Year 80 mph MRI 25-Year 84 mph MRI50-Year 85 mph MRI 50-Year 90 mph MRI 100-Year 91 mph MRI 100-Year 96 mph Risk Category I 101 mph Risk Category I 105 mph Risk Category II 108 mph Risk Category II 115 mph Risk Category III 116 mph Risk Category III-IV 120 mph Risk Category IV 122 mph The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7,islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area—in some cases,this website will extrapolate past the last wind speed contour and therefore,provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries,the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region. Mountainous terrain,gorges,ocean promontories,and special wind regions shall be examined for unusual wind conditions. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy,suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this information replace the sound judgment of such competent professionals,having experience and knowledge in the field of practice,nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code aooroval and interpretation forucie General Footing File:Queensbury.ec6 g Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic.# KW-06001656 WILLETT ENGINEERING DESCRIPTION: Typical footing Code References Calculations per ACI 318-11, IBC 2012, CBC 2013,ASCE 7-10 Load Combinations Used:ASCE 7-16 General Information Material Properties Soil Design Values fc:Concrete 28 day strength = 4.50 ksi Allowable Soil Bearing = 8.0 ksf fy:Rebar Yield = 60.0 ksi Increase Bearing By Footing Weight = Yes Ec:Concrete Elastic Modulus = 3,122.0 ksi Soil Passive Resistance(for Sliding) = 250.0 pcf Concrete Density = 145.0 pcf Soil/Concrete Friction Coeff. = 0.30 cp Values Flexure = 0.90 Shear = 0.750 Increases based on footing Depth Analysis Settings Footing base depth below soil surface = 4.0 ft Min Steel%Bending Reinf. = Allow press.increase per foot of depth = ksf Min Allow%Temp Reinf. = 0.00180 when footing base is below = ft Min.Overturning Safety Factor = 1.0:1 Min.Sliding Safety Factor = 1.0:1 Increases based on footing plan dimension Add Ftg Wt for Soil Pressure Yes Allowable pressure increase per foot of depth Use fig wt for stability,moments&shears Yes = ksf when max. Add Pedestal Wt for Soil Pressure No length or width is greater than ft Use Pedestal wt for stability,mom&shear No Dimensions Width parallel to X-X Axis = 5.0 ft Length parallel to Z-Z Axis = 5.0 ft Footing Thickness = 36.0 in =,<t, s T, Pedestal dimensions... " = = — px:paralleltoX-XAxis = in ''`=tee'`"r r;',2''� g , pz:parallel to Z-Z Axis _ in ,; in. ,z g 1, Height in ,'RRe. ;! LW atii s Aw Rebar Centerline to Edge of Concrete... ,+o::4 r. ,_,, _ Y t :a: ," n at Bottom of footing = 3.0 in ;_,;;-rrh a :r :e ll'-_ss " 1 Reinforcing Bars parallel to X-X Axis Number of Bars = 16.0 Reinforcing Bar Size = # 5 Bars parallel to Z-Z Axis - Number of Bars = 16.0 t aria i Reinforcing Bar Size = # 5 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation • ' .t. . + • -• n/a �� . #Bars required within zone n/a uva�• _��_• #Bars required on each side of zone n/a - Applied Loads D Lr L S W E H P:Column Load = 3.0 24.0 22.0 -5.0 k OB:Overburden = ksf M-xx = k-ft M-zz = k-ft V-x = 1.0 9.50 8.0 -4.0 k V-z = k 18 File:Queensbury.ec6 General Footing Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic.#:KW-06001656 WILLETF ENGINEERING DESCRIPTION: Typical footing DESIGN SUMMARY Design OK Min.Ratio Item Applied Capacity Governing Load Combination PASS 0.3701 Soil Bearing 3.122 ksf 8.435 ksf +D+Lr about Z-Z axis PASS n/a Overturning-X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 1.819 Overturning-Z-Z 14.70 k-ft 26.738 k-ft +0.60D+0.60W PASS 2.054 Sliding-X-X 10.50 k 21.563 k +D+Lr PASS n/a Sliding-Z-Z 0.0 k 0.0 k No Sliding PASS 3.325 Uplift -3.0 k 9.975 k +0.60D+0.60W PASS 0.07042 Z Flexure(+X) 10.170 k-ft/ft 144.418 k-ft/ft +1.20D+1.60Lr PASS 0.006494 Z Flexure(-X) 0.9379 k-ft/ft 144.418 k-ft/ft +1.20D+1.60S+0.50W PASS 0.03635 X Flexure(+Z) 5.250 k-ftlft 144.418 k-ftlft +1.20D+1.60Lr PASS 0.03635 X Flexure(-Z) 5.250 k-ft/ft 144.418 k-ft/ft +1.20D+1.60Lr PASS n/a 1-way Shear(+X) 0.0 psi 100.623 psi n/a PASS 0.0 1-way Shear(-X) • 0.0 psi 0.0 psi n/a PASS n/a 1-way Shear(+Z) 0.0 psi 100.623 psi n/a PASS n/a 1-way Shear(-Z) 0.0 psi 100.623 psi n/a PASS n/a 2-way Punching 6.830 psi 100.623 psi +1.20D+1.60Lr Detailed Results Soil Bearing Rotation Axis& Xecc Zecc Actual Soil Bearing Stress @ Location Actual!Allow Load Combination... Gross Allowable (in) Bottom,-Z Top,+Z Left,-X Right,+X Ratio X-X,D Only 8.435 n/a 0.0 0.6650 0.6650 n/a n/a 0.079 X-X,+D+Lr 8.435 n/a 0.0 1.625 1.625 n/a n/a 0.193 X-X,+D+S 8.435 n/a 0.0 1.545 1.545 n/a n/a 0.183 X-X.+D+0.750Lr 8.435 n/a 0.0 1.385 1.385 n/a n/a 0.164 X-X.+D+0.7505 8.435 n/a 0.0 1.325 1.325 n/a n/a 0.157 X-X.+D+0.60W 8.435 n/a 0.0 0.5450 0.5450 n/a n/a 0.065 X-X.+D+0.750Lr+0.450W 8.435 n/a 0.0 1.295 1.295 n/a n/a 0.154 X-X,+D+0.750S+0.450W 8.435 n/a 0.0 1.235 1.235 n/a n/a 0.146 X-X,+0.60D+0.60W 8.435 n/a 0.0 0.2790 0.2790 n/a n/a 0.033 X-X,+0.60D 8.435 n/a 0.0 0.3990 0.3990 n/a n/a 0.047 Z-Z,D Only 8.435 2.165 n/a n/a n/a 0.5224 0.8076 0.096 Z-Z,+D+Lr 8.435 9.305 n/a n/a n/a 0.1281 3.122 0.370 Z-Z,+D+S 8.435 8.388 n/a n/a n/a 0.2620 2.828 0.335 Z-Z,+D+0.750Lr 8.435 8.448 n/a n/a n/a 0.2267 2.543 0.302 Z-Z,+D+0.750S 8.435 7.608 n/a n/a n/a 0.3271 2.323 0.275 Z-Z,+D+0.60W 8.435 -3.699 n/a n/a n/a 0.7446 0.3454 0.088 Z-Z,+D+0.750Lr+0.450W 8.435 7.033 n/a n/a n/a 0.3933 2.197 0.261 Z-Z,+D+0.750S+0.450W 8.435 6.063 n/a n/a n/a 0.4937 1.976 0.234 Z-Z,+0.60D+0.60W 8.435 -9.290 n/a n/a n/a 0.5356 0.02239 0.064 Z-Z,+0.60D 8.435 2.165 n/a n/a n/a 0.3135 0.4845 0.057 Overturning Stability Rotation Axis& Load Combination... Overturning Moment Resisting Moment Stability Ratio Status X-X,D Only None 0.0 k-ft nfinity OK X-X,+D+Lr None 0.0 k-ft nfinity OK X-X,+D+S None 0.0 k-ft nfinitv OK X-X,+D+0.750Lr None 0.0 k-ft nfinitv OK X-X.+D+0.7505 None 0.0 k-ft nfinitv OK X-X,+D+0.60W None 0.0 k-ft nfinitv OK X-X.+D+0.750Lr+0.450W None 0.0 k-ft nfinitv OK X-X,+D+0.750S+0.450W None 0.0 k-ft nfinitv OK X-X,+0.60D+0.60W None 0.0 k-ft nfinitv OK X-X,+0.60D None 0.0 k-ft nfinitv OK Z-Z.D Only 3.0 k-ft 41.563 k-ft 3.854 OK Z-Z,+D+Lr 31.50 k-ft 101.563 k-ft 3.224 OK Z-Z,+D+S 27.0 k-ft 96.563 k-ft 3.576 OK Z-Z,+D+0.750Lr 24.375 k-ft 86.563 k-ft 3.551 OK Z-Z,+D+0.750S 21.0 k-ft 82.813 k-ft 3.943 OK Z-Z,+D+0.60W 14.70 k-ft 44.563 k-ft 3.031 OK 19 General FootingFile:Queensbury.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic.,#-:KW-06001656 WILLETT ENGINEERING DESCRIPTION: Typical footing Overturning Stability Rotation Axis& Load Combination... Overturning Moment Resisting Moment Stability Ratio Status Z-Z,+D+0.750Lr+0.450W 30.0 k-ft 91.963 k-ft 3.065 OK Z-Z,+D+0.750S+0.450W 26.625 k-ft 88,213 k-ft 3.313 OK Z-Z,+0.60D+0.60W 14.70 k-ft 26.738 k-ft • 1.819 OK Z-Z,+0.60D 1.80 k-ft 24.938 k-ft 13.854 OK Sliding Stability All units k Force Application Axis Load Combination... Sliding Force Resisting Force Stability Ratio Status X-X,D Only 1.0 k 14.363 k 14.363 OK X-X,+D+Lr 10.50 k 21.563 k 2.054 OK X-X,+D+S 9.0 k 20.963 k 2.329 OK X-X,+D+0.750Lr 8.125 k 19.763 k 2.432 OK X-X,+D+0.750S 7.0 k 19.313 k 2.759 OK X-X,+D+0.60W -1.40 k 13.463 k 9.616 OK X-X.+D+0.750Lr+0.450W 6.325 k 19.088 k 3.018 OK X-X,+D+0.750S+0.450W 5.20 k 18.638 k 3.584 OK X-X,+0.60D+0.60W -1.80 k 11.468 k 6.371 OK X-X,+0.60D 0.60 k 12.368 k 20.613 OK Z-Z,D Only 0.0 k 14.363 k No Sliding OK Z-Z,+D+Lr 0.0 k 21.563 k No Sliding OK Z-Z.+D+S 0.0 k 20.963 k No Sliding OK Z-Z,+D+0.750Lr 0.0 k 19.763 k No Sliding OK Z-Z,+D+0.750S+0.450W 0.0 k 18.638 k No Sliding OK Z-Z,+0.60D+0.60W 0.0 k 11.468 k No Sliding OK Z-Z,+0.60D 0.0 k 12.368 k No Sliding OK Z-Z,+D+0.750S 0.0 k 19.313 k No Sliding OK Z-Z,+D+0.60W 0.0 k 13.463 k No Sliding OK Z-Z,+D+0.750Lr+0.450W 0.0 k 19.088 k No Sliding OK Footing Flexure Mu Side Tension As Req'd Gym.As Actual As Phi*Mn Flexure Axis&Load CombinationStatus k-ft Surface in/2 in"2 in"2 k-ft X-X,+1.40D 0.5250 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.40D 0.5250 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.50Lr 1.950 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.50Lr 1.950 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.50S 1.825 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.50S 1.825 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60Lr 5.250 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60Lr 5.250 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60Lr+0.50W 4.938 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60Lr+0.50W 4.938 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60S 4.850 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60S 4.850 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X.+1.20D+1.60S+0.50W 4.538 +Z Bottom 0.7776 Min Temp% 0,9920 144.418 OK X-X,+1.20D+1.60S+0.50W 4.538 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.50Lr+W 1.325 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.50Lr+W 1.325 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.50S+W 1.20 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X.+1.20D+0.50S+W 1.20 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+0.90D+W 0.2875 +Z Top 0.7776 Min Temp% 0.9920 144.418 OK X-X,+0.90D+W 0.2875 -Z Top 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.20S 1.0 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.20S 1.0 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+0.90D 0.3375 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+0.90D 0.3375 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.40D 0.1050 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.40D 0.9450 +X Bottom 0,7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50Lr 0.1652 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50Lr 3.735 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50S 0.2652 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50S 3.385 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK 20 File:Queensbury.ec6 General Footing Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic:#:KW-06001656 WILLETT ENGINEERING DESCRIPTION: Typical footing Footing Flexure Flexure Axis&Load Combination Mu Side Tension As Req'd Gyrn.As Actual As Phi*Mn Status k-ft Surface in^2 in^2 102 k-ft Z-Z,+1.20D+1.60Lr 0.3303 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60Lr 10.170 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60Lr+0.50W 0.6179 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60Lr+0.50W 9.257 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60S 0.6504 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60S 9.050 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60S+0.50W 0.9379 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60S+0.50W 8.137 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50Lr+W 0.7401 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50Lr+W 1.910 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50S+W 0.840 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50S+W 1.560 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+0.90D+W 0.6471 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+0.90D+W 1.213 +X Too 0.7776 Min Temp% 0.9920 144,418 OK Z-Z,+1.20D+0.20S 0.1601 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.20S 1.840 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+0.90D 0.06753 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+0.90D 0.6075 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK One Way Shear Load Combination... Vu @-X Vu @+X Vu @-Z Vu @+Z Vu:Max Phi Vn Vu 1 Phi*Vn Status +1.40D 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+0.50Lr 0.00 psi 0.00 psi 0.00 psi 0.00 Psi 0.00 psi 100.62 psi 0.00 OK +1.20D+0.50S 0.00 Psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+1.60Lr 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+1.60Lr+0.50W 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+1.60S 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+1.60S+0.50W 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+0.50Lr+W 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+0.50S+W 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +0.90D+W 0.00 Psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+0.20S 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +0.90D 0.00 Psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK Two-Way"Punching"Shear All units k Load Combination... Vu Phi*Vn Vu I Phi*Vn Status +1.40D 0.68 psi 201.25psi 0.003394 OK +1.20D+0.50Lr 2.54 psi 201.25psi 0.01261 OK +1.20D+0.50S 2.37 psi 201.25psi 0.0118 OK +1.20D+1.60Lr 6.83 psi 201.25psi 0.03394 OK +1.20D+1.60Lr+0.50W 6.42 Psi 201.25psi 0.03192 OK +1.20D+1.60S 6.31 psi 201.25psi 0.03135 OK +1.20D+1.60S+0.50W 5.90 psi 201.25psi 0.02933 OK +1.20D+0.50Lr+W 1.72 psi 201.25psi 0.008566 OK +1.20D+0.50S+W 1.56 psi 201.25psi 0.007758 OK +0.90D+W 0.37 psi 201.25psi 0.001859 OK +1.20D+0.20S 1.30 psi 201.25psi 0.006465 OK +0.90D 0.44 psi 201.25psi 0.002182 OK 21 Pole FootingEmbedded in Soil File:Queensbury.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic.#:KW-06001656. WILLETT ENGINEERING DESCRIPTION: Auger cast footing Code References Calculations per IBC 2012 1807.3, CBC 2013,ASCE 7-10 • Load Combinations Used:ASCE 7-16 General Information Pole Footing Shape Circular Pole Footing Diameter 32.0 in Calculate Min.Depth for Allowable Pressures ' No Lateral Restraint at Ground Surface Allow Passive 300.0 pcf Max Passive 2,500.0 psf Point Load Soil Surface ,j No lateral restraint q Controlling Values r^{3i''t;l:?pii Governing Load Combination: +D+Lr ;7 g;ii,7;,i;I;,;�iTIP1 ,i1ici-' ;!i;i„i%i� [,:c-ti,'477:VP1:-.iir i;u-iris i�7p�"Y;1pi;,r;, 1„�.. -v;u;upi;ua7�i;',ii-}i,[,- Lateral Load 10.50 k a,c;�aa;a;, ; r=; '�;1;�-i; ,,;;ut:,�;,:;' Moment 10.50 k-ft a -� -ua''1;�,' ro,t/ =-_a ;a;u ' `� a'i NO Ground Surface Restraint n;;z_:I - '= '"" Pressures at 1/3 Depth _='.,'t 1 _ L=w�i ginµ; ;; 1 009.43 p a,n;4iai5,;4 ,_, _„_4,_ Actual psf �:�"'. , .. `-3 �, _��;S;;i�,a,� ���s;�; Allowable 1,011.16Psf ',zz AT,..= ;"s, s ,1 .., 'i S_-s)s'1';ti; ,v1fr,r-fi lNit Ta,47;73�'_'_-,1vvrN7.,,4itieir li Minimum Required Depth 10.125 ft Footirig Base Area 5.585 ftA2 Maximum Soil Pressure 4.834 ksf Applied Loads Lateral Concentrated Load (k) Lateral Distributed Loads (klf) Vertical Load (k) D:Dead Load 1.0 k k/ft 3.0 k Lr:Roof Live 9.50 k k/ft 24.0 k L:Live k k/ft k S:Snow 7.70 k k/ft 22.0 k W:Wind -3.20 k k/ft 4.0 k E:Earthquake k k/ft k H:Lateral Earth k k/ft k Load distance above TOP of Load above ground surface ground surface 1.0 ft ft BOTTOM of Load above ground surface ft Load Combination Results I Forces @ Ground Surface Required Pressure at 1/3 Depth Soil Increase I Load Combination Loads-(k) Moments-(ft-k) Depth-(ft) Actual-(psf) Allow-(psf) Factor D Only 1.000 1.000 3.50 339.8 340.8 1.000 +D+Lr 10.500 10.500 • 10.13 1,009.4 1,011.2 1.000 +D+S 8.700 8.700 9.25 922.8 924.8 1.000 +D+0.750Lr 8.125 8.125 9.00 893.3 895.3 1.000 +D+0.7505 6.775 6.775 8.25 820.5 820.8 1.000 +D+0.60W 0.920 0.920 3.38 327.4 328.4 1.000 +D+0.750Lr+0.450W 6.685 6.685 8.25 814.8 816.1 1.000 +D+0.7505+0.450W 5.335 5.335 7.38 732.7 733.8 1.000 +0.60D+0.60W 1.320 1.320 3.88 384.8 386.0 1.000 22 sbury.ec6 Pole FootingEmbedded in SoilFile: 0,Buil Software copyright ENERCALC,INC.INC1983-2020,Build:12.20.8.24 Lic.#:KW-06001656 WILLETL ENGINEERING DESCRIPTION: Auger cast footing +0.60D 0.600 0.600 2.75 271.1 272.0 1.000 • 23 GiPu Willett Engineering Current Date:9/14/2021 3:45 PM Units system:English Steel connections Detailed report Connection name : Pinned BP-HSS Member Connection ID : 1 Family:Column-Base(CB) Type:Base plate Description:At typical canopy footing GENERAL INFORMATION Connector n _ N B : :aE: : MEMBERS Column Column type • Prismatic member Section • W 18X60 Material • A992 Gr50 CONNECTOR Base plate Plate shape • Rectangular Connection type • Unstiffened Position on the support • Center N:Longitudinal dimension • 20 in B:Transversal dimension • 10 in Thickness • 0.75 in Material • A36 Column weld • E70XX Outer welds flanges only • No Pagel 24 D:Column weld size(1/16 in) 5 Override A2/A1 ratio No Include shear lug No Support With pedestal No Longitudinal dimension 60 in Transversal dimension 60 in Thickness 36 in Material C 4-60 Include grouting No Anchor Anchor position Longitudinal position Rows number per side 1 Anchors per row 2 Longitudinal edge distance on the plate 8 in Transverse edge distance on the plate 3 in Anchor type Headed Head type Heavy hexagonal Include lock nut No Anchor 3/4" Effective embedment depth 12 in Total length 13.74 in Material F1554 Gr36 Fy 36 kip/in2 Fu 58 kip/in2 Cracked concrete Yes Brittle steel No Anchors welded to base plate No Anchor reinforcement Type of reinforcement Primary Tension reinforcement No Shear reinforcement No Design code:AISC 360-16 LRFD,ACI 318-11 DEMANDS Description Pu Mu22 Mu33 Vu2 Vu3 Load type [kip] [kip*ft] [kip*ft] [kip] [kip] Snow -22.00 0.00 0.00 7.70 0.00 Design Wind 4.60 0.00 0.00 -3.20 0.00 Design D1 -4.20 0.00 0.00 1.26 0.00 Design D2 -15.60 0.00 0.00 5.83 0.00 Design D3 -14.60 0.00 0.00 4.93 0.00 Design D4 -42.00 0.00 0.00 16.28 0.00 Design D5 -38.80 0.00 0.00 13.40 0.00 Design D6 -1.30 0.00 0.00 -0.52 0.00 Design D7 -39.70 0.00 0.00 14.68 0.00 Design D8 -36.50 0.00 0.00 11.80 0.00 Design D9 1.00 0.00 0.00 -2.12 0.00 Design D10 -11.00 0.00 0.00 2.63 0.00 Design D11 -10.00 0.00 0.00 1.73 0.00 Design D12 1.90 0.00 0.00 -2.39 0.00 Design D13 -8.00 0.00 0.00 2.62 0.00 Design Design for major axis Base plate(AISC 360-16 LRFD) GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Base plate Distance from anchor to edge [in] 2.62 0.25 -- I Weld size [1/16in] 5 3 -- o/ table J2.4 Page2 25 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Concrete base Axial bearing [Kip/in2] 4.42 0.21 D4 0.05 DG1 3.1.1; Base plate Flexural yielding(bearing interface) [Kip*ft/ft] 4.56 0.41 D4 0.09 DG1 Sec 3.1.2 Flexural yielding(tension interface) [Kip*ft/ft] 4.56 0.58 Wind 0.13 DG1 Eq.3.3.13 Column Weld capacity [Kip/ft] 125.29 3.85 Wind 0.03 p.8-9, Sec.J2.5, Sec.J2.4, DG1 p.35 Elastic method weld shear capacity [Kip/ft] 83.53 6.11 D4 0.07 p.8-9, Sec.J2.5, Sec.J2.4 Elastic method weld axial capacity [Kip/ft] 125.29 2.05 Wind 0.02 p.8-9, Sec.J2.5, Sec.J2.4 Ratio 0.13 Design for minor axis Base plate(AISC 360-16 LRFD) GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Base plate Distance from anchor to edge [in] 2.62 0.25 Weld size [1/16in] 5 3 -- table J2.4 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Concrete base Axial bearing [Kip/in2] 4.42 0.21 D4 0.05 DG1 3.1.1; Base plate Flexural yielding(bearing interface) [Kip*ft/ft] 4.56 0.41 D4 0.09 DG1 Sec 3.1.2 Flexural yielding(tension interface) [Kip*ft/ft] 4.56 0.58 Wind 0.13 DG1 Eq.3.3.13 Column Weld capacity [Kip/ft] 125.29 3.85 Wind 0.03 p.8-9, Sec.J2.5, Sec.J2.4, DG1 p.35 Elastic method weld shear capacity [Kip/ft] 83.53 0.00 Snow 0.00 p.8-9, Sec.J2.5, Sec.J2.4 Elastic method weld axial capacity [Kip/ft] 125.29 2.05 Wind 0.02 p.8-9, Sec.J2.5, Sec.J2.4 Ratio 0.13 Major axis Anchors GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Anchors Anchor spacing [in] 4.00 3.00 -- e/ Sec.D.8.1 Concrete cover [in] 27.62 3.00 -- Sec.7.7.1 Effective length [in] 12.49 -- 35.51 Page3 26 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Anchor tension [Kip] 14.55 1.15 Wind 0.08 Eq.D-2 Breakout of anchor in tension [Kip] 44.55 1.15 Wind 0.03 Eq.D-3, Sec.D.3.3.4.4 Breakout of group of anchors in tension [Kip] 55.00 4.60 Wind 0.08 Eq.D-4, Sec.D.3.3.4.4 Pullout of anchor in tension [Kip] 20.41 1.15 Wind 0.06 Sec.D.3.3.4.4 Anchor shear [Kip] 7.57 4.07 D4 0.54 Eq.D-29 Breakout of anchor in shear [Kip] 36.44 4.07 D4 0.11 Table D.4.1.1, Sec.D.4.3 Breakout of group of anchors in shear [Kip] 36.44 16.28 D4 0.45 Table D.4.1.1, Sec.D.4.3 Pryout of anchor in shear [Kip] 89.11 4.07 D4 0.05 Eq.D-3, Table D.4.1.1, Sec.D.4.3 Pryout of group of anchors in shear [Kip] 110.01 3.20 Wind 0.03 Eq.D-4, Table D.4.1.1, Sec.D.4.3 Interaction of tensile and shear forces [Kip] 1.20 0.00 Wind 0.00 Eq.D-2, Eq.D-3, Sec.D.3.3.4.4, Eq.D-4, Eq.D-29, Table D.4.1.1, Sec.D.4.3, Sec.D.7 Ratio - 0.54 Minor axis Anchors GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Anchors Anchor spacing [in] 4.00 3.00 -- ' Sec.D.8.1 Concrete cover [in] 27.62 3.00 -- d' Sec.7.7.1 Effective length [in] 12.49 - 35.51 *l DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Anchor tension [Kip] 14.55 1.15 Wind 0.08 Eq.D-2 Breakout of anchor in tension [Kip] 44.55 1.15 Wind 0.03 Eq.D-3, Sec.D.3.3.4.4 Breakout of group of anchors in tension [Kip] 55.00 4.60 Wind 0.08 Eq.D-4, Sec.D.3.3.4.4 Pullout of anchor in tension [Kip] 20.41 1.15 Wind 0.06 Sec.D.3.3.4.4 Anchor shear [Kip] 7.57 0.00 Snow 0.00 Eq.D-29 Breakout of anchor in shear [Kip] 36.44 0.00 Snow 0.00 Table D.4.1.1, Sec.D.4.3 Pryout of anchor in shear [Kip] 89.11 0.00 Snow 0.00 Eq.D-3, Table D.4.1.1, Sec.D.4.3 Pryout of group of anchors in shear [Kip] 110.01 0.00 Wind 0.00 Eq.D-4, Table D.4.1.1, Sec.D.4.3 Ratio 0.08 Global critical strength ratio 0.54 Page4 27 Major axis Maximum compression(D4) Base plate Base plate Concrete stress Anchors tension Pl in2] • [kip] 210 I` 0 3x I 210 -1 I� - 0 ,, I , 210 i I 0 fs�4, 1 a 210 - ,i i Z. p ( � ,210 1{ 0 �: a i 210 0,, i ., 4 4 0 Kd' 210 < , ,0 i4,. ! r. 210 : - -' 0 Fl t in 1 rr, 1 g 210 bi I .,er _ 0 rS 210 I 0 Lri 210 I' r 0 x +� , i ', ' '210 f i < 0 210 ` ; 0 210 0 '210 0 Maximum bearing pressure 210.00 [Ib/in2] Minimum bearing pressure 210.00 [Iblin2] Maximum anchor tension 0.00 [kip] Minimum anchor tension 0.00 [kip] Neutral axis angle 0.00 [deg] Bearing length 1.2E31 [in] Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] 1 -2.00 -2.00 4.07 0.00 2 -2.00 2.00 4.07 0.00 3 2.00 2.00 4.07 0.00 4 2.00 -2.00 4.07 0.00 Maximum tension(Wind) Base plate Base ptaba Concrete stress Anchors tension Li n2] _ [kip] t: 0 -1.15 + 0 I '' -1.15 • "';, 0 ' I I G> -1.15 ;,� ;,', o d . :a ,pry. e 1 t -1.15 -Tti ; a , _ r -1.15 ▪'f - ,-- I.:.. ,1,r 0 i -1.95 . a " . -1.15 oc s i4 0F' -1.15 .. _. 4 L' -1.15 0 -1.15 0 -1.15 Maximum bearing pressure 0.00 [Ib/in2] Minimum bearing pressure 0.00 [Ib/in2] Maximum anchor tension 1.15 [kip] Minimum anchor tension 1.15 [kip] Neutral axis angle 0.00 [deg] Page5 28 Bearing length -1.2E31 [in] Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] 1 -2.00 -2.00 -0.80 1.15 2 -2.00 2.00 -0.80 1.15 3 2.00 2.00 -0.80 1.15 4 2.00 -2.00 -0.80 1.15 Minor axis Maximum compression(D4) Base plate Base plate Concrete stress Anchors tension ighfin21 [kip] . 210 I- 4'. ` 0 c�, °r 210 � V4 0 0 h' � 1 21t} 1'. i�z,�, 0 Yl 4 1 il, 5'* 210 +. _ ;,'t„t ' i 0 t, 0 10 1 ' 210 4 , Q. 0 ; } I g 210 Vs f__I 0 210 '' 'It":" ' ' 0 h' VI I q.E 1 210 r C),r `" 0 i r 210 I., 0 i 210 ;' � 0 ' ,210 n `r li °z ; 0 S f •21Q} 0 N , ' � 210 `l `K, r 0 210 0 210 0 Maximum bearing pressure 210.00 [lb/in2] Minimum bearing pressure 210.00 [Ib/in2] Maximum anchor tension 0.00 [kip] Minimum anchor tension 0.00 [kip] Neutral axis angle 0.00 [deg] Bearing length 1.2E31 [in] Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] 1 -2.00 -2.00 0.00 0.00 2 -2.00 2.00 0.00 0.00 3 2.00 2.00 0.00 0.00 4 2.00 -2.00 0.00 0.00 , Page6 29 Maximum tension(Wind) Base plate Base plate . Concrete stress Anchors tension [in2] [ ] _ 0 -1.15 > :i xy IC)) ..r -1.15 0 1 -1-15 0 I -1.95 0 . -1.95 L°0 . 0 ) _T. -1.95 0 ', 1-1.15 O o- 0 -O. i' i ; ':01 • -1.15 0 I -1.15 1 0 1 ( -1.15 f 0 i -1.15 0 ; -1.15 � i -1.15 1°0 -1.15 0 -1.15 Maximum bearing pressure 0.00 [Ib/iin2] Minimum bearing pressure 0.00 [Ib/in2] Maximum anchor tension 1.15 [kip] Minimum anchor tension 1.15 [kip] Neutral axis angle 0.00 [deg] Bearing length -1.2E31 [in] ------------------------- Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] 1 -2.00 -2.00 0.00 1.15 2 -2.00 2.00 0.00 1.15 3 2.00 2.00 0.00 1.15 4 2.00 -2.00 0.00 1.15 Major axis Results for tensile breakout(Wind) 1§ ,... ,. :... ,,:„ ,..0.,: .. :,..._. . ., i,.,..., , . Group Area Tension Anchors [in2] [kip] 1 1600.00 4.60 1,2,3,4 Page7 30 Results for shear breakout(D4) • • • Group Area Shear Anchors [in2] [kip] 1 2160.00 16.28 1,2,3,4 2 2160.00 8.14 2,3 Minor axis Results for tensile breakout(Wind) Group Area Tension Anchors [in2] [kip] 1 1600.00 4.60 1,2,3,4 Connection name : Pinned BP-HSS Member Connection ID : 2 Page8 31 Family:Column-Base(CB) Type:Base plate Description:At auger cast footing GENERAL INFORMATION Connector B — • • 4 D N D _ • • i B t • • N D • • cE _ MEMBERS Column Column type Prismatic member Section W 18X60 Material A992 Gr50 CONNECTOR Base plate Plate shape Rectangular Connection type Unstiffened Position on the support Center N:Longitudinal dimension 20 in B:Transversal dimension 10 in Thickness 0.75 in Material A36 Column weld E70XX Outer welds flanges only No D:Column weld size(1/16 in) 5 Override A2/A1 ratio No Include shear lug No Support With pedestal No Longitudinal dimension 22 in Transversal dimension 22 in Thickness 60 in Material C 4-60 Include grouting No Anchor Anchor position Longitudinal position Rows number per side 1 Anchors per row 2 Longitudinal edge distance on the plate 6 in Transverse edge distance on the plate 3 in Anchor type Headed Head type Heavy hexagonal Page9 32 Include lock nut No Anchor 3/4" Effective embedment depth 12 in Total length 13.74 in Material F1554 Gr36 Fy 36 kip/1n2 Fu 58 kip/in2 Cracked concrete Yes Brittle steel No Anchors welded to base plate No Anchor reinforcement Type of reinforcement Primary Tension reinforcement No Shear reinforcement Yes Shear bar size no.4 Shear bar grade 40 kip/in2 Shear number of bars in major axis direction 6 Shear number of bars in minor axis direction 6 Design code:AISC 360-16 LRFD,ACI 318-11 DEMANDS Description Pu Mu22 Mu33 Vu2 Vu3 Load type [kip] [kip*ft] [kip*ft] [kip] [kip] Snow 0.00 0.00 0.00 0.00 0.00 Design Wind 0.00 0.00 0.00 0.00 0.00 Design D1 -37.80 0.00 0.00 14.70 0.00 Design D2 -33.90 0.00 0.00 17.85 0.00 Design D3 -32.40 0.00 0.00 12.60 0.00 Design D4 -37.20 0.00 0.00 29.40 0.00 Design D5 -32.40 0.00 0.00 12.60 0.00 Design D6 -32.40 0.00 0.00 12.60 0.00 Design • D7 -37.20 0.00 0.00 29.40 0.00 Design D8 -32.40 0.00 0.00 12.60 0.00 Design D9 -32.40 0.00 0.00 12.60 0.00 Design D10 -33.90 0.00 0.00 17.85 0.00 Design D11 -32.40 0.00 0.00 12.60 0.00 Design D12 -24.30 0.00 0.00 9.45 0.00 Design D13 -32.40 0.00 0.00 12.60 0.00 Design Design for major axis Base plate(AISC 360-16 LRFD) GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Base plate Distance from anchor to edge [in] 2.62 0.25 -- Weld size [1/16in] 5 3 -- d table J2.4 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Concrete base Axial bearing [Kip/iin2] 2.43 0.19 D1 0.08 DG1 3.1.1; Base plate Flexural yielding(bearing interface) [Kip*ft/ft] 4.56 0.37 D1 0.08 DG1 Sec 3.1.2 Flexural yielding(tension interface) [Kip*ft/ft] 4.56 0.00 Snow 0.00 DG1 Eq.3.3.13 Column Weld capacity [Kip/ft] 125.29 0.00 Snow 0.00 p.8-9, Sec.J2.5, Sec.J2.4 Elastic method weld shear capacity [Kip/ft] 83.53 11.03 D4 0.13 p.8-9, Sec.J2.5, Sec.J2.4 Page10 33 Elastic method weld axial capacity [Kip/ft] 125.29 0.00 Snow 0.00 p.8-9, Sec.J2.5, Sec.J2.4 Ratio 0.13 Design for minor axis Base plate(AISC 360-16 LRFD) GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Base plate Distance from anchor to edge [in] 2.62 0.25 -- Weld size [1/16in] 5 3 -- *f table J2.4 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Concrete base Axial bearing [Kip/in2] 2.43 0.19 D1 0.08 DG1 3.1.1; Base plate Flexural yielding(bearing interface) [Kip`ft/ft] 4.56 0.37 D1 0.08 DG1 Sec 3.1.2 Flexural yielding(tension interface) [Kip*ft/ft] 4.56 0.00 Snow 0.00 DG1 Eq.3.3.13 Column Weld capacity [Kip/ft] 125.29 0.00 Snow 0.00 p.8-9, Sec.J2.5, Sec.J2.4 Elastic method weld shear capacity [Kip/ft] 83.53 0.00 Snow 0.00 p.8-9, Sec.J2.5, Sec.J2.4 Elastic method weld axial capacity [Kip/ft] 125.29 0.00 Snow 0.00 p.8-9, Sec.J2.5, Sec.J2.4 Ratio 0.08 Major axis Anchors GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Anchors Anchor spacing [in] 4.00 3.00 -- V Sec.D.8.1 Concrete cover [in] 6.62 3.00 -- V Sec.7.7.1 Effective length [in] 12.49 - 59.51 V' DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Anchor tension [Kip] 14.55 0.00 Snow 0.00 Eq.D-2 Breakout of anchor in tension [Kip] 15.18 0.00 Snow 0.00 Eq.D-3, Sec.D.3.3.4.4 Pullout of anchor in tension [Kip] 20.41 0.00 Snow 0.00 Sec.D.3.3.4.4 Anchor shear [Kip] 7.57 7.35 D4 0.97 Eq.D-29 Pryout of anchor in shear [Kip] 30.36 7.35 D4 0.24 Eq.D-3, Table D.4.1.1, Sec.D.4.3 Anchors reinforcement in shear [Kip] 36.00 29.40 D4 0.82 Sec.D.5.2.9, D.6.2.9 Ratio 0.97 Pagell 34 Minor axis Anchors GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Anchors Anchor spacing [in] 4.00 3.00 -- v Sec.D.8.1 Concrete cover [in] 6.62 3.00 -- if Sec.7.7.1 Effective length [in] 12.49 — 59.51 of DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Anchor tension [Kip] 14.55 0.00 Snow 0.00 Eq.D-2 Breakout of anchor in tension [Kip] 15.18 0.00 Snow 0.00 Eq.D-3, Sec.D.3.3.4.4 Pullout of anchor in tension [Kip] 20.41 0.00 Snow 0.00 Sec.D.3.3.4.4 Anchor shear [Kip] 7.57 0.00 Snow 0.00 Eq.D-29 Pryout of anchor in shear [Kip] 30.36 0.00 Snow 0.00 Eq.D-3, Table D.4.1.1, Sec.D.4.3 Ratio 0.00 Global critical strength ratio 0.97 Major axis Maximum compression(D1) Base plate Base plate Concrete stress Anchors tension tiblin2l [kip] — F 189 i o 1a9 '_ o . 189 j 0 :1 � 189 0 %g. II 189 i 0 ,189 i3O ' 189 r . 0 1a9 ; 0 $ 189 �� r ; 0 r 189 4, 41, 0 r189 0 iv • 4,. , 189 .5 'a a 0 o i ! 189 1is 0 i, I 189 0 189 0 ---------------------------- Maximum bearing pressure 189.00 [Ib/in2] Minimum bearing pressure 189.00 [Ib/in2] Maximum anchor tension 0.00 [kip] Minimum anchor tension 0.00 [kip] Neutral axis angle 0.00 [deg] Bearing length 1.2E31 [in] Page12 35 Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] 1 -2.00 -4.00 3.68 0.00 2 -2.00 4.00 3.68 0.00 3 2.00 4.00 3.68 0.00 4 2.00 -4.00 3.68 0.00 Maximum tension(Snow) Base plate Base prate Concrete stress Anchors tension plhfin21 [kip] 0 r. 0 I 0 0 .. _;1;1.�, 0 Q,. -� 0 'QI rel.,. - 0 LI - i --_ J 1 I`0 - n 0 0 0 0 0 . i` r 0 3-•l . 0 0 0 0 Maximum bearing pressure 0.00 [Ib/in2] Minimum bearing pressure 0.00 [Ib/in2] Maximum anchor tension 0.00 [kip] Minimum anchor tension 0.00 [kip] Neutral axis angle 0.00 [deg] Bearing length 0.00 [in] ---------------------------- Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] --------------------------- 1 -2.00 -4.00 0.00 0.00 2 -2.00 4.00 0.00 0.00 3 2.00 4.00 0.00 0.00 4 2.00 -4.00 0.00 0.00 Page13 36 Minor axis Maximum compression(D1) Base plate Base prate Concrete stress Anchors tension pbrn2] [kip] 189 I. 0 ; t 189 .� a, 0 ; .. ` p 189 I 0 189 0 I 189 1 1 189 >.F 0 rl I 1 s- ri yt. • • 189 I 0 *,� 1 y � ��II:as: o Y :189 w � 0 x I"1$9 �! a I. 0 � •�,-� � 189 �' 1 0 titix'k; 189 0 i, 189 1 0 '180 0 ---------------------- Maximum bearing pressure 189.00 [Ib/in2] Minimum bearing pressure 189.00 [Ib/in2] Maximum anchor tension 0.00 [kip] Minimum anchor tension 0.00 [kip] Neutral axis angle 0.00 [deg] Bearing length 1.2E31 [in] ------------------------- Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] 1 -2.00 -4.00 0.00 0.00 2 -2.00 4.00 0.00 0.00 3 2.00 4.00 0.00 0.00 4 2.00 -4.00 0.00 0.00 --------------------------- Maximum tension(Snow) Base plate Base prate Concrete stress Anchors tension pbrn2] [kip] } 6 0 • c 0 c >,o 0 i 0 0 0 0 -.la; f. . 0 O � O :. ' 0 :01 ::.0! 0 '0 1-10 �- ;Q 10 Q • Q Fl° o ' IIo 10 4 in _---_ 0 0 0 Maximum bearing pressure 0.00 [Ib/in2] Minimum bearing pressure 0.00 [Ib/in2] Maximum anchor tension 0.00 [kip] Minimum anchor tension 0.00 [kip] Neutral axis angle 0.00 [deg] Page14 37 Bearing length 0.00 [in] Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] 1 -2.00 -4.00 0.00 0.00 2 -2.00 4.00 0.00 0.00 3 2.00 4.00 0.00 0.00 4 2.00 -4.00 0.00 0.00 Page15 38 71 ': 111111 n ` .Willett Engineering Current Date:9/14/2021 3:48 PM Units system:English Steel connections Detailed report Connection name : SP BCF Connection ID : 1V Family:Beam-Column flange(BCF) Type:Single plate GENERAL INFORMATION Connector a , DistTop woramessasii L Is nr b H sb MEMBERS Beam • General Beam section W 18X50 Beam material A992 Gr50 sb: Beam setback 0.5 in Horizontal angle(deg) 0 Vertical angle(deg) 26.6 Horizontal eccentricity 0 in Coped dct: Top cope depth 0 in ct: Top cope length 0 in • dcb: Bottom cope depth 0 in cb: Bottom cope length 0 in Column General Support section W 18X60 Support material A992 Gr50 Is column end No SINGLE PLATE Connector Section PL 3/8x4 1/2x9 b: Width 4.5 in L: Length 9 in tp: Plate thickness 0.375 in Material A36 Plate position on beam Center Bolts 3/4"A325 N nr: Rows of Bolts 3 nc:Bolt columns 1 s: Pitch-longitudinal center-to-center spacing 3 in Lev: Vertical edge distance 1.5 in Pagel 39 Leh: Horizontal edge distance 1.5 in a: Distance between weld and bolts 3 in Hole type on plate Standard(STD) Hole type on beam Standard(STD) Welding electrode to support E70XX D: Weld size to support(1/16 in) 4 Wo:Obtuse side weld size(AWS)(1/16 in) 4 Wa:Acute side weld size(AWS)(1/16 in) 4 Wo:Obtuse side weld size(AISC)(1/16 in) 4 Wa:Acute side weld size(AISC)(1/16 in) 4 Design code:AISC 360-16 ASD DEMANDS Beam Column Description Ru Pu Pu Mu22 Mu33 Load type [kip] [kip] [kip] [kip*ft] [kip*ft] P 7.59 27.28 0.00 0.00 0.00 Design N 7.59 27.28 0.00 0.00 0.00 Design GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Shear plate Number of bolts 3 2 12 ✓ p 10-102 Distance from the bolt line to the weld line [in] 3.00 - 3.50 it p 10-102 Minimum plate or beam web thickness [in] 0.36 - 0.44 r# Table 10-9 Length [in] 9.00 8.03 16.06 1 p.10-104 Vertical edge distance [in] 1.50 1.00 - rtt Tables J3.4, J3.5 Horizontal edge distance [in] 1.50 1.50 -- J p.10-103 Vertical center-to-center spacing(pitch) [in] 3.00 2.00 8.52 re Sec.J3.3, Sec.J3.5 Beam Vertical edge distance [in] 7.07 1.00 -- d Tables J3.4, J3.5 Horizontal edge distance [in] 2.50 1.50 -- +f p.10-103 Support Weld size [1/16in] 4 4 -- if p.10-87 Weld length [in] 9.00 1.00 -- i Sec.J2.2b DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Shear plate Bolts shear [Kip] 31.07 28.32 P 0.91 Tables(7-1..14) Bolt bearing under shear load [Kip] 37.16 7.59 P 0.20 Eq.J3-6, p.7-18 Shear yielding [Kip] 48.60 7.59 P 0.16 Eq.J4-3 Shear rupture [Kip] 41.60 7.59 P 0.18 Eq.J4-4 Block shear [Kip] 41.93 7.59 P 0.18 Eq.J4-5 Bolt bearing under axial load [Kip] 37.16 27.28 P 0.73 Eq.J3-6, p.7-18 Tension yielding [Kip] 72.75 27.28 P 0.38 Eq.J4-1 Tension rupture [Kip] 69.33 27.28 P 0.39 Eq.J4-2 Tear out under axial load [Kip] 58.37 27.28 P 0.47 Eq.J4-5 Plate(support side) Weld capacity [Kip] 98.42 28.32 P 0.29 Tables 8-4..8-11 • Beam Bolt bearing under shear load [Kip] 54.06 7.59 P 0.14 Eq.J3-6, p.7-18 Shear yielding [Kip] 127.80 7.59 P 0.06 Eq.J4-3 Bolt bearing under axial load [Kip] 62.30 27.28 P 0.44 Eq.J3-6 Yielding strength due to axial load [Kip] 440.12 27.28 P 0.06 Eq.D2-1 Page2 40 Tension rupture [Kip] 182.19 27.28 P 0.15 Eq.J4-2 Tear out under axial load [Kip] 75.66 27.28 P 0.36 Eq.J4-5 Support Welds rupture [Kip/ft] 325.26 25.64 P 0.08 p.9-5 Global critical strength ratio 0.91 NOTES The plate is designed with the conventional configuration criteria. Connection name : FP BCF Bolted Connection ID : 1M . Family:Beam-Column flange(BCF) Type:Flange-plated GENERAL INFORMATION Connector 111 / P D2 D2 4 l L I • • • 9 H Leh Hsb • • • ig b ' �'nc s—®a nr of s s Lev MEMBERS Configuration Exists opposite connection No Beam General Beam'section W 18X50 Beam material A992 Gr50 Horizontal angle(deg) 0 Vertical angle(deg) 26.6 sb: Beam setback 0.5 in Horizontal eccentricity 0 in Column General Support section W 18X60 Support material A992 Gr50 Is column end No FLANGE PLATE Connector Top plate section PL 3/4x6 1/2x15 1/2 L:Top plate length 15.5 in b: Top plate width 6.5 in tp: Top plate thickness 0.75 in Bottom plate section PL 3/4x6 1/2x15 1/2 Lb:Bottom plate length 15.5 in bb: Bottom plate width 6.5 in tpb: Bottom plate thickness 0.75 in Plate material A36 Beam side Connection type Bolted Bolts 3/4"A325 N Page3 41 nc: Bolt columns 2 nr: Rows of Bolts 5 g: Gage-transverse center-to-center spacing 3.5 in s: Pitch-longitudinal center-to-center spacing 3 in Lev: Longitudinal distance to top plate edge 1.5 in Leh: Transverse distance to top plate edge 1.5 in ef: Longitudinal distance to beam edge(top plate) : 1.5 in Levb: Longitudinal distance to bottom plate edge 1.5 in Lehb: Transverse distance to bottom plate edge 1.5 in efb: Longitudinal distance to beam edge(bottom... : 1.5 in Hole type on beam Standard(STD) Hole type on top plate Standard(STD) Hole type on bottom plate Standard(STD) Support side Top plate weld type Full penetration Bottom plate weld type Full penetration STIFFENERS Transverse stiffeners A A 1---1 ---� cc lbSTjul MI A-A Section PL 3/8x2x16.81 Position Bottom Full depth Yes Length 16.81 in bs:Transverse stiffeners width 2 in cc:Corner clip length 1 in cc:Corner clip width 1 in ts:Transverse stiffener thickness 0.375 in Material A36 Weld type Fillet Welding electrode to support E70XX D: Weld size to support(1/16 in) 3 Column web panel zone stiffeners Stiffener type Without stiffener Design code:AISC 360-16 ASD DEMANDS Beam Right beam Left beam Column Panel Description Ru Pu Mu PufTop PufBot PufTop PufBot Pu Vu Load type [kip] [kip] [kip*ft] [kip] [kip] [kip] [kip] [kip] [kip] P -9.40 18.78 155.00 -86.03 104.81 0.00 0.00 0.00 104.81 Design N -9.40 18.78 155.00 -86.03 104.81 0.00 0.00 0.00 104.81 Design GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Plate(beam side) Vertical center-to-center spacing(pitch) [in] 3.00 2.00 12.00 +f Sec.J3.3, Sec.J3.5 Horizontal center-to-center spacing(gage) [in] 3.50 2.00 12.00 se Sec.J3.3, Sec.J3.5 Top flange plate data Vertical edge distance [in] 1.50 1.00 -- se Tables J3.4, J3.5 Horizontal edge distance [in] 1.50 1.00 -- se Tables J3.4, Page4 42 J3.5 Bottom flange plate data Vertical edge distance [in] 1.50 1.00 - V Tables J3.4, J3.5 Horizontal edge distance [in] 1.50 1.00 -- +V Tables J3.4, J3.5 Plate(support side) Top plate weld size-column flange [1/16in] 5 4 -- i/' table J2.4 Bottom plate weld size-column flange 11/16in] 5 4 -- ai table J2.4 Beam Vertical edge distance [in] 1.50 1.00 -- i' Tables J3.4, J3.5 . Horizontal edge distance [in] 2.00 1.00 -- V Tables J3.4, J3.5 Transverse stiffeners Length [in] 16.81 8.41 16.81 */ Sec.J10.8 Width [in] 2.00 1.96 -- if Sec.J10.8 Thickness [in] 0.38 0.38 -- V Sec.J10.8 Weld size [1/16in] 3 3 -- ii DG 13 Eq.4.3-6 Support Web thickness [in] 0.41 0.29 -- +/ p.9-5 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Top plate(beam side) Compression [Kip] 105.09 79.31 P 0.75 Sec.J4.4 Tension yielding [Kip] 105.09 0.00 P 0.00 Eq.J4-1 Bolts shear [Kip] 119.34 83.01 P 0.70 Tables(7-1..14) Bolt bearing(Top plate) [Kip] 370.29 83.01 P 0.22 Eq.J3-6 Block shear [Kip] 264.92 0.00 P 0.00 Eq.J4-5 Tension rupture [Kip] 103.31 0.00 P 0.00 Eq.J4-2 Bottom plate(beam side) Tension yielding [Kip] 105.09 98.09 P 0.93 Eq.J4-1 Compression [Kip] 105.09 0.00 P 0.00 Sec.J4.4 Bolts shear [Kip] 119.34 101.78 P 0.85 Tables(7-1..14) Tension rupture [Kip] 103.31 98.09 P 0.95 Eq.J4-2 Block shear [Kip] 264.92 98.09 P 0.37 Eq.J4-5 Bolt bearing(Bottom plate) [Kip] 370.29 101.78 P 0.27 Eq.J3-6 Beam Top flange bending [Kip*ft] 221.07 155.00 P 0.70 Eq.F13-1 Top flange bolt bearing under shear load [Kip] 315.39 104.81 P 0.33 Eq.J3-6 Top flange block shear [Kip] 270.47 104.81 P 0.39 Eq.J4-5 Bottom flange bending [Kip*ft] 221.07 155.00 P 0.70 Eq.F13-1 Bottom flange bolt bearing under shear load [Kip] 315.39 104.81 P 0.33 Eq.J3-6 Bottom flange block shear [Kip] 270.47 104.81 P 0.39 Eq.J4-5 Support Panel web shear [Kip] 135.68 98.09 P 0.72 Sec.J10-6, Eq.J10-9 Support-right side Bottom local flange bending [Kip] 106.55 98.09 P 0.92 Eq.J10-1 Local web yielding [Kip] 102.63 98.09 P 0.96 Eq.J10-2 Top web bearing [Kip] 113.48 79.31 P 0.70 Eq.J10-4 Transverse stiffeners-bottom Yielding strength due to axial load [Kip] 16.17 11.63 P 0.72 Eq.J4-1 Compression [Kip] 9.46 0.00 P 0.00 Sec.J4.4 Flange weld capacity [Kip] 13.57 11.63 P 0.86 Eq.J2-4 Web weld capacity [Kip] 160.76 11.63 P 0.07 Eq.J2-4 Global critical strength ratio 0.96 Pages 43 6'=) -anct - r Willett Engineering Current Date:9/14/2021 3:48 PM Units system:English Steel connections Detailed report Connection name : SP BCF Connection ID : 1V Family:Beam-Column flange(BCF) Type:Single plate GENERAL INFORMATION Connector Dist l Op Is nr 1 b H sb MEMBERS Beam General Beam section W 12X30 Beam material A992 Gr50 sb: Beam setback 0.5 in Horizontal angle(deg) 0 Vertical angle(deg) 0 Horizontal eccentricity 0 in Coped dct: Top cope depth 0 in ct: Top cope length 0 in dcb: Bottom cope depth 0 in cb: Bottom cope length 0 in Column General Support section W 16X40 Support material A992 Gr50 Is column end No SINGLE PLATE Connector Section PL 3/8x4 1/2x6 b: Width 4.5 in L: Length 6 in tp: Plate thickness 0.375 in Material A36 Plate position on beam Center Bolts 3/4"A325 N nr: Rows of Bolts 2 nc:Bolt columns 1 s: Pitch-longitudinal center-to-center spacing 3 in Lev: Vertical edge distance 1.5 in Pagel 44 Leh: Horizontal edge distance 1.5 in a: Distance between weld and bolts 3 in Hole type on plate Standard(STD) Hole type on beam Standard(STD) Welding electrode to support E70XX D: Weld size to support(1/16 in) 4 Wo:Obtuse side weld size(AWS)(1/16 in) 4 Wa:Acute side weld size(AWS)(1/16 in) 4 Wo:Obtuse side weld size(AISC)(1/16 in) 4 Wa:Acute side weld size(AISC)(1/16 in) 4 Design code:AISC 360-16 ASD DEMANDS Beam Column Description Ru Pu Pu Mu22 Mu33 Load type [kip] [kip] [kip] [kip*ft] [kip*ft] . D1 0.40 -0.10 -1.00 0.00 0.00 Design D2 0.40 -0.10 -1.00 0.00 0.00 Design D3 0.40 -0.10 -1.00 0.00 0.00 Design D4 0.40 -0.10 -1.00 0.00 0.00 Design D5 0.40 -0.10 -1.00 0.00 0.00 Design D6 0.40 -0.10 -1.00 0.00 0.00 Design D7 0.40 -0.10 -1.00 0.00 0.00 Design D8 2.92 -2.32 -3.52 0.00 0.00. Design D9 0.40 -0.10 -1.00 0.00 0.00 Design D10 0.40 -0.10 -1.00 0.00 0.00 Design D11 2.29 -1.77 -2.89 0.00 0.00 Design D12 0.40 -0.10 -1.00 0.00 0.00 Design D13 0.40 -0.10 -1.00 0.00 0.00 Design D14 2.29 -1.77 -2.89 0.00 0.00 Design D15 0.24 -0.06 -0.60 0.00 0.00 Design D16 0.24 -0.06 -0.60 0.00 0.00 Design • D17 2.76 -2.28 -3.12 0.00 0.00 Design D18 0.40 -0.10 -1.00 0.00 0.00 Design GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Shear plate Number of bolts 2 2 12 d' p 10-102 Distance from the bolt line to the weld line [in] 3.00 - 3.50 d` p 10-102 Minimum plate or beam web thickness [in] 0.26 - 0.44 lit Table 10-9 Length [in] 6.00 5.41 10.82 id p.10-104 Vertical edge distance [in] 1.50 1.00 - id Tables J3.4, J3.5 Horizontal edge distance [in] 1.50 1.50 -- I p.10-103 Vertical center-to-center spacing(pitch) [in] 3.00 2.00 6.24 d Sec.J3.3, Sec.J3.5 Beam Vertical edge distance [in] 4.65 1.00 -- I Tables J3.4, J3.5 Horizontal edge distance [in] 2.50 1.50 -- wd p.10-103 Support Weld size [1/16in] 4 4 -- ,d p.10-87 Weld length [in] 6.00 1.00 -- I Sec.J2.2b • Page2 45 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Shear plate Bolts shear [Kip] 15.97 3.73 D8 0.23 Tables(7-1..14) Bolt bearing under shear load [Kip] 19.10 2.92 D8 0.15 Eq.J3-6, p.7-18 Shear yielding [Kip] 32.40 2.92 D8 0.09 Eq.J4-3 Shear rupture [Kip] 27.73 2.92 D8 0.11 Eq.J4-4 Block shear [Kip] 29.78 2.92 D8 0.10 Eq.J4-5 Plate(support side) Weld capacity [Kip] 55.48 3.73 D8 0.07 Tables 8-4..8-11 Web crippling [Kip] 72.88 2.32 D8 0.03 Eq.J10-4 Beam Bolt bearing under shear load [Kip] 20.36 2.92 D8 0.14 Eq.J3-6, p.7-18 Shear yielding [Kip] 63.96 2.92 D8 0.05 Eq.J4-3 Bolt bearing under axial load [Kip] 30.42 0.00 D1 0.00 Eq.J3-6 Support Welds rupture [Kip/ft] 236.34 5.99 D8 0.03 p.9-5 Global critical strength ratio 0.23 NOTES The plate is designed with the conventional configuration criteria. Connection name : FP BCF Bolted Connection ID : 1 M Family:Beam-Column flange(BCF) Type:Flange-plated GENERAL INFORMATION Connector / P D2 D2 d L1 NI ' mi mil mil • Leh 1 l III 1i'g b Hsb r ,• ,• •� E a- ' nr of s s Lev MEMBERS Configuration Exists opposite connection No Beam General Beam section W 12X30 Beam material A992 Gr50 Horizontal angle(deg) 0 Vertical angle(deg) 0 sb: Beam setback 0.5 in Horizontal eccentricity 0 in Column General Support section W 16X40 Support material A992 Gr50 Is column end No Page3 46 I FLANGE PLATE Connector Top plate section PL 3/8x6 1/2x6 L:Top plate length 6 in b: Top plate width 6.5 in tp: Top plate thickness 0.375 in Bottom plate section PL 318x6x6 Lb:Bottom plate length 6 in bb: Bottom plate width 6 in tpb: Bottom plate thickness 0.375 in Plate material A36 Beam side Connection type Bolted Bolts 3/4"A325 N nc: Bolt columns 2 nr: Rows of Bolts 2 g: Gage-transverse center-to-center spacing 3.5 in s: Pitch-longitudinal center-to-center spacing 2.5 in Lev: Longitudinal distance to top plate edge 1.5 in Leh: Transverse distance to top plate edge 1.5 in ef: Longitudinal distance to beam edge(top plate) : 1.5 in Levb: Longitudinal distance to bottom plate edge 1.5 in Lehb: Transverse distance to bottom plate edge 1.25 in efb: Longitudinal distance to beam edge(bottom... : 1.5 in Hole type on beam Standard(STD) Hole type on top plate Standard(STD) Hole type on bottom plate Standard(STD) Support side Top plate weld type Fillet Bottom plate weld type Fillet Welding electrode to support E70XX D1: Top weld size to support(1/16 in) 3 Welding electrode to support E70XX D2: Bottom weld size to support(1/16 in) 3 STIFFENERS Transverse stiffeners Position None Column web panel zone stiffeners Stiffener type Without stiffener Design code:AISC 360-16 ASD DEMANDS Beam Right beam Left beam Column Panel Description Ru Pu Mu PufTop PufBot PufTop PufBot Pu Vu Load type [kip] [kip] [kip*ft] [kip] [kip] [kip] [kip] [kip] [kip] D1 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D2 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D3 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D4 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D5 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D6 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design - D7 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D8 0.00 -2.32 30.90 -32.42 30.10 0.00 0.00 -3.52 30.28 Design D9 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D10 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D11 0.00 -1.77 22.80 -23.95 22.19 0.00 0.00 -2.89 22.40 Design D12 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D13 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D14 0.00 -1.77 22.80 -23.95 22.19 0.00 0.00 -2.89 22.40 Design D15 0.00 -0.06 -0.90 0.88 -0.94 0.00 0.00 -0.60 0.82 Design D16 0.00 -0.06 -0.90 0.88 -0.94 0.00 0.00 -0.60 0.82 Design D17 0.00 -2.28 31.50 -33.01 30.73 0.00 0.00 -3.12 30.79 Design D18 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design Page4 47 GEOMETRIC CONSIDERATIONS Dimensions - Unit Value Min.value Max.value Sta. References Plate(beam side) Vertical center-to-center spacing(pitch) [in] 2.50 2.00 9.00 V Sec.J3.3, Sec.J3.5 Horizontal center-to-center spacing(gage) [in] 3.50 2.00 9.00 d Sec.J3.3, Sec.J3.5 Top flange plate data Vertical edge distance [in] 1.50 1.00 -- V' Tables J3.4, J3.5 Horizontal edge distance [in] 1.50 1.00 -- V Tables J3.4, J3.5 Bottom flange plate data Vertical edge distance [in] 1.50 1.00 -- yd" Tables J3.4, J3.5 Horizontal edge distance [in] 1.25 1.00 -- d' Tables J3.4, J3.5 Plate(support side) Top plate weld size-column flange [1/16in] 3 3 -- v" table J2.4 Bottom plate weld size-column flange [1/16in] 3 3 -- ./ table J2.4 Beam Vertical edge distance [in] 1.50 1.00 -- V Tables J3.4, J3.5 Horizontal edge distance [in] 1.51 1.00 -- I Tables J3.4, J3.5 Support Thickness [in] 0.51 0.14 -- V p.9-5 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Top plate(beam side) Compression [Kip] 52.54 30.96 D17 0.59 Sec.J4.4 Tension yielding [Kip] 52.54 1.37 D1 0.03 Eq.J4-1 Bolts shear [Kip] 47.74 31.87 D17 0.67 Tables(7-1..14) Bolt bearing(Top plate) [Kip] 67.70 31.87 D17 0.47 Eq.J3-6 Block shear [Kip] 55.51 1.37 D1 0.02 Eq.J4-5 Tension rupture [Kip] 51.66 1.37 D1 0.03 Eq.J4-2 Bottom plate(beam side) Tension yielding [Kip] 48.50 28.68 D17 0.59 Eq.J4-1 Compression [Kip] 48.50 1.47 D1 0.03 Sec.J4.4 Bolts shear [Kip] 47.74 29.59 D17 0.62 Tables(7-1..14) Tension rupture [Kip] 46.22 28.68 D17 0.62 Eq.J4-2 Block shear [Kip] 50.07 28.68 D17 0.57 Eq.J4-5 Bolt bearing(Bottom plate) [Kip] 67.70 29.59 D17 0.44 Eq.J3-6 Top plate(support side) Weld to column [Kip] 54.29 33.01 D17 0.61 Eq.J2-4 Bottom plate(support side) Weld to column [Kip] 50.12 30.73 D17 0.61 Eq.J2-4 Beam Top flange bending [Kip*ft] 91.60 31.50 D17 0.34 Eq.F13-1 Top flange bolt bearing under shear load [Kip] 89.02 33.01 D17 0.37 Eq.J3-6 Top flange block shear [Kip] 76.79 33.01 D17 0.43 Eq.J4-5 Bottom flange bending [Kip*ft] 91.60 31.50 D17 0.34 Eq.F13-1 Bottom flange bolt bearing under shear load [Kip] 89.02 33.01 D17 0.37 Eq.J3-6 Bottom flange block shear [Kip] 76.79 33.01 D17 0.43 Eq.J4-5 Support Panel web shear [Kip] 87.66 28.74 D17 0.33 Sec.J10-6, Eq.J10-9 Support-right side Top local flange bending [Kip] 47.72 1.37 D1 0.03 Eq.J10-1 Bottom local flange bending [Kip] 47.72 28.68 D17 0.60 Eq.J10-1 Local web yielding [Kip] 53.73 30.96 D17 0.58 Eq.J10-2 Page5 48 Top web bearing [Kip] 61.46 30.96 D17 0.50 Eq.J10-4 Bottom web bearing [Kip] 61.46 1.47 D1 0.02 Eq.J10-4 Global critical strength ratio 0.67 Page6 49 Sen ` Q L- 1 Willett Engineering Current Date:9/14/2021 3:47 PM Units system:English Steel connections Detailed report Connection name : MEP BS APEX Extended upwards Connection ID : 2 Family:Beam splice(BS) Type:Moment end plate GENERAL INFORMATION Connector LeVI • • pfo pfir ti G1 s • • L i �— —III a • f pfi I LeH 9� MEMBERS Configuration Is apex Yes Vertical angle(deg) -26.6 Include beam stiffener No Right beam Beams Beam type Prismatic member Beam section W 18X50 Beam material A992 Gr50 END PLATE Connector Plate extension Extended external edge Width 8.5 in tp: Plate thickness 0.375 in Plate material A36 Fy 36 kipM2 Fu 58 kip/in2 Hole type on plate Standard(STD) Flush extension length 0.874 in Beam side Top flange weld type Fillet Top beam flange weld E70XX D1: Weld size to top beam flange(1/16in) 3 Bottom flange weld type Fillet Bottom beam flange weld E70XX Pagel 50 D3: Weld size to bottom beam flange(1/16in) 3 • Welding electrode to beam web E70XX D2: Weld size to beam web(1/16in) 5 End plate Bolts 3/4"A325 N g: Gage-transverse center-to-center spacing 3.5 in Lev: Vertical edge distance 1.5 in Leh: Horizontal edge distance 2.5 in Bolt group(top extension) pfo t:Distance from bolt rows to flange 1.5 in Bolt group(top flange) Bolts rows number 1 pfi t:Distance from bolt rows to flange 1.5 in Bolt group(bottom flange) Bolts rows number 1 pfi b:Distance from bolt rows to flange 1.5 in Design code:AISC 360-16 ASD DEMANDS Description Ru Pu Mu PufTop PufBot Load type [kip] [kip] [kip'ft] [kip] [kip] DL 2.01 -0.45 0.00 -0.22 -0.22 Design LL . 12.08 15.20 0.00 7.60 7.60 Design S 4.03 12.52 0.00 6.26 6.26 Design W -0.44 8.05 0.00 4.03 4.03. Design D14 2.01 -0.45 0.00 -0.22 -0.22 Design D15 14.10 14.75 0.00 7.37 7.37 Design D16 6.04 12.07 0.00 6.04 6.04 Design D17 11.08 10.95 0.00 5.47 5.47 Design D18 5.04 8.94 0.00 4.47 4.47 Design D19 1.75 4.38 0.00 2.19 2.19 Design D20 10.88 14.57 0.00 7.29 7.29 Design D21 4.84 12.56 0.00 6.28 6.28 Design D22 0.94 4.56 0.00 2.28 2.28 Design D23 5.04 8.94 0.00 4.47 4.47 Design GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Extended end plate Vertical edge distance [in] 1.50 1.00 4.50 ei, Sec.J3.5 Horizontal edge distance [in] 2.50 1.00 4.50 1 Sec.J3.5 Vertical bolt spacing(external flange) [in] 3.64 2.00 - 1 Sec.J3.3 Horizontal center-to-center spacing(gage) [in] 3.50 2.00 7.50 1 Sec.J3.3, DG4 Sec.2.4, DG4 Sec.2.1, 2.4, DG16 Sec.2.5 Outer bolt distance(external flange) [in] 1.50 1.25 -- of DG4 Sec.2.1 Inner bolt distance(external flange) [in] 1.50 1.25 -- 1 DG4 Sec.2.1 Inner bolt distance(internal flange) [in] 1.50 1.25 -- J DG4 Sec.2.1 Bolt diameter [in] 0.75 - 1.50 At DG4 Sec.1.1 Beam Weld size(external flange) [1/16in] 3 3 -- se table J2.4 Weld size(internal flange) [1/16in] 3 3 -- I table J2.4 Web [1/16in] 5 3 -- of table J2.4 Page2 51 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Moment end plate(external flange) Flexural yielding [Kip*ft] 45.89 12.34 LL 0.27 DG16 Sec 2.5 No prying bolt moment strength [Kip*ft] 129.24 12.34 LL 0.10 DG16 Sec 2.5 Bolt rupture with prying moment strength [Kip*ft] 93.23 12.34 LL 0.13 DG16 Sec 2.5 Bolts shear [Kip] 47.74 14.10 D15 0.30 Tables(7-1..14) Bolt bearing under shear load [Kip] 67.70 0.44 W 0.01 Eq.J3-6 Shear yielding [Kip] 41.23 3.80 LL 0.09 DG4 Eq.3.12 Shear rupture [Kip] 44.04 3.80 LL 0.09 DG4 Eq 3.14, AISC 358 Eq.6.9-12, DG4 Eq.3.13 Moment end plate(internal flange) Flexural yielding [Kip*ft] 24.75 12.34 LL 0.50 DG16 Sec 2.5 No prying bolt moment strength [Kip*ft] 58.59 12.34 LL 0.21 DG16 Sec 2.5 Bolt rupture with prying moment strength [Kip*ft] 42.26 12.34 LL 0.29 DG16 Sec 2.5 Bolts shear [Kip] 23.87 14.10 D15 0.59 Tables(7-1..14) Bolt bearing under shear load [Kip] 28.55 14.10 D15 0.49 Eq.J3-6 Shear yielding [Kip] 41.23 3.80 LL 0.09 DG4 Eq.3.12 Beam Web weld shear strength [Kip] 83.33 14.10 D15 0.17 Eq.J2-4 Web weld strength to reach yield stress [Kip/ft] 158.45 127.54 DL 0.80 Eq.J2-4, Eq.J4-1 Shear yielding [Kip] 127.80 14.10 D15 0.11 Eq.J4-3 Flange weld capacity(external flange) [Kip] 61.16 7.60 LL 0.12 Eq.J2-4 Flange weld capacity(internal flange) [Kip] 61.16 7.60 LL 0.12 Eq.J2-4 Global critical strength ratio 0.80 Page3 52 CFS Version 12.0.2 Page 1 Section: Z-Purlin.cfss kgarrett Zee 10x3.5x1x0.105 WECFS2 Rev. Date: 9/14/2021 10:53:23 AM By: kgarrett Printed: 9/14/2021 4:15:52 PM • /17 53 CFS Version 12.0.2 Page 1 Section: Z-Purlin.cfss kgarrett Zee 10x3.5x1x0.105 WECFS2 Rev. Date: 9/14/2021 10:53:23 AM By: kgarrett Printed: 9/14/2021 4:15:52 PM Section Inputs Material: A653 SS Grade 55 No cold work of forming strength increase. No inelastic reserve strength increase. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 55 ksi Tensile Strength, Fu 70 ksi Torsion Constant Override, J 0 in6 Warping Constant Override, Cw 0 in6 Stiffened Zee, Thickness 0.105 in Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 1.000 -50.000 0.18800 None 0.000 0.000 0.500 2 3.500 0.000 0.18800 Single 0.000 0.000 1.750 3 10.000 90.000 0.18800 Zee 0.000 0.000 5.000 4 3.500 0.000 0.18800 Single 0.000 0.000 1.750 5 1.000 -50.000 0.18800 None 0.000 0.000 0.500 54 CFS Version 12.0.2 Page 1 Analysis: 4-Span Z-Purlin.cfsa kgarrett 4-Span Beams with Laps WECFS2 Rev. Date: 9/14/2021 4:14:24 PM By: kgarrett Printed: 9/14/2021 4:15:52 PM '0- '0- '0- '0- '0- 4 '0- 'eL-1-3- Analysis Inputs General Member Orientation: Horizontal Calculate global buckling using specification equations Do not include torsion in member checks Members Section File Revision Date and Time 1 Z-Purlin.cfss 9/14/2021 10:53:23 AM 2 Z-Purlin.cfss 9/14/2021 10:53:23 AM 3 Z-Purlin.cfss 9/14/2021 10:53:23 AM 4 Z-Purlin.cfss 9/14/2021 10:53:23 AM Material Area Length Weight (in2) (ft) (k) 1 A653 SS Grade 55 1.9380 28.00 0.18449 2 A653 SS Grade 55 1.9380 30.00 0.19767 3 A653 SS Grade 55 1.9380 30.00 0.19767 4 A653 SS Grade 55 1.9380 30.00 0.19767 Total 118.00 0.77751 Start Loc. End Loc. Braced R Lm ex ey (ft) (ft) Flange (k) (ft) (in) (in) 1 0.00 28.00 Top 0.0000 0.0000 28.00 0.000 0.000 2 24.00 54.00 Top 0.0000 0.0000 30.00 0.000 0.000 3 50.00 80.00 Top 0.0000 0.0000 30.00 0.000 0.000 4 76.00 106.00 Top 0.0000 0.0000 30.00 0.000 0.000 55 CFS Version 12.0.2 Page 2 Analysis:4-Span Z-Purlin.cfsa kgarrett 4-Span Beams with Laps WECFS2 Rev. Date: 9/14/2021 4:14:24 PM By: kgarrett Printed: 9/14/2021 4:15:52 PM Supports Type Location Bearing Fastened K (ft) (in) 1 XYT 0.00 4.00 Yes 1.0000 2 XT 8.70 1.00 No 1.0000 3 XT 17.40 1.00 No 1.0000 4 XYT 26.00 4.00 Yes 1.0000 5 XT 34.70 1.00 No 1.0000 6 XT 43.40 1.00 No 1.0000 7 XYT 52.00 4.00 Yes 1.0000 8 XT 60.70 1.00 No 1.0000 9 XT 69.40 1.00 No 1.0000 10 XYT 78.00 4.00 Yes 1.0000 11 XT 87.30 1.00 No 1.0000 12 XT 96.70 1.00 No 1.0000 13 XYT 106.00 4.00 Yes 1.0000 Loading: Dead Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 63.000 0.00 106.00 -0.00500 -0.00500 k/ft Loading: Roof Live Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.00 106.00 -0.04700 -0.04700 k/ft Loading: Snow Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 63.000 0.00 106.00 -0.15700 -0.15700 k/ft Loading: Wind Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.00 106.00 0.04300 0.04300 k/ft Load Combination: D Specification: AISI S100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 Load Combination: D+Lr Specification: AISI 5100-16/S1-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 56 CFS Version 12.0.2 Page 3 Analysis: 4-Span Z-Purlin.cfsa kgarrett 4-Span Beams with Laps WECFS2 Rev. Date: 9/14/2021 4:14:24 PM By: kgarrett Printed: 9/14/2021 4:15:52 PM Load Combination: D+S Specification: AISI S100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Snow Load 1.000 Load Combination: D+0.75(L+Lr) Specification: AISI 5100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Roof Live Load 0.750 4 Product Load 0.750 Load Combination: D+0.75(L+5) Specification: AISI S100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Roof Live Load 0.750 4 Product Load 0.750 5 Snow Load 0.750 Load Combination: D+0.6W Specification: AISI 5100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Wind Load 0.600 Load Combination: D+0.7E Specification: AISI S100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Earthquake Load 0.700 Load Combination: D+0.75(0.6W+L+Lr) Specification: AISI 5100-16/S1-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Roof Live Load 0.750 4 Product Load 0.750 5 Wind Load 0.450 57 CFS Version 12.0.2 Page 4 Analysis:4-Span Z-Purlin.cfsa kgarrett 4-Span Beams with Laps WECFS2 Rev. Date: 9/14/2021 4:14:24 PM By: kgarrett Printed: 9/14/2021 4:15:52 PM Load Combination: D+0.75(0.6W+L+5) Specification: AISI S100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Roof Live Load 0.750 4 Product Load 0.750 5 Snow Load 0.750 6 Wind Load 0.450 Load Combination: D+0.75(0.7E+L+5) Specification: AISI S100-16/S1-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Roof Live Load 0.750 4 Product Load 0.750 5 Snow Load 0.750 6 Earthquake Load 0.525 Load Combination: 0.6D+0.6W Specification: AISI 5100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 0.600 2 Dead Load 0.600 3 Wind Load 0.600 Load Combination: 0.6D+0.7E Specification: AISI S100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 0.600 2 Dead Load 0.600 3 Earthquake Load 0.700 Web Crippling Check -AISI S100-16/S1-18, US, ASD Load Combination: D+0.75(L+5) Parameters at 78.00 ft: Total Load: 4.8262 k on bottom flange Total Moment: -160.11 k-in Bearing: 4.0000 in Flange fastened to bearing surface: Yes Distance from edge of bearing to edge of opposite load: 106.00 ft Section: Z-Purlin.cfss Material Type: A653 S5 Grade 55, Fy=55 ksi Applied Load: 2.4131 k on bottom flange Applied Moment: -80.06 k-in Distance from edge of bearing to end of member: 1.8333 ft 58 CFS Version 12.0.2 Page 5 Analysis: 4-Span Z-Purlin.cfsa kgarrett 4-Span Beams with Laps WECFS2 Rev. Date: 9/14/2021 4:14:24 PM By: kgarrett Printed: 9/14/2021 4:15:52 PM Part Elem Calculation Type Pa (k) Pay (k) Notes 1 3 Zee, FS-I0F 5.5812 5.5812 Web Crippling Strength 5.5812 Web Crippling Check: 2.4131 k <= 5.5812 k Moment Check: 80.06 k-in <= 170.10 k-in Interaction Equations Eq. H3-la (P, M) 0.238 + 0.282 = 0.520 <= 0.782 Member Check-AISI S100-16/S1-18, US, ASD Load Combination: D+S Design Parameters at 96.700 ft, Left side: Lx 28.000 ft Ly 9.400 ft Lt 9.400 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: Z-Purlin.cfss Material Type: A653 SS Grade 55, Fy=55 ksi Cbx 1.0987 Cby 2.7609 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Top 40 0 k Red. Factor, R: 0 Lm 30.000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Total 0.000 104.46 -0.234 -8.18 -0.367 Applied 0.000 104.46 -0.234 -8.18 -0.367 Strength 20.711 141.52 10.942 36.06 13.299 Interaction Equations Eq. H1.2-1 (P, Mx, My) 0.000 + 0.738 + 0.227 = 0.965 <= 1.0 Eq. H2-1 (Mx, Vy) Sqrt(0.377 + 0.000)= 0.614 <= 1.0 Eq. H2-1 (My, Vx) Sqrt(0.048 + 0.001)= 0.220 <= 1.0 59 CFS Version 12.0.2 Page 1 4-Span Z-Purlin.cfsa kgarrett 4-Span Beams with Laps WECFS2 Rev. Date: 9/14/2021 4:14:24 PM By: kgarrett Printed: 9/14/2021 4:15:24 PM Envelope of all combinations, Y Direction • Reaction -039J11 -0.56658 -0.42739 -0.59283 -0.5r05 (k) 3.171.4993 l'` 1.6409 3.5217 4.6192 4.8262 2.6062 2.1738 1.7378 1.4993 16 Shear 0.20805 (k) -0.1901 -1.784 -1.6409 -2.2201 -2.4454 106.84 89.194 39.711 33.301 Moment 18v 4111111L, 10.65 Allik6, 2 0.191 (k-in) -11.308 5.032 -4.2193 -13.546 -84.873 -145.69 -160.11 0.10072 Deflection 0.09325 0.041391 0.02505 0.013443 m., 0.1437 (in) _--'411111MIPP' `64 -0.011844 14.11r -0.19789 -0.10634 -0.79453 -1.1335 60 ALLOWABLE VERTICAL AND HORIZONTAL DIAPHRAGM SHEAR AND SHEAR STIFFNESS 61 i TABLE 9--ALLOWABLE VERTICAL AND HORIZONTAL DIAPHRAGM SHEAR AND SHE 20'-21' "R" PANEL BASE TYPICAL SIDELAP SHEAR SHEAR SHEAR STEEL THICKNESS DECK SPAN° FASTENER° Ne7 VALUE •4 VALUE 4 STIFFNESS° Panel Type Gauge Inch (feel) SPACING(INCHES) SEISMIC(PLF) WIND(PLF) G(kips per Inch) 29 0.0133 10@2'-0" 12 11 257 274 7.156 "R"Panel 29 0.0133 7@3'-0" 12 8 178 190 6.135 29 0.0133 5@4'-0" 12 6 140 149 5.060 29 0.0133 4@5'-0" 12 5 117 125 4.526 29 0.0133 10@2'-0" 20 11 243 258 7.156 "R"Panel 29 0.0133 7@3'-0" 20 8 168 179 6.135 29 0.0133 5@4'-0" 20 6 132 141 5.060 29 0.0133 4@5'-0" 20 5 110 117 4.526 26 0.0176 10@2'-0" 12 11 356 378 9.469 26 0.0176 7@3'-0" 12 8 246 262 8.118 "R"Panel 26 0.0176 5@4'-0" 12 6 194 206 6.696 i s 0 26 0.0176 4@5'-0" 12 5 162 172 5.989 26 0.0176 7'-4"-6'-0" 12 3 132 141 3.457 -)--- O 26 0.0176 7-4"-6'-0"-6'-0" 12 4 118 125 5.099 26 0.0176 10@2'-0" 20 11 335 356 9.469 26 0.0176 7@3'-0" 20 8 232 247 - 8.118 W-_ 2.9 kips „ „ 26 0.0176 5@4'-0" 20 6 183 194 96 (ultimate-see RISA) R Panel 26 0.0176 4@5'-0" 20 5 152 162 5.989 Frame Length : 38 ft 26 0.0176 7-4"-6'-0" 20 3 125 133 3.457 V=2.9(0.6)/38= 46 plf 26 0.0176 7-4"-6'-0"-6'-0" 20 4 111 118 5.099 required TABLE 10--ALLOWABLE VERTICAL AND HORIZONTAL DIAPHRAGM SHEAR AND SH 24'-25' "R" PANEL BASE TYPICAL SIDELAP SHEAR SHEAR SHEAR STEEL THICKNESS DECK SPAN') FASTENER' Ne7 VALUE244 VALUE 4 STIFFNESS° Panel Type Gauge Inch (feet) SPACING(INCHES) SEISMIC(PLF) WIND(PLF) G(kfps per Inch) 29 0.0133 12@2'-0" 12 13 254 270 8.587 "R"Panel 29 0.0133 8@3'-0" 12 9 176 187 7.011 29 0.0133 6@4'-0" 12 7 137 145 6.072 29 0.0133 5@5'-0" 12 6 112 120 5.657 29 0.0133 12@2'-0" 20 13 239 254 8.587 "R"Panel 29 0.0133 8@3'-0" 20 9 165 176 7.011 29 0.0133 6@4'-0" 20 7 129 137 6.072 29 0.0133 5@5'-0" 20 6 106 113 5.657 26 0.0176 12@2'-0" 12 13 350 373 11.363 26 0.0176 8@3'-0" 12 9 243 258 9.278 "R"Panel 26 0.0176 6@4'-0" 12 7 189 201 8.035 26 0.0176 5@5'-0" 12 6 155 165 7.486 26 0.0176 4@6'-0" 12 5 135 - 143 6.560 26 0.0176 7'-4"-6'-0"-6'-0"-6'-0" 12 5 110 117 6.740 26 0.0176 12@2'-0" 20 13 330 351 11.363 26 0.0176 8@3'-0" 20 9 228 243 9.278 "R"Panel 26 0.0176 6@4'-0" 20 7 178 189 8.035 26 0.0176 5@5'-0" 20 6 146 156 7.486 26 0.0176 4@6'-0" 20 5 127 135 6.560 26 0.0176 7'-4"-6'-0"-6'-0"-6'-0" 20 5 104 110 6.740 62 • TABLE 17—DEFLECTION OF SHEAR DIAPHRAGMS TYPE OF DIAPHRAGM LOADING CONDITION BENDING DEFLECTION,Ah SHEAR DEFLECTION,Ab Simple beam(at center) Uniform load 5n'L4(12)3 384E/ 8G'b Simple beam(at center) Load P applied at center PL3(12)3 PL 4S87 4G'b • Simple beans(at center) Load P applied 1/3 points of span 23PL3(12)3 PL 648B1 3G'b Cantilever beam(at free end) Unifontt load 14�(12)1 ''a2 8E/ 2G'b Cantilever beam(at free end) Load P applied at free end Pa3(12)3 Pa 3E1 G'b For SI:1 inch=25.4 nun,1 ksi=6.89 MPa,I kip/in.=175 kiN/m,I foot=304.8 rum,1 kip=4.448 kN,4 kip/foot=14.59 kN/m. where: a = Span length of cantilever beam(feet). b = Depth of analogous beam(feet). E= . Modulus of elasticity of steel,29,500 ksi. G'= Shear stiffness of the diaphragm obtained from Tables 7 through 16(Winch). • I = Moment of inertia of flange perimeter members about the centroidal axis of the diaphragm(inch4). L = Span length of a simple beam(feet). P= Concentrated load(kip). try= Uniform load(kip/feet). NOTE:The total deflection of shear diaphragms consists of both the bending and shear deflection: Atotal = Ab + As " • where: Atotal = Total deflection of shear diaphragm(inch). Ab= Bending deflection(inch). As= Shear deflection including the deflection due to seam slip and profile distortion(inch). TABLE 18—DIAPHRAGM STIFFNESS LIMITATIONS MAXIMUM SPAN SPAN DEPTH LIMITATION SHEAR IN FEET FOR _STIFFNESS. MASONRY OR •Rotation Hot Considered in Diaphragm Design Rotation Considered in Diaphragm Design STIFFNESS CONCRETE CATEGORY G'pctpllnchl WALLS Masonry or Concrete Waits Flexible Wallsl Masonry or Concrete Walls Flexible Walls1 Very flexible >7 Not used • Not used , 2:1 Not used 11/2:1 Flexible 7-14 200 2:1 or as required for deflection 3:1 Not used 2:1 Semi-flexible 14-100 400 21/2:1 or as required for deflection 4:1 As required for deflection 21/2:1 Semi-stiff 100-1,000 No limitation 3:1 or as required for deflection 5:1 As required for deflection 3:1 Stiff >1,000 No limitation As required for deflection No limitation As required for deflection 31/2:1 For SI:1 foot=304.8 mnt,I kip/inch=175 kN/nt. 'When applying these limitations to cantilever diaphragms,the span depth-ratio will be one-half that shown. 3'-O'COVERAGE I- 1'-0' up. TYl'. ` I SII00lH • ExTERIOR • SURFACE • 3 I/8'T/P. I • FIGURE 1—"R"PANEL PROFILE 3'-O' COVERAGE I &'IYP. I' iYP. 1 EXiERfOli . SURFACE 2 5/16' IYP. . 1 I • • FIGURE 2—"U"PANEL PROFILE • 63-. 3'-0' 3' 6" 6' 6' 6' 6' 3' • V PIM MO 00 SUPPORT 3.-0' _ 3' I'-0' 1'-0' S' 1 1 • V Ma KtfIF • II1E4tE SPORE • 3'-0' 2 1/2' 7' 5' 7' 5' 7' 2 1/2' • le PIM KWIC . ENO SUPPORT 2 1/2' 1'-0' I'-0' - 9 I/2' i . • • PITERAIYA1E SUPPORT FIGURE 3—END SUPPORT AND INTERIOR SUPPORT FASTENER PATTERNS I • 64 I zh 8.2 k W12X30 o N2 N4 0 0 X X co co A 1 A 3 Loads:LC 5,WIND ONLY Envelope Only Solution Willett Engineering TW-Queensbury-Portal Frame SK-1 KAG Sep 15,2021 221285 Tidal Wave-Queensbury-Portal F... 65 Company : Willett Engineering I IIS Designer : KA Job Number : 221G285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Portal Frame Detail Report:PORTAL COLUMN Unity Check:0.208(LC 2) Load Combination:Envelope 1_____> v Input Data: X Shape: W16X40 I Node: Ni Member Type: Column J Node: N2 z >Z Length(ft): 14 I Release: Fixed Material Type: Hot Rolled Steel J Release: Fixed Design Rule: Typical I Offset(in): N/A Number of Internal Sections: 97 J Offset(in): N/A Material Properties: Material: A992 Therm.Coeff.(1e°F-1): 0.65 Ry: 1.1 E(ksi): 29000 Density(k/ft3): 0.49 F„(ksi): 65 G(ksi): 11154 Fy(ksi): 50 Rt: 1.1 Nu: 0.3 Shape Properties: d(in): 16 Area(in2): 11.8 SH,(ire): 24 bf(in): 7 Zyy(in3): 127 r1(in): 1.82 tf(in): 0.505 Zu(in3): 73 J(in°): 0.794 tw(in): 0.305 C,,,(inb): 1730 kdet(in): 1.188 lyy(in°): 28.9 W„o(in2): 271 kdes(n): 0.907 I u(ire): 518 Design Properties: Lby_y(ft): 14 Ky-y: 1 Max Defl Ratio: L/2581 Lb z-z(ft): 14 Kz.z: 1 Max Defl Location: 0 Lcomp top(ft): 14 y sway: No Span: N/A Lcomp bat(ft): 14 z sway: No Ltorque(ft): 14 Function: Lateral Seismic DR: None PORTAL COLUMN 0 0 N1 N2 -I--- 05 at 14 l —Diagrams: - _ Ii _-' , i — ' ;- I� 4E __ _ - -i-- ' I '—I O at O ft i I . 1--_i 1— , . _-I--- '— 1- - I 1 j i - -1-- :2--1 --'------- ' - 5at14ft - 1 1 V Deflection(in) Z Deflection(in) 3.607 at 0 ft r �f_ 2.404 at 0 ft - i---1 i - -- i f 1 i i 1 - -- _ _ 1 1-_ 1 1—� i 1 I i--,- , i - -- - -- - --- -�---- _—= --- 1 1 -- --- 1- t__---I _F 2.42 at 14 ftl :-2.571 at,0 ft- __` — --- 1 h ----I- 7 F---i----11-1 Axial Force(kips) Y Shear Force(kips) Z Shear Force(kips) RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 1 66 I RIS ®I I JCDoeobsmi tjpnuaeninryb.e r : Willett Engineering :• 221285G Checked By: BJH A NEMETSCHEK COMPANY Model Name : TVV-Queensbury-Portal Frame ----I i I iI i — I --11!-- ---,1IL,„---- ,I',,_ _,i____iI _-_-•,_____,-- - 1 — - --- - -35.999at14fe 1__-_1I1i111 iiIi1'1[ , I -.__- _ ; . _ i---33.657 at 14 ft:i Torsion(kip-ft) z-z Moment(kip-ft) y-y Moment(kip-ft) - — T 7- -I- -7-1 : i--- I 7 - 1 7 I 1 f -0.306 at 0 ft___I 1 -- , . , --1- : ,6.672 at 14 fti - ! ,---i. -------i--- , , 1 1_ 1 ! I 1 1 1 - --, -• -- 77--__---,--- . , 1.- ---- --- IT-_7:r- -1._..E.:____:-_____.:_ j ,___F.....1 1 , 1 1_ --, t--- 1 , L i______1 ,-- - -, ---, ---1----- ;. -- -- •-----i---- . ! -,-----i----irTIII:----11:--------j-----7!7—I i 1 1 1 1 1 i - : ----- r-----;-----, , ! k . _ _i_ [ ..rj ____!______; --- :;_::____::- _-__:__ __=_Ti:;_:;__-_-_-4:::_.:11 i-----==' 7.-----74:-=-H----, _ ___TI Ti- 1 .11 T: ' ' ' 1 — : 1 -4----1-- L =-1 ---4- - 1 ) 1 L__ i 1 j i -- f_ ---.0.20 --6.672 at 14 fe, -------f 1 ! , 1 ri , , , , , , Axial Stress(ksi) Biaxial Compression Bending Stress(ksi) Biaxial Tension Bending Stress(ksi) AISC 15th (360-16):ASD Code Check Limit State Gov.LC Required Available Unity Check Result Applied Loading-Bending/Axial . 2 - - - Applied Loading-Shear+Torsion 2 - - Axial Tension Analysis 2 0.000 k 353.293 k - Axial Compression Analysis 2 3.045 k 152.124 k - Flexural Analysis(Strong Axis) 2 35.999 k-ft 182.136 k-ft - Flexural Analysis(Weak Axis) 2 0.000 k-ft 31.687 k-ft - Shear Analysis(Major Axis y) 2 2.571 k 97.6 k 0.026 Pass Shear Analysis(Minor Axis z) 2 0.000 k 127.006 k 0.000 Pass Bending&Axial Interaction Check(UC Bending Max) 2 - - 0.208 Pass . . RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 2 67 : Willett Engineering ICompany 'liS Designer : KAG A Job Number : 221285 Checked By: BJH ANEMETSCHEK COMPANY Model Name : TW-Queensbury-Portal Frame Detail Report:PORTAL BEAM Unity Check:0.523(LC 1) Load Combination:Envelope ti_____ _ nY Input Data: X Shape: W12X30 I Node: N2 Member Type: Beam J Node: N4 Z )Z Length(ft): 26 I Release: Fixed Material Type: Hot Rolled Steel J Release: Fixed Design Rule: Typical I Offset(in): N/A Number of Internal Sections: 97 J Offset(in): N/A Material Properties: Material: A992 Therm.Coeff.(1eSoF-t): 0.65 Ry: 1.1 E(ksi): 29000 Density(k/ft3): 0.49 F„(ksi): 65 G(ksi): 11154 Fy(ksi): 50 Rt: 1.1 Nu: 0.3 Shape Properties: d(in): 12.3 Area(in2): 8.79 5,,,(in4): 13.9 bf(in): 6.52 Zyy(n3): 9.56 rT(in): 1.73 tf(in): 0.44 Za(n3): 43.1 J(n4): 0.457 tw(in): 026 C,,,(inb): 720 kdet(n): 1.125 lyy(in4): 20.3 Wno(in2): 19.3 kdg(in): 0.74 la(in"): 238 Design Properties: Lby_y(ft): 26 Ky_y: 1 Max Defl Ratio: L/2453 Lb 2-2(ft): 26 KZ-z: 1 Max Defl Location: 5.688 Lcomp top(ft): 26 y sway: No Span: 1 Lcomp bot(ft): 26 z sway: No Ltorque(ft): 26 Function: Lateral Seismic DR: None PORTAL BEAM 0 0 N2 N4 -- Diagrams: — - — 4._ + ;=- i --- 1 i -- —!-- ::. I- —' 0.111at5.417ft�_=; --1- I I— + — — -0 at 0 ft— I---I I I --i -, 1--_- _0 at 0 ft-I I - , ' i r -�--0.127 at 5.958 ft=_-S-- -r-- - -T- j Y Deflection(in) Z Deflection(in) 1 '4 2.536 at 0 ft t- { I ...� ----- :.045 at Oft ; I -t- =— 1 I ' ,_I I I r I _ . —1 - - - -- ' _ _ = I--I --' ---I--- :::-1--- I -3.045 at 26 ft 7 --2.421 at 0 ft-; { -- --- ----; I l -� ----j---,-- i Axial Force(kips) Y Shear Force(kips) Z Shear Force(kips) RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 3 68 IICompany 'R'S : Willett Engineering Job iNumbe r : 22 285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Portal Frame 35.999 at 0 — L:1T1 - , -- —I I ice - — — — 1 � 1 I 1 T--{--1 -33.657 at O ft------ ——I--;---{-� a 1 i i 1— -- Torsion(kip-ft) z-z Moment(kip-ft) y-y Moment(kip-ft) 1 --_.- - --- 1 - --_ 1 -, 0.288 at 0 ft { } 11.163 at 0 ft____ _....___. TA 1 -- -0.275 at 0 ft---I — - 163 at Oft I I , 1 ,� "1-11 —I-- i I- 1 1 Axial Stress (ksi) Biaxial Compression Bending Stress (ksi) Biaxial Tension Bending Stress(ksi) AISC 15th (360-16):ASD Code Check Limit State Gov.LC Required Available Unity Check Result Applied Loading-Bending/Axial 1 - - - - Applied Loading-Shear+Torsion 2 - - - - Axial Tension Analysis 1 0.000 k 263.174 k - - Axial Compression Analysis 1 2.536 k 31.345 k - - Flexural Analysis(Strong Axis) 1 35.941 k-ft 74.469 k-ft - - Flexural Analysis(Weak Axis) 1 0.000 k-ft 23.852 k ft - - Shear Analysis(Major Axis y) 2 3.045 k 63.96 k 0.048 Pass Shear Analysis(Minor Axis z) 2 0.000 k 103.071 k 0.000 Pass Bending&Axial Interaction Check(UC Bending Max) 1 - - 0.523 Pass RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 4 69 I : Willett Engineering ICompany IRISDesigner Job Number : 22 285 Checked By: BJH ANEMETSCHEKCOMPANY Model Name : TW-Queensbury-Portal Frame Node Coordinates Label X[ft] Y[ft] Z[ft] Detach From Diaphragm '1' N1 0 0 0 2 N2 0 14 0 3 N3 26 0 0 4 N4 26 14 0 Node Boundary Conditions Node Label X[k/in] Y[k/in] Z[k/in] 1 N3 Reaction Reaction Reaction 2 N1 Reaction Reaction Reaction 3 N2 Reaction 4 N4 Reaction Member Primary Data Label I Node J Node Section/Shape Type Design List Material Design Rule 1 PORTAL COLUMN N1 N2 W16X40 Column Wide Flange A992 Typical 2 M2 N3 N4 W16X40 Column Wide Flange A992 Typical 3 PORTAL BEAM N2 N4 W12X30 Beam Wide Flange A992 Typical Member Point Loads Member Label Direction Magnitude[k, k-ft] Location[(ft, %)] 1 PORTAL COLUMN X 8.2 %100 Basic Load Cases BLC Description Category Y Gravity Point - 1 Dead DL -1 2 Wind Gravity -- - WL+Y 3 Wind Up WL-Y • 4 Snow(unbal) SL 5 Live Roof/S(bal) RLL 6 Wind Min WL+X 1 Load Combinations Description Solve PDelta BLC Factor BLC Factor 1 IBC 16-12(a) (a) Yes Y DL 1 WL+X 0.6 2 IBC 16-12(a) (b) Yes Y DL 1 WL+X -0.6 3 IBC 16-15(a) Yes Y DL 0.6 WL+X 0.6 4 IBC 16-15(b) Yes Y DL 0.6 WL+X -0.6 5 WIND ONLY Y WL+X 1 6 drift Y WL+X 0.45 Envelope Node Reactions Node Label X[k] LC Y[k] LC Z[k] LC MX[k-ft] LC MY[k-ft] LC MZ[k-ft] LC 1 N3 max 2.421 4 3.607 1 0 4 0 4 0 4 0 4 2 min -2.536 1 -2.083 4 0 1 0 1 0 1 • 0 1 3 N1 max 2.54 2 3.607 2 0 4 0 4 0 4 0 4 4 min -2.426 3 -2.083 3 0 1 0 1 0 1 0 1 5 N2 max 0 4 0 4 0 4 0 4 0 4 0 4 6 min 0 1 0 1 0 1 0 1 0 1 0 1 7 N4 max 0 4 0 4 0 4 0 4 0 4 0 4 8 min 0 1 0 1 0 1 0 1 0 1 0 1 9 Totals: max 4.92 4 1.902 1 0 4 10 min -4.92 1 1.141 4 0 1 RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 5 70 : Willett Engineering I ICompany'RISDesignerJobNumber :: 21 221285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Portal Frame Envelope Node Displacements Node Label X[in] LC Y[in] LC Z[in] LC X Rotation[rad1 LC Y Rotation[radt LC Z Rotation [radl LC 1 N1 max 0 3 0 3 0 4 0 4 0 4 6.939e-3 2 2 min 0 2 0 2 0 1 0 1 0 1 -6.871e-3 3 3 N2 max 1.005 1 0.001 3 0 4 0 4 0 4 3.949e-3 4 4 min -1.005 2 -0.002 2 0 1 0 1 0 1 -4.085e-3 1 5 N3 max 0 1 0 4 0 4 0 4 0 4 6.847e-3 4 6 min 0 4 0 1 0 1 0 1 0 1 -6.915e-3 1 7 N4 max 1.001 1 0.001 4 0 4 0 4 0 4 4.066e-3 2 8 min -1.001 2 -0.002 1 0 1 0 1 0 1 -3.929e-3 3 Envelope Member Section Forces Member Sec Axial[k] LC y Shear[k] LC z Shear[k] LC Torque[k-ft] LC y-y Moment[k-ft] LC z-z Moment[k-ft] LC 1 PORTAL COLUMN 1 max 3.607 2 2.404 3 0 4 0 4 0 4 0 4 2 min -2.083 3 -2.571 2 0 1 0 1 0 1 0 1 3 2 max 3.467 2 2.404 3 0 4 0 4 0 4 9 2 4 min -2.167 3 -2.571 2 0 1 0 1 0 1 -8.414 3 5 3 max 3.326 2 2.404 3 0 4 0 4 0 4 17.999 2 6 min -2.251 3 -2.571 2 0 1 0 1 0 1 -16.828 3 7 4 max 3.185 2 2.404 3 0 4 0 4 0 4 26.999 2 8 min -2.336 3 -2.571 2 0 1 0 1 0 1 -25.243 3 9 5 max 3.045 2 2.404 3 0 4 0 4 0 4 35.999 2 10 min -2.42 3 -2.571 2 0 1 0 1 0 1 -33.657 3 11 M2 1 max 3.607 1 2.567 1 0 4 0 4 0 4 0 4 12 min -2.083 4 -2.4 4 0 1 0 1 0 1 0 1 13 2 max 3.467 1 2.567 1 0 4 0 4 0 4 8.4 4 14 min -2.167 4 -2.4 4 0 1 0 1 0 1 -8.985 1 15 3 max 3.326 1 2.567 1 0 4 0 4 0 4 16.801 4 16 min -2.251 4 -2.4 4 0 1 0 1 0 1 -17.97 1 17 4 max 3.185 1 2.567 1 0 4 0 4 0 4 25.201 4 18 min -2.336 4 -2.4 4 0 1 0 1 0 1 -26.956 1 19 5 max 3.045 1 2.567 1 0 4 0 4 0 4 33.602 4 20 min -2.42 4 -2.4 4 0 1 0 1 0 1 -35.941 1 21 PORTAL BEAM 1 max 2.536 1 3.045 2 0 4 0 4 0 4 35.999 2 22 min -2.421 4 -2.42 3 0 1 0 1 0 1 -33.657 3 23 2 max 2.536 1 2.851 2 0 4 0 4 0 4 17.002 4 24 min -2.421 4 -2.537 3 0 1 0 1 0 1 -17.748 1 25 3 max 2.536 1 2.656 2 0 4 0 4 0 4 -0.624 4 26 min -2.421 4 -2.656 1 0 1 0 1 0 1 -1.115 1 27 4 max 2.536 1 2.537 4 0 4 0 4 0 4 16.945 3 28 min -2.421 4 -2.85 1 0 1 0 1 0 1 -17.692 2 29 5 max 2.536 1 2.42 4 0 4 0 4 0 4 35.941 1 30 min -2.421 4 -3.045 1 0 1 0 1 0 1 -33.602 4 Envelope Maximum Member Section Forces Member Axial[k1Loc[ft1LCy Shear[k1Loc[ft1LCz Shear[k1Loc[ft1LCTorque[k-ft1Loc[ft1LCy-y Moment[k-ft1Loc[ft1LCz-z Moment[k-ft1Loc[ft1LC 1 PORTAL COLUMN max 3.607 0 2 2.404 14 3 0 14 4 0 14 4 0 14 4 35.999 14 2 2 min -2.42 14 3 -2.571 0 2 0 0 1 0 0 1 0 0 1 -33.657 14 3 3 M2 max 3.607 0 1 2.567 14 1 0 14 4 0 14 4 0 14 4 33.602 14 4 4 min -2.42 14 4 -2.4 0 4 0 0 1 0 0 1 0 0 1 -35.941 14 1 5 PORTAL BEAM max 2.536 26 1 3.045 0 2 0 26 4 0 26 4 0 26 4 35.999 0 2 6 min-2.421 0 4 -3.045 26 1 0 0 1 0 0 1 0 0 1 -33.657 0 3 Envelope Member End Reactions Member Member End Axial[k]LC y Shear[k]LC z Shear[k]LC Torque[k-ft]LC y-y Moment[k-ft]LC z-z Moment[k-ft]LC 1 PORTAL COLUMN I max 3.607 2 2.404 3 0 4 0 4 0 4 0 4 2 min -2.083 3 -2.571 2 0 1 0 1 0 1 0 1 3 J max 3.045 2 2.404 3 0 4 0 4 0 4 35.999 2 4 min -2.42 3 -2.571 2 0 1 0 1 0 1 -33.657 3 RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 6 71 : Willett Engineering ICompany iRISDesignerJob Number : 22 285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Portal Frame Envelope Member End Reactions(Continued) Member Member End Axial[k]LC y Shear[k]LC z Shear[k].LC Torque[k-ftj LC y-y Moment[k-ftj LC z-z Moment[k-ftj LC 5 M2 I max 3.607 1 2.567 1 0 4 0 4 0 4 0 4 6 min -2.083 4 -2.4 4 0 1 0 1 0 1 0 1 7 J max 3.045 1 2.567 1 0 4 0 4 0 4 33.602 4 8 min -2.42 4 -2.4 4 0 1 0 1 0 1 -35.941 1 9 PORTAL BEAM I max 2.536 1 3.045 2 0 4 0 4 0 4 35.999 2 10 min -2.421 4 -2.42 3 0 1 0 1 0 1 -33.657 3 11 J max 2.536 1 2.42 4 0 4 0 4 0 4 35.941 1 12 min -2.421 4 -3.045 1 0 1 0 1 0 1 -33.602 4 Envelope Member Section Torsion Member Sec Torque[k-ft1LCTorsion Shear[ksilLCy-y Warp Shear[ksilLCz-z Warp Shear[ksilLCz-Top Warp Bend[ksilLCz-Bot Warp Bend[ksi1LC 1 PORTAL COLUMN 1 max 0 4 0 4 0 4 0 4 0 4 0 4 2 min 0 1 0 1 0 1 0 1 0 1 0 1 3 2 max 0 4 0 4 0 4 0 4 0 4 0 4 4 min 0 1 0 1 0 1 0 1 0 1 0 1 5 3 max 0 4 0 4 0 4 0 4 0 4 0 4 6 min 0 1 0 1 0 1 0 1 0 1 0 1 7 4 max 0 4 0 4 0 4 0 4 0 4 0 4 8 min 0 1 0 1 0 1 0 1 0 1 0 1 9 5 max 0 4 0 4 0 4 0 4 0 4 0 4 10 min 0 1 0 1 0 1 0 1 0 1 0 1 11 M2 1 max 0 4 0 4 0 4 0 4 0 4 0 4 12 min 0 1 0 1 0 1 0 1 0 1 0 1 13 2 max 0 4 0 4 0 4 0 4 0 4 0 4 14 min 0 1 0 1 0 1 0 1 0 1 0 1 15 3 max 0 4 0 4 0 4 0 4 0 4 0 4 16 min 0 1 0 1 0 1 0 1 0 1 0 1 17 4 max 0 4 0 4 0 4 0 4 0 4 0 4 18 min 0 1 0 1 0 1 0 1 0 1 0 1 19 5 max 0 4 0 4 0 4 0 4 0 4 0 4 20 min 0 1 0 1 0 1 0 1 0 1 0 1 21 PORTAL BEAM 1 max 0 4 0 4 0 4 0 4 0 4 0 4 22 min 0 1 0 1 0 1 0 1 0 1 0 1 23 2 max 0 4 0 4 0 4 0 4 0 4 0 4 24 min 0 1 0 1 0 1 0 1 0 1 0 1 25 3 max 0 4 0 4 0 4 0 4 0 4 0 4 26 min 0 1 0 1 0 1 0 1 0 1 0 1 27 4 max 0 4 0 4 0 4 0 4 0 4 0 4 28 min 0 1 0 1 0 1 0 1 0 1 0 1 29 5 max 0 4 0 4 0 4 0 4 0 4 0 4 30 min 0 1 0 1 0 1 0 1 0 1 0 1 Envelope Member Section Stresses Member Sec Axial[ksi] LC y Shear[ksij LC z Shear[ksil LC y-Top[ksi] LC y-Bot[ksil LC z-Top[ksil LC z-Bot[ksil LC 1 PORTAL COLUMN 1 max 0.306 2 0.493 3 0 4 0 4 0 4 0 4 0 4 2 min -0.177 3 -0.527 2 0 1 0 1 0 1 0 1 0 1 3 2 max 0.294 2 0.493 3 0 4 1.559 3 1.668 2 0 4 0 4 4 min -0.184 3 -0.527 2 0 1 -1.668 2 -1.559 3 0 1 0 1 5 3 max 0.282 2 0.493 3 0 4 3.119 3 3.336 2 0 4 0 4 6 min -0.191 3 -0.527 2 0 1 -3.336 2 -3.119 3 0 1 0 1 7 4 max 0.27 2 0.493 3 0 4 4.678 3 5.004 2 0 4 0 4 8 min -0.198 3 -0.527 2 0 1 -5.004 2 -4.678 3 0 1 0 1 9 5 max 0.258 2 0.493 3 0 4 6.238 3 6.672 2 0 4 0 4 10 min -0.205 3 -0.527 2 0 1 -6.672 2 -6.238 3 0 1 0 1 11 M2 1 max 0.306 1 0.526 1 0 4 0 4 0 4 0 4 0 4 12 min -0.177 4 -0.492 4 0 1 0 1 0 1 0 1 0 1 13 2 max 0.294 1 0.526 1 0 4 1.665 1 1.557 4 0 4 0 4 RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 7 72 • Company : Willett Engineering I I RISDesignerJobNumber :: 221 221285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Portal Frame Envelope Member Section Stresses(Continued) Member Sec Axial[ksi LC y Shear[ksi]LC z Shear[ksi]LC y-Top[ksi] LC y-Bot[ksil LC z-Top[ksi_LC z-Bot[ksi] LC 14 min -0.184 4 -0.492 4 0 1 -1.557 4 -1.665 1 0 1 0 1 15 3 max 0.282 1 0.526 1 0 4 3.33 1 3.114 4 0 4 0 4 16 min -0.191 4 -0.492 4 0 1 -3.114 4 -3.33 1 0 1 0 1 17 4 max 0.27 1 0.526 1 0 4 4.996 1 4.671 4 0 4 0 4 18 min -0.198 4 -0.492 4 0 1 -4.671 4 -4.996 1 0 1 0 1 19 5 max 0.258 1 0.526 1 0 4 6.661 1 6.227 4 0 4 0 4 20 min -0.205 4 -0.492 4 0 1 -6.227 4 -6.661 1 0 1 0 1 21 PORTAL BEAM 1 max 0.288 1 0.952 2 0 4 10.436 3 11.163 2 0 4 0 4 22 min -0.275 4 _ -0.757 3 0 1 -11.163 2 -10.436 3 0 1 0 1 23 2 max 0.288 1 0.891 2 0 4 5.503 1 5.272 4 0 4 0 4 24 min -0.275 4 -0.793 3 0 1 -5.272 4 -5.503 1 0 1 0 1 25 3 max 0.288 1 0.831 2 0 4 0.346 1 -0.193 4 0 4 0 4 26 min -0.275 4 -0.831 1 0 1 0.193 4 -0.346 1 0 1 0 1 27 4 max 0.288 1 0.793 4 0 4 5.486 2 5.254 3 0 4 0 4 28 min -0.275 4 -0.891 1 0 1 -5.254 3 -5.486 2 0 1 0 1 29 5 max 0.288 1 0.757 4 0 4 10.419 4 11.145 1 0 4 0 4 30 min -0.275 4 -0.952 1 0 1 -11.145 1 -10.419 4 0 1 0 1 Envelope Beam Deflections Member Label Span Location[ft] y'[in] (n) L'/y' Ratio LC 1 PORTAL BEAM 1 - max 13.542 0.001 NC 3 2 1 min 5.688 -0.127 2453 1 Envelope AISC 15th(360-16):ASD Steel Code Checks Member Shape Code Check Loc[ft1LCShear Check Loc[ft DirLCPnc/om[k1Pnt/om[k]Mnyy/om[k-ftlMnzz/om[k-ft] Cb Eqn 1 PORTAL COLUMN W16X40 0.208 14 2 0.026 14 y 2 152.124 353.293 31.687 182.136 1.667H1-lb 2 M2 W16X40 0.207 14 1 0.026 14 y 1 152.124 353.293 31.687 182.136 1.667 H 1-1 b 3 PORTAL BEAM W12X30 0.523 26 1 0.048 0 y 2 31.345 263.174 23.852 74.469 2.27 H1-1b RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 8 73 Y 1-1 X -1.75 k/ft -0.33 k/ft -1.1 k/ft i° ,Nil! 0 4% . N2 ° N4 0 0 0 co X X Co Co i 411 4\13 Loads:BLC 4,Snow(unbal) Envelope Only Solution Willett Engineering TW-Queensbury-Canopy Frame SK-2 KAG Sep 15,2021 221285 Tidal Wave-Queensbury-Canopy... 74 ICompany i R'S : Willett Engineering Designer : KAG Job Number : 221285 Checked By: BJH ANEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame Detail Report CANOPY FRAME COLUMN Unity Check:0.514(LC 6) Load Combination:Envelope i_______ .z Y Input Data: X Shape: W18X60 I Node: Ni Member Type: Column J Node: N2 z Length(ft): 14 I Release: Fixed Material Type: Hot Rolled Steel J Release: Fixed Design Rule: Typical I Offset On): N/A Number of Internal Sections: 97 J Offset(in): N/A Material Properties: Material: A992 Therm.Coeff.(1e5°F-1): 0.65 Ry: 1.1 E(ksi): . 29000 Density(k/ft3): 0.49 Fu(ksi): 65 G(ksi): 11154 Fy(ksi): 50 Rt: 1.1 Nu: 0.3 Shape Properties: d(in): 18.2 Area(in2): 17.6 Sw(in°): 43.5 bf(in): 7.56 Zyy(in3): 20.6 rT(in): 1.96 tf(in): 0.695 Za(in3): 123 J(in°): 2.17 tw(in): 0.415 Cw(ire): 3850 kdet(in): 1.375 Iyy(in`): 50.1 Wno(in2): 33.1 kdg(in): 1.1 Ia pn4): 984 Design Properties: Lb y_y(ft): 14 KY-y: 0.8 Max Defl Ratio: L/586 Lb 2-2(ft): 14 KZ-z: 0.8 Max Defl Location: 0 LcmoP top(ft): 14 y sway: No Span: N/A Lcn,,,p bot(ft): 14 z sway: No Ltorque(ft): 14 Function: Lateral Seismic DR: None CANOPY FRAME COLUMN O o N1 N2 Diagrams: .___,_—_,r-H -_._>-.---_- - -_-10.725 at 14 ft, I- r 1 1 i - — ! ::: *1- -� i J --, -- 1 I - - , -' 1- 1 -I- , 0.29 at 14 fti 1-- ' I _I,-- Y Deflection(in) Z Deflection(in) 26.203 at 0 ft ----- --1-- _ 1.384 at 0 ft �:-!---1 --,- I I ! -I- 'HH-- -- I - 1 -- a 10A34 at 0 ft---4�---- --' ! 1 1 I- I - i- -- 7 14 1 - -� i 1 I Axial Force(kips) Y Shear Force(kips) Z Shear Force(kips) RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 1 75 • Cosm pany : Willett Engineering 'I I�� Job i : KAG Num ber : 22 285 Checked By,: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame 1 L--- T 1 -1 � - < -f -146.072 at 14 ft; --...-I - f I _ J I - __ — — _-- - --- I A_ J_ — i __ II i - - . i I F -i- -I i �—i- i —� i - -i'_—r---- --j--tr----1- -19.371 at 14 ftI - --i , h-- Torsion(kip-ft) z-z Moment(kip-ft) y-y Moment(kip-ft) r--- -- -- — r I —r— - --i , I--i— ?- -[L16.21 at 14 fti ------'- 1.489 at 0 ftJ 1 i i __ ----f — — — —i F T- i j l I f — ,— = i 7 4 — I 1——i-- 16.21 at 14 ft I.. i G Axial Stress(ksi) Biaxial Compression Bending Stress(ksi) Biaxial Tension Bending Stress(ksi) AISC 15th (360-16):ASD Code Check Limit State Gov.LC Required Available Unity Check Result Applied Loading-Bending/Axial 6 - - - - Applied Loading-Shear+Torsion 6 - - - - Axial Tension Analysis 6 0.000 k 526.946 k - - Axial Compression Analysis • 6 25.364 k 331.333 k - - Flexural Analysis(Strong Axis) 6 146.072 k-ft 306.886 k-ft - - Flexural Analysis(Weak Axis) 6 0.000 k-ft 51.397 k-ft - - Shear Analysis(Major Axis y) 6 10.434 k 151.06 k 0.069 .Pass Shear Analysis(Minor Axis z) 6 0.000 k 188.774 k 0.000 Pass Bending&Axial Interaction Check(UC Bending Max) 6 - - 0.514 Pass • RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 2 76 IICompany1 R'S : Willett Engineering Designer : 221 Job Number : 21285 Checked By: BJH ANEMETSCHEKCOMPANY Model Name : TW-Queensbury-Canopy Frame Detail Report CANOPY FRAME LEFT BEAM Unity Check:0.651(LC 6) Load Combination:Envelope i_________÷2 Y Input Data: X Shape: W18X50 I Node: N5 Member Type: Beam J Node: N2 Z ]Z Length(ft): 21.243 I Release: BenPIN Material Type: Hot Rolled Steel J Release: Fixed Design Rule: Typical I Offset(in): N/A —F" Number of Internal Sections: 97 J Offset(in): N/A Material Properties: . Material: A992 Therm.Coeff.(1e5eF-1): 0.65 Ry: 1.1 E(ksi): 29000 Density(k/ft): 0.49 F„(ksi): 65 G(ksi): 11154 Fk y(si): 50 Rt: 1.1 Nu: 0.3 Shape Properties: d(in): 18 Area(in): 14.7 SW(in4): • 34.9 bt(in): 7.5 Zyy(in'): 16.6 rT(in): 1.94 tr(n): 0.57 Za(in3): 101 1(in4): 1.24 tW(in): 0355 CW(in6): 3040 kdet(in): 1.25 lyy(in")•• 40.1 W„o(in2): 32.7 kde,(in): 0.972 III(in°): 800 Design Properties: Lb y_y(ft): 21243 Ky_y: 0.8 Max Defl Ratio: L/417 Lb z-=(ft): 21243 K._=: 0.8 Max Defl Location: 0 Lcomp top(ft): 21243 y sway: No Span: 1 Lcomp bot(ft): 21.243 z sway: No Ltorque(ft): 21243 Function: Lateral -Seismic DR None CANOPY FRAME LEFT BEAM ep e NS N2 Diagrams: i ---'---0.319 at 20.358 ft -i—_ : rH1tIL.. 1 ti — 1_1.14 - i Y Deflection(in) Z Deflection(in) 20.539at21.243ftl 9.847at0ft=; - )-- -i : 1- i --I - I j 1 _ j H I H I I 1 I I 1 __ • 2.457 at 0 ft; !—_iI- , 1 _ ' — 18.22 at 121.243 ft' ` — —— I --IT — _ -- i I1 I Axial Force(kips) Y Shear Force(kips) Z Shear Force(kips) RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 3 77 • : Willett Engineering ICompany'I1S Job lNumber I : 22 285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame T 1 1 ! i 1 — — - -146.072 at 21.243 ft _- - — — 7--4 f i — I^ - --- -------- I i — I 1 1 I 1 I Hr1H 1 I 31.546 at 6.417 ft--, 1 1 i 1 Torsion(kip-ft) z-z Moment(kip-ft) y-y Moment(kip-ft) . _- i ` -1.397 at 21.243 ft l - �_' - -_—r19.72 at 21.243 ft1 - il 1 --1--1- ! 0 ft:i - — I I_- , . I- 1 -I---1 - - I -0.167 at - -I '- �19. 2 at 21.243 ft':, i ' �i-- i— Axial Stress(ksi) Biaxial Compression Bending Stress(ksi) Biaxial Tension Bending Stress(ksi) AISC 15th (360-16):ASD Code Check Limit State Gov.LC Required Available - Unity Check Result Applied Loading-Bending/Axial 6 - - - - Applied Loading-Shear+Torsion 6 - - - - Axial Tension Analysis 6 0.000 k 440.12 k - Axial Compression Analysis 6 20.539 k 144.932 k - - Flexural Analysis(Strong Axis) 6 146.072 k-ft 251.996 k-ft - - • Flexural Analysis(Weak Axis) 6 0.000 k-ft 41.417 k-ft - - • Shear Analysis(Major Axis y) 6 18.22 k 127.8 k 0.143 Pass Shear Analysis(Minor Axis z) 6 0.000 k. 153.593 k 0.000 Pass Bending&Axial Interaction Check(UC Bending Max) 6 - - 0.651 Pass • RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 4 78 ICompany1 R'SA : Willett Engineering Designer : 221 Job Number : 21285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame Detail Report:CANOPY FRAME RIGHT BEAM Unity Check:0.737(LC 6) Load Combination:Envelope ( Input Data: • X Shape: W18X50 I Node: N5 Member Type: Beam J Node: N4 >Z !z Length(ft): 21.243 I Release: BenPIN Material Type: Hot Rolled Steel J Release: Fixed Design Rule: Typical I Offset(in): N/A Number of Internal Sections: 97 J Offset(in): N/A Material Properties: Material: A992 Therm.Coeff.(1e°r): 0.65 Ry: 1.1 E(ksi): 29000 Density(k/ft3): 0.49 Fu(ksi): 65 G(ksi): 11154 Fy(ksi): 50 Rt: 1.1 Nu: 0.3 Shape Properties: d(in): 18 Area(ire): 14.7 Sw(ire): 349 bf(n): 7.5 Zyy(in3): 16.6 rT(in): 1.94 tf(in): 0.57 Za(ire): 101 1(ire): 124 tw(in): 0.355 Cw(inb): 3040 kdet(in): 125 lyy(in4): 40.1 W„o(inz): 32.7 kdes(in): 0.972 la(in°): 800 Design Properties: Lby.y(ft): 21243 Ky_y: 1 • Max Deft Ratio: U353 Lb z-z(ft): 21.243 Kz_r 1 Max Defl Location: 0 Lcomp top(ft): 21243 y sway- • No Span: 1 Lcomp bot(ft): 21243 z sway. No I-torque(ft): 21243 Function: Lateral Seismic DR: None CANOPY FRAME RIGHT BEAM e p e N5 N4 Diagrams: - �� _i__ =,=0.411 at 1___, ft _0 at 10 ft '--1 I ' - 1- _ _ — -I _ , i-- "OatOft 1 1 I Y Deflection(in) Z Deflection(in) — -i— 7 --, T r , I ; -- 20.539 at 21.243 ft 5.664 at 0 ft- '-- 1— i ' =� f I —! _ , { = 1 1 f I - Th IL - HHTh 3.692 at 0 ft-, { -- — I I 18.22 at 21.243 ft; , Axial Force(kips) Y Shear Force(kips) Z Shear Force(kips) • RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 5 79 Company : Willett Engineering �S ® Designer : KAG .��,',t Job Number : 221285 Checked By: BJH ANEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame l_- 1_T } __= --- - - _-- -1----, ---I------ _I _1-- - - H__ _ - ._E_ 1 72at21-2437) _ 1--L.__ I-1 -,- =I--I I i __ I t 1 i I I I I-1 '• - I -_l_.-T__, I 1_ I - i --I — I --i-- 1 i 1 - � -29.587 at 21.243 fti 1if �—r- J •-- Torsion(kip-ft) z-z Moment(kip-ft) y-y Moment(kip-ft) —..t---{ 1 1.397 at 21.243 fti --=-_ ---!--{--11 72 19. at 21.243 ftl - -- I-----i--- ---L ---j----I--,- i - 1- 1 -----} -- .-+-----'----1--- r i-------I�� —1---� -. P- - t- i 19.72 at 21.243 ftl-0.251 at 0 ft4 , 1 -1- , 1 -, {- i r -1 -1 - Axial Stress(ksi) Biaxial Compression Bending Stress(ksi) Biaxial Tension Bending Stress(ksi) AISC 15th (360-16):ASD Code Check Limit State Gov.LC Required Available Unity Check Result Applied Loading-Bending/Axial . 6 - . - - - Applied Loading-Shear+Torsion 6 - - - - Axial Tension Analysis 6 0.000 k 440.12 k • - - Axial Compression Analysis. 6 20.539 k 92.757.k - - Flexural Analysis(Strong Axis) 6 146.072 k-ft •251.996 k-ft - - Flexural Analysis(Weak Axis) 6 0.000 k-ft 41.417 k-ft - - Shear Analysis(Major Axis y) 6 18.22 k 127.8 k 0.143 Pass Shear Analysis(Minor Axis z) 6 0.000 k 153.593 k 0.000 Pass Bending&Axial Interaction Check(UC Bending Max) 6 - - 0.737 Pass • RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 6 80 Company : Willett Engineering I I RISDesigner : KAG JobNumber : 221285 • Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame Node Coordinates Label X[ft] Y[ft] Z[ft] Detach From Diaphragm 1 N1 0 0 0 2 N2 0 14 0 3 N3 38 0 0 4 N4 38 14 0 5 N5 19 23.5 0 Node Boundary Conditions Node Label X[k/in] Y[k/in] Z[k/in] 1 N2 Reaction 2 N5 Reaction 3 N4 Reaction 4 N3 Reaction Reaction Reaction 5 N1 Reaction Reaction Reaction Member Primary Data Label I Node J Node Section/Shape Type Design List Material Design Rule 1 CANOPY FRAME COLUMN N1 N2 W18X60 Column Wide Flange A992 Typical 2 M2 N3 N4 W18X60 Column Wide Flange A992 Typical 3 CANOPY FRAME LEFT BEAM N5 N2 W18X50 Beam Wide Flange A992 Typical 4 CANOPY FRAME RIGHT BEAM N5 N4 W18X50 Beam Wide Flange A992 Typical Member Distributed Loads Member Label Direction Start Magnitude[k/ft,F,ksf,k-ft/ft End Magnitude[k/ft,F,ksf,k-ft/ft Start Location[(ft,%) End Location[(ft,%)] 1 CANOPY FRAME LEFT BEAM Y -0.052 11 -0.052 11 0 11 %100 2 CANOPY FRAME RIGHT BEAM Y -0.052 -0.052 0 %100 Member Distributed Loads Member Label Direction Start Magnitude[k/ft,F,ksf,k-ft/ft End Magnitude[k/ft,F,ksf,k-ft/ft]Start Location[(ft,%)lEnd Location[(ft,%)] 1 CANOPY FRAME COLUMN Y 0 0 0 %100 2 CANOPY FRAME LEFT BEAM y -0.604 -0.604 0 %100 3 CANOPY FRAME RIGHT BEAM y -0.104 -0.104 0 %100 Member Distributed Loads Member Label Direction Start Magnitude[k/ft,F,ksf,k-ft/ft End Magnitude k/ft,F,ksf,k-ft/ft Start Location[(ft,%) End Location[(ft,%)] 1 CANOPY FRAME LEFT BEAM y g /0100 2 CANOPY FRAME RIGHT BEAM 0.43 0.43 0 ° Member Distributed Loads Member Label Direction Start Magnitude[k/ft,F,ksf,k-fUftlEnd Magnitude[k/ft,F,ksf,k-ft/ftlStart Location[(ft,%)lEnd Location[(ft,%) 1 CANOPY FRAME LEFT BEAM Y -1.1 -1.1 6.5 %100 2 CANOPY FRAME RIGHT BEAM Y -0.33 -0.33 0 %100 3 CANOPY FRAME LEFT BEAM Y -1.75 -1.75 0 6.5 Member Distributed Loads Member Label Direction Start Magnitude[k/ft,F,ksf,k-ft/ft End Magnitude[k/ft,F,ksf,k-ft/ft Start Location[(ft,%) End Location[(ft,%)] 1 CANOPY FRAME LEFT BEAM Y -1.092 -1.092 0 %100 2 CANOPY FRAME RIGHT BEAM Y -1.092 -1.092 0 %100 Member Distributed Loads Member Label Direction Start Magnitude[k/ft,F,ksf,k-ft/ft]End Magnitude[k/ft,F,ksf,k-ft/ft]Start Location[(ft,%)j End Location[(ft,%)] 1 CANOPY FRAME COLUMN X 0.016 11 0.016 11 0 ll %100 2 CANOPY FRAME LEFT BEAM X 0.208 0.208 0 %100 RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 7 81 Company : Willett Engineering ��i .� Designer : KAG `, IS Job Number : 221285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame Basic Load Cases BLC Description Category Y Gravity Distributed 1 Dead DL -1 2 2 Wind Down WL+Y 3 3 Wind Up WL-Y 2 4 Snow(unbal) SL 3 5 Live Roof RLL 2 6 Wind Min WL+X 2 Load Combinations Description Solve PDelta BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 Deflection 1 Yes Y DL 1 2 Deflection 2 Yes Y 5 1 3 Deflection 3 Yes Y DL 1 LL 1 4 IBC 16-8 Yes Y DL 1 5 IBC 16-9 Yes Y DL 1 LL 1 LLS 1 6 IBC 16-10(a) Yes Y DL 1 RLL 1 7 IBC 16-10(b) Yes Y DL 1 SL 1 SLN 1 8 IBC 16-11 (a) Yes Y DL 1 LL 0.75 LLS 0.75 RLL 0.75 9 IBC 16-11 (b) Yes Y DL 1 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 10 IBC 16-12(a)(a) Yes Y DL 1 WL+Y 0.6 11 IBC 16-12(a)(b) Yes Y DL 1 WL+Y -0.6 12 IBC 16-13(a)(a) Yes Y DL 1 WL+Y 0.45 LL 0.75 LLS 0.75 RLL 0.75 13 IBC 16-13(a)(b) Yes Y DL 1 WL+Y -0.45 LL 0.75 LLS 0.75 RLL 0.75 14 IBC 16-13(b)(a) Yes Y DL 1 WL+Y 0.45 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 15 IBC 16-13(b)(b) Yes Y DL 1 WL+Y -0.45 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 16 IBC 16-15(a) Yes Y DL 0.6 WL+Y 0.6 17 IBC 16-15(b) Yes Y DL 0.6 WL+Y -0.6 18 IBC 16-12(a)(a) Yes Y DL 1 WL-Y 0.6 19 IBC 16-12(a)(b) Yes Y DL 1 WL-Y -0.6 20 IBC 16-13(a)(a) Yes Y DL 1 WL-Y 0.45 LL 0.75 LLS 0.75 RLL 0.75 21 IBC 16-13(a)(b) Yes Y DL 1 WL-Y -0.45 LL 0.75 LLS 0.75 RLL 0.75 22 IBC 16-13(b)(a) Yes Y DL 1 WL-Y 0.45 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 23 IBC 16-13(b)(b) Yes Y DL 1 WL-Y -0.45 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 24 IBC 16-15(a) Yes Y DL 0.6 WL-Y 0.6 25 IBC 16-15(b) Yes Y DL 0.6 WL-Y -0.6 26 IBC 16-12(a)(a) Yes Y DL 1 WL+X 0.6 27 IBC 16-12(a)(b) Yes Y DL 1 WL+X -0.6 28 IBC 16-13(a)(a) Yes Y DL 1 WL+X 0.45 LL 0.75 LLS 0.75 RLL 0.75 29 IBC 16-13(a)(b) Yes Y DL 1 WL+X -0.45 LL 0.75 LLS 0.75 RLL 0.75 30 IBC 16-13(b)(a) Yes Y DL 1 WL+X 0.45 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 31 IBC 16-13(b)(b) Yes Y DL 1 WL+X -0.45 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 32 IBC 16-15(a) Yes Y DL 0.6 WL+X 0.6 33 IBC 16-15(b) Yes Y DL 0.6 WL+X -0.6 34 W-Gravity Only Y 2 1 35 W-Uplift Only Y 3 1 36 W-Min Only Y 6 1 37 Snow Only Y 4 1 38 Live Only Y 5 1 Envelope Node Reactions Node Label X[k] LC Y[k] LC Z[k] LC MX[k-ft] LC MY[k-ft] LC MZ[k-ft] LC 1 N2 max 0 33 0 33 0 33 0 33 0 33 0 33 2 min 0 1 0 1 0 1 0 1 0 1 0 1 3 N5 max 0 33 0 33 0 33 0 33 0 33 0 33 4 min 0 1 0 1 0 1 0 1 0 1 0 1 5 N4 max 0 33 0 33 0 33 0 33 0 33 0 33 6 min 0 1 0 1 0 1 0 1 0 1 0 1 7 N3 max 2.123 17 26.203 6 0 33 0 33 0 33 0 33 RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 8 82 Company : Willett Engineering I I i5` Designer : KAG Job Number : 221285 Checked By: BJH ANEMETSCHEKCOMPANY Model Name : TW-Queensbury-Canopy Frame Envelope Node Reactions(Continued) Node Label X[k] LC Y[k] LC Z[k] LC MX[k-ft] LC MY[k-ft] LC MZ[k-ft] LC 8 min -10.282 6 -2.208 17 0 1 0 1 0 1 0 1 9 N1 max 10.282 6 26.203 6 0 33 0 33 0 33 0 33 10 min -1.387 24 -2.257 17 0 1 0 1 0 1 0 1 11 Totals: max 2.85 11 52.405 6 0 33 12 min -2.85 16 -4.464 17 0 1 Envelope Node Displacements Node Label X[in] LC Y[in] LC Z[in] LC X Rotation[rad] LC Y Rotation[rad] LC Z Rotation[rad] LC 1 N1 max 0 24 0 17 0 33 0 33 0 33 6.143e-3 21 2 min 0 6 0 6 0 1 0 1 0 1 -1.958e-3 24 3 N2 max 0.29 32 0.001 17 0 33 0 33 0 33 1.738e-3 17 4 min -0.725 29 -0.011 6 0 1 0 1 0 1 -2.699e-3 14 5 N3 max 0 6 0 17 0 33 0 33 0 33 2.72e-3 17 6 min 0 17 0 6 0 1 0 1 0 1 -7.013e-3 14 7 N4 max 0.895 14 0.001 17 0 33 0 33 0 33 1.651e-3 13 8 min -0.388 17 -0.011 6 0 1 0 1 0 1 -1.629e-3 14 9 N5 max 0.445 14 0.05 17 0 33 0 33 0 33 0 33 10 min -0.368 11 -1.274 6 0 1 0 1 0 1 0 1 Envelope Member Section Forces Member Sec Axial[k]LCy Shear[k]LCz Shear[k]LCTorque[k-ft]LCy-y Moment[k-ft]LCz-z Moment[k-ft]LC 1 CANOPY FRAME COLUMN 1 max26.203 6 1.384 24 0 33 0 33 0 33 0 33 2 min -2.257 17 -10.434 6 0 1 0 1 0 1 0 1 3 2 max25.993 6 1.384 24 0 33 0 33 0 33 36.518 6 4 min -2.383 17 -10.434 6 0 1 0 1 0 1, -4.843 24 5 3 max25.783 6 1.384 24 0 33 0 33 0 33 73.036 6 6 min -2.508 17 -10.434 6 0 1 0 1 0 1 -9.685 24 7 4 max25.574 6 1.384 24 0 33 0 33 0 33 109.554 6 8 min -2.634 17 -10.434 6 0 1 0 1 0 1 -14.528 24 9 5 max25.364 6 1.384 24 0 33 0 33 0 33 146.072 6 10 min -2.76 17 -10.434 6 0 1 0 1 0 1 -19.371 24 11 M2 1 max26.203 6 10.434 6 0 33 0 33 0 33 0 33 12 min -2.208 17 -2.113 17 0 1 0 1 0 1 0 1 13 2 max25.993 6 10.434 6 0 33 0 33 0 33 7.397 17 14 min -2.333 17 -2.113 17 0 1 0 1 0 1 -36.518 6 15 3 max25.783 6 10.434 6 0 33 0 33 0 33 14.794 17 16 min -2.459 17 -2.113 17 0 1 0 1 0 1 -73.036 6 17 4 max25.574 6 10.434 6 0 33 0 33 0 33 22.19 17 18 min -2.585 17 -2.113 17 0 1 0 1 0 1 -109.554 6 19 5 max25.364 6 10.434 6 0 33 0 33 0 33 29.587 17 20 min -2.711 17 -2.113 17 0 1 0 1 0 1 -146.072 6 21 CANOPY FRAME LEFT BEAM 1 max 9.301 21 9.847 14 0 33 0 33 0 33 0 33 22 min -2.457 24 -3.742 17 0 1 0 1 0 1 0 1 23 2 max12.032 6 2.011 16 0 33 0 33 0 33 15.532 17 24 • min -2.311 24 -2.464 13 0 1 0 1 0 1 -30.622 14 25 3 max14.868 6 0.912 24 0 33 0 33 0 33 26.169 13 26 min -2.166 24 -6.876 6 0 1 0 1 0 1 -21.6 14 27 4 max17.704 6 1.16 17 0 33 0 33 0 33 64.557 29 28 min -2.02 24 -12.548 6 0 1 0 1 0 1 -16.414 32 29 5 max20.539 6 2.794 17 0 33 0 33 0 33 146.072 6 30 min -1.875 24 -18.22 6 0 1 0 1 0 1 -19.371 24 31 CANOPY FRAME RIGHT BEAM 1 max 11.01 14 5.664 21 0 33 0 33 0 33 0 33 32 min -3.692 17 -3.246 22 0 1 0 1 0 1 0 1 33 2 max12.424 12 1.487 25 0 33 0 33 0 33 18.92 22 34 min -3.547 17 -3.879 22 0 1 0 1 0 1 -15.736 21 35 3 max14.868 6 1.393 17 0 33 0 33 0 33 41.199 22 36 min -3.401 17 -6.876 6 0 1 0 1 0 1 -15.792 25 RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 9 83 Company : Willett Engineering IS ,'® Designer : KAG _A . Job Number : 221285 Checked By: BJH `A NEMETSCHEK COMPANYQueensburyCanopy Model Name : TW- Frame Envelope Member Section Forces(Continued) Member Sec Axial[k]LCy Shear[k1LCz Shear[k]LCTorque[k-ft]LCy-y Moment[k-ft]LCz-z Moment[k-ft]LC '37 ' 4 max 17.704 6 I 1.433 17 0 33 0 33 0 33 76.255 14 38 min -3.256 17 -12.548 6 0 1' 0 1 0 1 -21.867 17 39 5 max20.539 6 1.647 24 0 33 0 33 0 33 146.072 6 40 min -3.111 17 -18.22 6 0 1 0 1 0 1 -29.587 17 Envelope Maximum Member Section Forces Member Axial[k]Loc[ft,Lcy Shear[k,Loc[ft]Lcz Shear[k,Loc[f(LCTorque[k-ft]Loc[ft Lcy-y Moment[k-f(Loc[ft]Lcz-z Moment[k-ft]Loc[ft]LC 1 CANOPY FRAME COLUMN max26.203 0 6 1.384 14 24 0 14 33 0 14 133 0 14 33 146.072 14 6 2 min-2.76 14 17-10.434 0 6 0 0 1 0 0 1 0 0 1 -19.371 14 24 3 M2 max26.203 0 6 10.434 14 6 0 14 33 0 14 33 0 14 33 29.587 14 17 4 min-2.711 14 17 -2.113 0 17 0 0 1 0 0 1 0 0 1 -146.072 14 6 5 CANOPY FRAME LEFT BEAM max20.53921.243 6 9.847 0 14 0 21.24333 0 21.24333 0 21.24333 146.072 21.243 6 6 min-2.457 0 24 -18.22 21.243 6 0 0 1 0 0 1 0 0 1 -31.546 6.41714 7 CANOPY FRAME RIGHT BEAMmax20.53921.243 6 5.664 0 21 0 21.24333 0 _21.24333 0 21.24333 146.072 21.243 6 8 min-3.692 0 17 -18.22 21.243 6 0 0 1 0 0 1 0 0 1 -29.587 21.24317 Envelope Member End Reactions Member Member End Axial[k]LC Shear[k]LCz Shear[k1LCTorque[k-ft]LC -y Moment[k-ft]LCz-z Moment[k-ft]LC 1 CANOPY FRAME COLUMN I max26.203 6I 1.384 24 0 33 0 331 0 3 0 33 2 min-2.25717 -10.434 6 0 1 0 1 0 1 0 1 3 J max25.364 6 1.384 24 0 33 0 33 0 33 146.072 6 4 min -2.76 17 -10.434 6 0 1 0 1 0 1 -19.371 24 5 M2 I max26.203 6 10.434 6 0 33 0 33 0 33 0 33 6 min-2.20817 -2.113 17 0 1 0 1 0 1 0 1 7 J max25.364 6 10.434 6 0 33 0 33 0 33 29.587 17 8 min-2.711 17 -2.113 17 0 1 0 1 0 1 -146.072 6 9 CANOPY FRAME LEFT BEAM I max 9.301 21 9.847 14 0 33 0 33 0 33 0 33 10 min-2.457 24 -3.742 17 0 1 0 1 0 1 0 1 11 J max20.539 6 2.794 17 0 33 0 33 0 33 146.072 6 12 min-1.87524 -18.22 6 0 1 0 1 0 1 -19.371 24 13 CANOPY FRAME RIGHT BEAM I max 11.01 14 5.664 21 0 33 0 33 0 33 0 33 14 min-3.69217 -3.246 22 0 1 0 1 0 1 0 1 15 J max20.539 6 1.647 24 0 33 0 33 0 33 146.072 6 16 min -3.111 17 -18.22 6 0 1 0 1 0 1 -29.587 17 Envelope Member Section Torsion Member Sec Torque[k-ft]LCTorsion Shear[ksi]LCy-y Warp Shear[ksi]LCz-z Warp Shear[ksi,Lcz-Top Warp Bend[ksi]LCz-Bot Warp Bend[ksi LC 1 CANOPY FRAME COLUMN 1 max 0 33 0 33 0 33 0 33 0 33 0 33 2 min 0 1 0 1 0 1 0 1 0 1 0 1 3 2 max 0 33 0 33 0 33 0 33 0 33 0 33 4 min 0 1 0 1 0 1 0 1 0 1 0 1 5 3 max 0 33 0 33 0 33 0 33 0 33 0 33 6 min 0 1 0 1 0 1 0 1 0 1 0 1 7 4 max 0 33 0 33 0 33 0 33 0 33 0 33 8 min 0 1 0 1 0 1 0 1 0 1 0 1 9 5 max 0 33 0 33 0 33 0 33 0 33 0 33 10 min 0 1 0 1 0 1 0 1 0 1 0 1 11 M2 1 max 0 33 0 33 0 33 0 33 0 33 0 33 12 min 0 1 0 1 0 1 0 1 0 1 0 1 13 • 2 max 0 33 0 33 0 33 0 33 0 33 0 33 14 min 0 1 0 1 0 1 - 0 1 0 1 0 1 15 3 max 0 33 0 33 0 33 0 33 0 33 0 33 16 min 0 1 0 1 0 1 0 1 0 1 0 1 17 4 max 0 33 0 - 33 0 33 0 33 0 33 0 33 18 min 0 1 0 1 0 1 0 1 0 1 0 1 19 5 max 0 33 0 33 0 33 0 33 0 33 0 33 20 min 0 1 0 1 0 1 0 1 0 1 0 1 RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 10 84 Company : Willett Engineering I 1 RIS ® Designer : 221 Job Number : 21285 Checked By: BJH ANEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame Envelope Member Section Torsion(Continued) Member Sec Torque[k-ft]LCTorsion Shear[ksilLcy-y Warp Shear[ksi]Lcz-z Warp Shear[ksilLcz-Top Warp Bend[ksi]LCz-Bot Warp Bend[ksi,LC 21 CANOPY FRAME LEFT BEAM 1 max 0 33 0 33 NC NC NC NC 22 min 0 1 0 1 NC NC NC NC 23 2 max 0 33 0 33 NC NC NC NC 24 min 0 1 0 1 NC NC NC NC 25 3 max 0 33 0 33 NC NC NC NC 26 min 0 1 0 1 NC NC NC NC 27 4 max 0 33 0 33 NC NC NC NC 28 min 0 1 0 1 NC NC NC NC 29 5 max 0 33 0 33 NC NC NC NC 30 min 0 1 0 1 NC NC NC NC 31 CANOPY FRAME RIGHT BEAM 1 max 0 33 0 33 NC NC NC NC 32 min 0 1 0 1 NC NC NC NC 33 2 max 0 33 0 33 NC NC NC NC 34 min 0 1 0 1 NC NC NC NC 35 3 max 0 33 0 33 NC NC NC NC 36 min 0 1 0 1 NC NC NC NC 37 4 max 0 33 0 33 NC NC NC NC 38 min 0 1 0 1 NC NC NC NC 39 5 max 0 33 0 33 NC NC NC NC 40 min 0 1 0 1 NC NC NC NC Envelope Member Section Stresses Member Sec Axial[ksilLC Shear[ksilLCz Shear[ksilLCy-Top[ksilLCy-Bot[ksilLCz-Top[ksilLCz-Bot[ksilLC 1 CANOPY FRAME COLUMN 1 max 1.489 6 I 0.183 24 0 33 0 33 0 33 0 33 0 33 2 min -0.128 17 -1.381 6 0 1 0 1 0 1 0 1 0 1 3 2 max 1.477 6 0.183 24 0 33 0.537 24 4.053 6 0 33 0 33 4 min -0.135 17 -1.381 6 0 1 -4.053 6 -0.537 24 0 1 0 1 5 3 max 1.465 6 0.183 24 0 33 1.075 24 8.105 6 0 33 0 33 6 min -0.143 17 -1.381 6 0 1 -8.105 6 -1.075 24 0 1 0 1 7 4 max 1.453 6 0.183 24 0 33 1.612 24 12.158 6 0 33 0 33 8 min -0.15 17 -1.381 6 0 1 -12.158 6 -1.612 24 0 1 0 1 9 5 max 1.441 6 0.183 24 0 33 2.15 24 16.21 6 0 33 0 33 10 min -0.157 17 -1.381 6 0 1 -16.21 6 -2.15 24 0 1 0 1 11 M2 1 max 1.489 6 1.381 6 0 33 0 33 0 33 0 33 0 33 12 min -0.125 17 -0.28 17 0 1 0 1 0 1 0 1 0 1 13 2 max 1.477 6 1.381 6 0 33 4.053 6 0.821 17 0 33 0 33 14 min -0.133 17 -0.28 17 0 1 -0.821 17 -4.053 6 0 1 0 1 15 3 max 1.465 6 1.381 6 0 33 8.105 6 1.642 17 0 33 0 33 16 min -0.14 17 -0.28 17 0 1 -1.642 17 -8.105 6 0 1 0 1 17 4 max 1.453 6 1.381 6 0 33 12.158 6 2.463 17 0 33 0 33 18 min -0.147 17 -0.28 17 0 1 -2.463 17 -12.158 6 0 1 0 1 19 5 max 1.441 6 1.381 6 0 33 16.21 6 3.283 17 0 33 0 33 20 min -0.154 17 -0.28 17 0 1 -3.283 17 -16.21 6 0 1 0 1 21 CANOPY FRAME LEFT BEAM 1 max 0.633 21 1.541 14 0 33 0 33 0 33 0 33 0 33 22 min -0.167 24 -0.586 17 0 1 0 1 0 1 0 1 0 1 23 2 max 0.819 6 0.315 16 0 , 33 4.134 14 2.097 17 0 33 0 33 24 min -0.157 24 -0.386 13 0 1 -2.097 17 -4.134 14 0 1 0 1 25 3 max 1.011 6 0.143 24 0 33 2.916 14 3.533 13 0 33 0 33 26 min -0.147 24 -1.076 6 0 1 -3.533 13 -2.916 14 0 1 0 1 27 4 max 1.204 6 0.182 17 0 33 2.216 32 8.715 29 0 33 0 33 28 min -0.137 24 -1.964 6 0 1 -8.715 29 -2.216 32 0 1 0 1 29 5 max 1.397 6 0.437 17 0 33 2.615 24 19.72 6 0 33 0 33 30 min -0.128 24 -2.851 6 0 1 -19.72 6 -2.615 24 0 1 0 1 31 CANOPY FRAME RIGHT BEAM 1 max 0.749 14 0.886 21 0 33 0 33 0 33 0 33 0 33 32 min -0.251 17 -0.508 22 0 1 0 1 0 1 0 1 0 1 33 2 max 0.845 12 0.233 25 0 33 2.124 21 2.554 22 0 33 0 33 34 min -0.241 17 -0.607 22 0 1 -2.554 22 -2.124 21 0 1 0 1 35 3 max 1.011 6 0.218 17 0 33 2.132 25 5.562 22 0 33 0 33 RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 11 85 : Willett Engineering ICompany'�I�� Designer : KAG Job Number : 221285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame Envelope Member Section Stresses(Continued) ' Member Sec Axial[ksi]LCy Shear[ksi]LCz Shear[ksi]LCy-Top[ksi]LCy-Bot[ksi]LCz-Top[ksi]LCz-Bot[ksi]LC 36 min -0.231 17 -1.076 6 0 1 -5.562 22 -2.132 25 0 1 0 1 37 4 max 1.204 6 0.224 17 0 33 2.952 17 10.294 14 0 33 0 33 38 min -0.221 17 -1.964 6 0 1 -10.294 14 -2.952 17 0 1 0 1 39 5 max 1.397 6 0.258 24 0 33 3.994 17 19.72 6 0 33 0 33 40 min -0.212 17 -2.851 6 0 1 -19.72 6 -3.994 17 0 1 0 1 Envelope MSC 15th(360-16):ASD Steel Code Checks Member Shape Code Check Loc[ftiLCShear CheckLoc[ft[DirLCPnc/om[klPnt/om[k1Mnyy/om[k-ftiMnzz/om[k-ftl Cb Eqn 1 CANOPY FRAME COLUMN W18X60 0.514 14 6 0.069 14 y 6 331.333 526.946 51.397 306.886 1.667H1-1b 2 M2 W18X60 0.526 14 6 0.069 14 y 6 255.223 526.946 51.397 306.886 1.667H1-1b 3 CANOPY FRAME LEFT BEAM W18X50 0.651 21.243 6 0.143 21.243 y 6 144.932 440.12 41.417 251.996 2.873H1-1b 4 CANOPY FRAME RIGHT BEAM W18X50 0.737 21.243 6 0.143 21.243 y 6 92.757 440.12 41.417 251.996 2.873H1-1a Envelope Beam Deflections Member Label Span Location[ft] y'[in] (n)L'/y'Ratio LC 1 CANOPY FRAME LEFT BEAM 1 max 20.8 -0.001 NC 28 2 1 ' min 0 -1.221 417 29 3 CANOPY FRAME RIGHT BEAM 1 max 19.694 0.001 NC 33 4 1 min 0 -1.442 353 14 RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 12 86 -gi Tidal Wave Canopy.—Queensbury, NY "" : ` Design Loads: JUN 2 U LGE,2 Dead Load: 2 psf+ Self weight TOWN OF QUE.ENSdURY Live Load: 20 psf BUILDING t CODES Wind Loads (ultimate): 24.1 psf(downward), -18.2 psf(upward), 16 psf(lateral) Snow Loads: 42 psf(balanced), 67.3 psf(unbalanced), 12.6 psf(windward) Applied Loads to Purlins: Length = 26'-0", braced at third-points Tributary width = 2'-3 3/4"—use 2'-4" Dead Load = 2 psf*2'-4" = 4.7 plf FILE COPY Live Load= 20 psf*2'-4" =47 plf Unbalanced Snow Loads: Leeward from 6.5' to eave (Balanced Snow Load) = 42 psf*2'-4" = 98 plf Leeward from ridge to 6.5' = 67.3 psf*2'-4" = 157 plf Windward = 12.6 psf*2'-4" = 30 plf Wind Loads: 2022.06. Downward = 24.1 psf*2'-4" = 57 plf Windward = -18.2 psf*2'-4" = -43 plf 1,� �, °'4 �� 2 0 � s1 ,s Applied Loads to Canopy Frames: 'l�� 4KA,� -2-, Tributarywidth = 26-0 F " ` • ,. 09:40: 1 8 rto.aezozs .�. Dead Load = 2 psf*26'-0" = 52 plf OpR�FEs3��``P�/ Live Load = 20 psf*26'-0" = 520 plf —04'0 0' Unbalanced Snow Loads: Leeward from 6.5' to eave (Balanced Snow Load) = 42 psf*26'-0" = 1092 plf Leeward from ridge to 6.5' = 67.3 psf* 26'-0" = 1750 plf Windward = 12.6 psf*26'-0" = 328 plf Wind Loads: Downward (Cnw) = 23.2 psf*26'-0" = 604 plf Downward (Cnl) = 4.0 psf*26'-0" = 104 plf 303.15-1-12 AST-0390-2022 Upward (Cnw) =-16.4 psf*26'-0" =-427 plf TWAS QUAKER ROAD LLC Upward (Cnl) =-1.9 psf*26'-0" =-50 plf 708 Quaker Rd Canopy (for vacuuming) 6004 s.f. Lateral = 8 psf*26'-0" = 208 plf 1 Applied Loads to Portal Frames: Longitudinal Wind Load on Open Building: Base pressure (qh) = 22.6 psf Width B = 38'-0" #of frames (n) = 7 Solid area of end wall (As) = 105 sf Roof ridge height= 23'-6" Roof eave height= 14'-0" Total end wall area if solid (Ae) = 712.5 sf Longitudinal Directional Force (F) = pAe p = qh [GCpf)windward—(GCpf)Ieeward)] KB Ks Solidarity ratio (0) = 0.147 K8 = 1.8-0.01B = 1.42 Ks = 0.60 + 0.073(n-3) + (1.25 01.8) = 0.932 p = 21.6 psf F = 15.4 kips Apply 7.7 kips at each portal frame Limit deflection to 1 inch Diaphragm Design: Transverse Direction: Use minimum 8 psf horizontal wind load 2.9 kips (ultimate, from Risa) 2.9 kips * 0.6/38'-0" =46 plf Longitudinal Direction: F = 15.4 kips (ultimate) (15.4 kips/2) *0.6/ 158'-0" = 30 plf Use 46 plf 1-1/4" deep steel R-Panel, 26 gage with (5) sidelap fasteners at panel edges 2 Jl - yI Purlin Bracing Design: . From CFS12 Report: Weak axis moment= 8.18 k-in T= 8.18 k-in/ 10 in = 0.818 k Total Tension at end of bracing = 0.818 k* 8 purlins = 6.544 k 6.544 k/cos(24.52°) = 7.193 k at diagonal brace T = 0.6* Fy *A= 0.6 *50 ksi *A= 7.2 k-- A = 0.24in2 Try 14 gage strap-t= 0.0713 in b = 0.24 in2/ 0.0713 in = 3.37 in -* Use 4" x 14 ga strap Screw connections: Shear capacity of 1/4" screw= 867 lbs AISI CALCULATED ALLOWABLE LOADS FOR SCREW CONNECTION !.face rial Design ldatcroz95tren�th NS-18 HVdHSutx n10-06 H'WH Screw IIt2-Id HWH Screw 1f4.-14 HWil Screw thenessickrm1 thickncs: Dia.=0.166 Din_.0_190 Dit.=0.210 Du_=0.240 (mils) (in) FY Fu Shear Tension Shear Tension Sktar Tension Shear Tension (LA (Lsi) Ohs) fibs) MO (lbs) (Ihs1 (lhs) CIEs) (lbsl 33 0.0346 33 45 162 71 177 84 186 93 199 i 106 43 0.0451 33 45 241 92 263 109 277 121 296 -1 133 0.05_ ___ 33 _ _,45 333 115 370 137 369 152 416 ( 173 0.0566 53 65 333 167 467 198 562 219 600 ) 280 0.0713 33 45 - - 467 173 550 191 588 218 0.0713 50 65 - - 467 249 687 276 849 315 97 0.1017 _ _ 33 45 - - 467 246 67 272. 867 311. 0.1017 50 65 - - 467 356 667 393 67 450 118 1 0.1242 33 45 - - - - 667 333 'tip 380 0.1242 50 65 667 480 867 l 549 At Z purlin: 818 lbs/867 lbs = 1.0-Use (2) 1/4" screws At eave purlin: 6544 lbs/867 lbs = 7.6- Use (8) 1/4" screws 7193 lbs/867 lbs = 8.3- Use (10) 1/4" screws At ridge: 7193 lbs *sin(24.52°) = 2986 lbs/867 lbs = 3.5-Use (4) 1/4" screws Hilti X-U connection: Shear capacity of Hilti X-U to Frame = 720 lbs Ultimate and allowable loads in minimum ASTM A36(Fy 2 36 ksl;F„a 58 ksi)steel 1'2.4•' Steel thickness in. Shank 3/8 1/2 z3/43 Fastener diameter Load type - 1 in.(mm) Tension Shear Tension Shear Tension Shear ll(kN) lb(kN) lb(kN) lb(kN) lb(kN) lb(kN) Ultimate 5688 (25.3) 4426 (19.7) 4690 (20.9) 3761 (16.7) 1899 (8.5) 2046 (9.1) X-U 0.157 (4.0) Allowable 935 (4.2) 720 (3.2) 900 (4.0) LE3 (3.2) 350 (1.6) 375 (1.7) 7193 lbs/720 lbs = 9.99-Use (10) Hilti X-U 3 it - ii Top Running Purlin to Beam Detail: 5/8" dia. A325 Bolt Shear capacity= 8.29 k(AISC Table 7-1) Check capacity with AISC Table 7-4 and Table 7-5 3" spacing: 48.8 k/in of bolt (Table 7-5) 2" edge distance: 48.8 k/in of bolt(Table 7-4) 48.8 k/in * 0.105 in = 5.12 k< 8.29 k Values from CFS12 at splice locations: M = 160.2 k-in V= 4.83 k Vuplift= 2.7 k d = 1'-9" + 1'-9" =42" T = (M /d) + V= (160.2 k-in/42 in) + 4.83 k= 8.65 k 8.65 k/2 bolts = 4.33 k< 5.12 k— (2) 5/8" dia. A325 bolts OK 5.12 k>Vuplift= 2.7 k—> (2) 5/8" dia. A325 bolts OK Kicker Check: Wind Load on cold-formed infill = 0.6* 26.1 psf* 9'-6" * 2'-4" = 350 lbs 350 lbs/sin(30°) = 700 lbs < 5.12 k—> (1) 5/8" dia. A325 bolts OK Ridge Plate Detail: Diaphragm Shear Load =46 plf* 19'-0" = 874 lbs Ridge Shear Load from purlins = 2986 lbs Shear capacity of 1/4" screw= 867 lbs 8 screws* 867 lbs/screw= 6800 lbs > 2986 lbs—p (8) 1/4" screws OK 4 JOB TITLE Tidal Wave Canopy-Queensbury, NY Willett. Engineering JOB NO. 221285 SHEET NO. CALCULATED BY KAG DATE A GRAY COMPANY CHECKED BY BJH DATE CS2018 Ver 2018.11.30 www.struware.com STRUCTURAL CALCULATIONS FOR Tidal Wave Canopy - Queensbury, NY 5 Company JOB TITLE Tidal Wave Canopy-Queensbury, NY Address City,State JOB NO. 221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH , DATE www.struware.com Code Search Code: International Building Code 2018 Occupancy: Occupancy Group= B Business Risk Category& Importance Factors: Risk Category= II Wind factor= 1.00 Snow factor= 1.00 Seismic factor= 1.00 Type of Construction: Fire Rating: Roof= 0.0 hr Floor= 0.0 hr Building Geometry: Roof angle (8) 6.00/12 26.6 deg Building length(L) 158.0 ft Least width (B) 38.0 ft Mean Roof Ht (h) 18.8 ft Parapet ht above grd 0.0 ft Minimum parapet ht 0.0 ft Live Loads: Roof 0 to 200 sf: 18 psf 200 to 600 sf: 21.6-0.018Area, but not less than 12 psf over 600 sf: 12 psf Floor: Typical Floor 40 psf Partitions 15 psf Lobbies&first floor corridors 100 psf Corridors above first floor 80 psf Balconies(1.5 times live load) 60 psf 6 , Company JOB TITLE Tidal Wave Canopy-Queensbury, NY Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Wind Loads : ASCE 7- 16 Ultimate Wind Speed 108 mph Nominal Wind Speed 83.7 mph Risk Category II Exposure Category C Enclosure Classif. Open Building Internal pressure +/-0.00 Directionality (Kd) 0.85 ' Kh case 1 0.890 Kh case 2 0.890 Type of roof Gable I! Topographic Factor (Kzt) tZ Topography Flat Speed-up Hill Height (H) 80.0 ft , , I\ Half Hill Length(Lh) 100.0 ft x(upwind) -x(downwind) Actual H/Lh = 0.80 C.%-'':""•'' Use H/Lh = 0.50 H12 ' H Modified Lh = 160.0 ft ate' Lh H/2 From top of crest:x= 50.0 ft ' - ••'��n&-k. s''' Bldg up/down wind? downwind ESCARPMENT H/Lh= 0.50 Ki= 0.000 x/Lh= 0.31 K2= 0.792 V(Z) z/Lh= 0.12 K3= 1.000 Z Speed-up At Mean Roof Ht: V(Z) x(upwind) = x(downwind) Kzt=(1+KiK2K3)"2= 1.00 I .4_ I H/2 H • u, Ni12 2D RIDGE or 3D AXISYMMETRICAL HILL Gust Effect Factor Flexible structure if natural frequency<1 Hz(T>1 second). h= 18.8 ft If building h/B>4 then may be flexible and should be investigated. B= 38.0 ft h/B= 0.49 Rigid structure(low rise bldg) /z(0.6h)= 15.0 ft G = 0.85 Using rigid structure default Rigid Structure Flexible or Dynamically Sensitive Structure e= 0.20 34 1cy (r),)= 0.0 Hz f = 500 ft Damping ratio(13)= 0 Zmin= 15 ft /b= 0.65 c= 0.20 /a= 0.15 ge, gv= 3.4 Vz= 91.2 LZ= 427.1 ft Ni = 0.00 Q= 0.92 Rn= 0.000 IZ= 0.23 Rh= 28.282 ri= 0.000 h= 18.8 ft G= 0.88 use G=0.85 RB= 28.282 q= 0.000 RL= 28.282 q= 0.000 gR = 0.000 R = 0.000 Gf = 0.000 Enclosure Classification 7 Company JOB TITLE Tidal Wave Canopy-Queensbury, NY Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Test for Enclosed Building: Ao<0.01Ag or 4 sf,whichever is smaller Test for Open Building: All walls are at least 80%open. Ao>_ 0.8Ag Test for Partially Enclosed Building: Predominately open on one side only Input Test Ao 500.0 sf Ao >_ 1.1Aoi NO Ag 600.0 sf Ao>4'or 0.01Ag YES Aoi 1000.0 sf Aoi/Agi <_ 0.20 YES Building is NOT Agi 10000.0 sf Partially Enclosed Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following: Ao>_1.1Aoi Ao> smaller of 4'or 0.01 Ag Aoi/Agi<_ 0.20 Where: Ao=the total area of openings in a wall that receives positive external pressure. Ag=the gross area of that wall in which Ao is identified. Aoi=the sum of the areas of openings in the building envelope(walls and roof)not including Ao. Agi=the sum of the gross surface areas of the building envelope(walls and roof)not including Ag. Test for Partially Open Building: A building that does not qualify as open,enclosed or partially enclosed. (This type building will have same wind pressures as an enclosed building. Reduction Factor for large volume partially enclosed buildings (Ri) : If the partially enclosed building contains a single room that is unpartitioned,the internal pressure coefficient may be multiplied by the reduction factor Ri. Total area of all wall&roof openings (Aog): 0 sf Unpartitioned internal volume (Vi): 0 cf Ri= 1.00 Ground Elevation Factor(Ke) Grd level above sea level= 0.0 ft Ke= 1.0000 Constant= 0.00256 Adj Constant= 0.00256 8 b Company JOB TITLE Tidal Wave Canopy-Queensbury,NY Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Wind Loads -Open Buildings: 0.25 <_ h/L <_ 1.0 Ultimate Wind Pressures Type of roof= Pitched Free Roofs G= 0.85 Wind Flow= Clear Roof Angle= 26.6 deg NOTE:The code requires the MWFRS be Main Wind Force Resisting System designed for a minimum pressure of 16 psf. Kz=Kh(case 2)= 0.89 Base pressure(qh)= 22.6 psf Roof pressures-Wind Normal to Ridge Wind Load Wind Direction Flow Case y=o&180 deg Cnw Cnl Cn= 1.21 0.21 Clear Wind p' p= 23.2 psf 4.0 psf Flow B Cn= -0.10 -0.85 p= -1.9 psf -16.4 psf NOTE: 1).Cnw and Cnl denote combined pressures from top and bottom roof surfaces. 2).Cnw is pressure on windward half of roof.Cnl is pressure on leeward half of roof. 3).Positive pressures act toward the roof.Negative pressures act away from the roof. • Roof pressures-Wind Parallel to Ridge,y=90 deg Procedure not allowed h/L is less than 0.25 Wind Load Horizontal Distance from Windward Flow Case Edge h= 18.8 ft sh >h 5 2h >2h 2h= 37.5 ft Cn= -0.80 -0.60 -0.30 Clear Wind A p= -15.4 psf -11.5 psf -5.8 psf Flow B Cn= 0.80 0.50 0.30 p= 15.4 psf 9.6 psf 5.8----- Fascia Panels-Horizontal pressures Fascia pressures not applicable-roof angle exceeds 5 degrees. qp= 0.0 psf Windward fascia: 0.0 psf (GCpn=+1.5) Leeward fascia: 0.0 psf (GCpn=-1.0) Components&Cladding-roof pressures Kz=Kh(case 1)= 0.89 a= 3.8 ft a2= 14.4sf Base pressure(qh)= 22.6 psf 4a2= 57.8 sf G= 0.85 Clear Wind Flow Effective Wind Area zone 3 zone 2 zone 1 positive negative positive negative positive negative 5 14.4 sf 2.51 -1.89 _ 1.93 -1.47 1.25 -0.95 CN >14.4,5 57.8 sf 1.93 -1.47 1.93 -1.47 1.25 -0.95 >57.8 sf 1.25 -0.95 1.25 -0.95 1.25 -0.95 5 14.4 sf 48.1 psf -36.3psf 37.1 psf -28.2 psf 24.1 psf -18.2 psf Wind >14.4,5 57.8 sf 37.1 psf -28.2 psf 37.1 psf -28.2 psf 24.1 psf -18.2 psf • pressure >57.8 sf 24.1 psf -18.2 psf 24.1 psf -18.2 psf 24.1 psf -18.2 psf 9 Company JOB TITLE Tidal Wave Canopy-Queensbury,NY " Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Location of Wind Pressure Zones L L l-NVT t,HL iii,Cim CNL WIND WIND LLAMA" DIRECTION .0 I DIRECTION .0 y=0%180• y=0%180• PITCHED 'TROUGH L _ L 05L n iT. gm C"fell CNL WIND , WINDDIRECTIO ilialri DIRECTION y=0' x .[ y= 180• MONOSLOPE WIND DIRECTION y= 0°. 180° L L L I I./ „Apr i z i / i.,. ,•,. / 9 WIND DIRECTION, WIND WIND DIRECTION DIRECTIOW MONOSLOPE PITCHED TROUGH WIND DIRECTION y= 90° MAIN WIND FORCE RESISTING SYSTEM 1 3 3J 7 r 7 ? 7 1 1 1 1 1 • ? , -> -I 3 3 3i 3 6<to. el?10° MONOSLOPE PITCHED ORTROUGHED ROOF COMPONENTS AND CLADDING 10 Company JOB 11TLE Tidal Wave Canopy-Queensbury,NY Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Snow Loads : ASCE 7- 16 Nominal Snow Forces Roof slope = 26.6 deg Horiz.eave to ridge dist(W)= 19.0 ft Roof length parallel to ridge(L)= 158.0 ft Type of Roof Hip and gable w/trussed systems Ground Snow Load Pg = 50.0 psf Risk Category = II Importance Factor I = 1.0 Thermal Factor Ct = 1.20 Exposure Factor Ce = 1.0 Pf=0.7*Ce*Ct*I*Pg = 42.0 psf Unobstructed Slippery Surface no Sloped-roof Factor Cs = 1.00 Balanced Snow Load = 42.0 psf Near ground level surface balanced snow load= 50.0 psf Rain on Snow Surcharge Angle 0.38 deg Code Maximum Rain Surcharge 5.0 psf Rain on Snow Surcharge = 0.0 psf Ps plus rain surcharge = 42.0 psf Minimum Snow Load Pm = 0.0 psf NOTE:Alternate spans of continuous beams shall be loaded with half the design roof snow Uniform Roof Design Snow Load = 42.0 psf load so as to produce the greatest possible effect-see code for loading diagrams and exceptions for gable roofs.. Unbalanced Snow Loads-for Hip&Gable roofs only Required if slope is between 7 on 12= 30.26 deg and 2.38 deg= 2.38 deg Unbalanced snow loads must be applied Windward snow load= 12.6 psf =0.3Ps Leeward snow load from ridge to 6.59'= 67.3 psf =hdy/CIS+Ps Leeward snow load from 6.59'to the eave= 42.0 psf =Ps Windward Snow Drifts 1 -Against walls, parapets,etc Upwind fetch lu = 220.0 ft Projection height h = 5.2 ft Snow density g = 20.5 pcf Balanced snow height hb = 2.05 ft hd = 4.29 ft hc = 3.15 ft Surcharge Load hc/hb>0.2= 1.5 Therefore,design for drift Due to Drifting Drift height(hc) = 3.15 ft Drift width w = 23.40 ft h he hd pd � Surcharge load: pd=y*hd= 64.6 psf Balanced Snow Load Balanced Snow load: = 42.0 psf •iu uu�iiiuu 106.E psf h' Windward Snow Drifts 2-Against walls,parapets,etc 4 w Upwind fetch lu = 160.0 ft Lu Projection height h = 4.0 ft Snow density g = 20.5 pcf Balanced snow height hb = 2.05 ft Note:If bottom of projection is at least 2 feet hd = 3.75 ft above hb then snow drift is not required. he = 1.95 ft hc/hb>0.2= 1.0 Therefore,design for drift Drift height(hc) = 1.95 ft Drift width w = 15.61 ft Surcharge load: pd=y*hd= 40.0 psf Balanced Snow load: = 42.0 psf 82.0 psf 11 Company JOB TITLE Tidal Wave Canopy-Queensbury,NY i' Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Snow Loads -from adiacent building or roof: ASCE 7- 16 Nominal Snow Forces Higher Roof Lower Roof Roof slope = 26.6 deg 0.25/12=1.2 deg Horiz.eave to ridge dist(W)= 19.0 ft 24.0 ft Roof length parallel to ridge(L)= 158.0 ft 24.0 ft Projection height(roof step) h = 10.0 ft Building separation s = 0.0 ft Type of Roof Hip and gable w/rafters Hip and gable w/rafters Ground Snow Load Pg = 20.0 psf 20.0 psf Risk Category = II II Importance Factor I = 1.0 1.0 Thermal Factor Ct = 1.10 1.20 Exposure Factor Ce = 1.2 1.2 Pf=0.7*Ce*Ct*I*Pg = 18.5 psf 20.2 psf Unobstructed Slippery Surface no no Sloped-roof Factor Cs = 1.00 1.00 Balanced Snow Load Ps = 18.5 psf 20.2 psf Rain on Snow Surcharge Angle 0.38 deg 0.48 deg Code Maximum Rain Surcharge 5.0 psf 5.0 psf Rain on Snow Surcharge = 0.0 psf 0.0 psf NOTE:Alternate spans of continuous beams and Ps plus rain surcharge = 18.5 psf 20.2 psf other areas shall be loaded with half the design Minimum Snow Load Pm = 0.0 psf 20.0 psf roof snow load so as to produce the greatest possible effect-see code. Uniform Roof Design Snow Load = 18.5 psf 20.2 psf Building Official Minimum = Leeward Snow Drifts-from adjacent higher roof Upper roof length lu = 48.0 ft Snow density y = 16.6 pcf , Lti ` * ,1• Balanced snow height hb = 1.21 ft I Surcharge Load he = 8.79 ft -Due to Drilling hc/hbtr >0.2r c Therefore,design for drift h hd pd �.�,� Adj structure factor = 1.00 �" � i g . Drift height(hd) = 2.16 ft fx'z'i>s f+ �, ' balanced Snow Load Drift width w = 8.63 ft ' IIIIIIIIIIIIIIIIIIIIIIIIIIII Surcharge load: pd=y*hd= 35.8 psf Balanced Snow load: = 20.2 psf I r W .I 56.0 psf Leeward drift controls Windward Snow Drifts-from low roof against high roof Lower roof length lu = 24.0 ft Adj structure factor = 1.00 Drift height hd = 1.05 ft Drift width w = 4.21 ft Surcharge load: pd=y*hd= 17.5 psf Balanced Snow load: = 20.2 psf 37.6 psf F_ NV Sliding Snow-onto lower roof Upper Roof Sliding snow=0.4 Pf W= 140.4 plf Distributed over 15 feet= 9.4 psf 15' hd+hb= 1.78 ft Sliding -. hd+hb<=h therefore sliding snow= 9.4 psf Snow Load Balanced snow load= 20.2 psf Balanced Uniform snow load within 15'of higher roof= 29.5 psf Snow Load w= 15.00 ft i S W Lower Roof 12 Company JOB TITLE Tidal Wave Canopy-Queensbury,NY Address City,State JOB NO.221285 SHEET NO. Phone CALCULATED BY KAG DATE CHECKED BY BJH DATE Seismic Loads: IBC 2018 Strength Level Forces Risk Category: II Importance Factor(I): 1.00 Site Class: C Ss(0.2 sec)= 23.20%g S1 (1.0 sec)= 6.80%g Fa= 1.300 Sms= 0.302 SDs= 0.201 Design Category= B Fv= 1.500 'Sm1 = 0.102 SD1 = 0.068 Design Category= B Seismic Design Category= B ASCE7 Section 11.6 Exception Applies Redundancy Coefficient p= 1.00 Number of Stories: 1 Structure Type:All other building system: Horizontal Struct Irregularities:No plan Irregularity Vertical Structural Irregularities:No vertical Irregularity Flexible Diaphragms:Yes Building System: Structural steel systems not specifically detailed for seismic resistance Seismic resisting system:Structural steel systems not specifically detailed for seismic resistance System Structural Height Limit:Height not limited Actual Structural Height(hn)=23.5 ft DESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient(R)= 3 Over-Strength Factor(Qo)= 2.5 Deflection Amplification Factor(Cd): 3 SDS= 0.201 SD1= 0.068 Seismic Load Effect(E)= Eh+/-Ev = p CE+/-0.2SDs D = Qe +/- 0.000D QE=horizontal seismic fora Special Seismic Load Effect(Em)=Emh+/-Ev= Co CE+/-0.2SDs D =2.5Qe+/- 0.040D D=dead loac PERMITTED ANALYTICAL PROCEDURES Simplified Analysis -Use Equivalent Lateral Force Analysis Equivalent Lateral-Force Analysis - Permittec Building period coef. (CT)= 0.020 Cu= 1.70 Approx fundamental period(Ta): Crhn's= 0.213 sec x=0.75 Tmax=CuTa= 0.363 User calculated fundamental period(T)= sec Use T= 0.213 Long Period Transition Period(TL)= ASCE7 map= 6 Seismic response coef.(Cs)= SDsI/R= 0.067 need not exceed Cs= sat I/Rr= N/A but not less than Cs= 0.010 USE Cs= 0.067 Design Base Shear V=0.067W Model&Seismic Response Analysis - Permitted(see code for procedure) ALLOWABLE STORY DRIFT Structure Type: All other structures Allowable story drift£a= 0.020hsx where hsx is the story height below level x 13 ATC Hazards by Location Search Information : '. Rutland' • Address: 708 Quaker Rd,Queensbury,NY 12804,USA • - ' 333 ft ' ` Like;G- ,I - Coordinates: 43.3180914,-73.616964 0 • Oueey: ; :, 0 Elevation: 333 ft • • Timestamp: 2021-08-03T17:20:34.727Z 4.• '; - Sa�afo9a r ' • Hazard Type: Seismic iGlorersvlll'e' °, Reference ASCE7-16 Ot] �tr'` -� �� f ! ;Map data©2021 Google Document: Risk Category: II Site Class: C MCER Horizontal Response Spectrum Design Horizontal Response Spectrum Sa(g) Sa(g) 0.30 0.20 0.25 0.15 0.20 0.15 0.10 0.10 0.05 0.05 0.00 0.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period(s) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period(s) Basic Parameters Name Value Description Ss 0.232 MCER ground motion(period=0.2s) Si 0.068 MCER ground motion(period=1.0s) SMS 0.301 Site-modified spectral acceleration value SM1 0.101 Site-modified spectral acceleration value Sps 0.201 Numeric seismic design value at 0.2s SA • SDI 0.068 Numeric seismic design value at 1.0s SA Additional Information Name Value Description SDC B Seismic design category Fa 1.3 Site amplification factor at 0.2s F„ 1.5 Site amplification factor at 1.0s • 14 CRs 0.939 Coefficient of risk(0.2s) CR1 0.92 Coefficient of risk(1.0s) PGA 0.128 MCEG peak ground acceleration FPGA 1.272 Site amplification factor at PGA PGAM 0.163 Site modified peak ground acceleration TL 6 Long-period transition period(s) SsRT 0.232 Probabilistic risk-targeted ground motion(0.2s) SsUH 0.247 Factored uniform-hazard spectral acceleration(2%probability of exceedance in 50 years) SsD 1.5 Factored deterministic acceleration value(0.2s) S1 RT 0.068 Probabilistic risk-targeted ground motion(1.0s) S1UH 0.074 Factored uniform-hazard spectral acceleration(2%probability of exceedance in 50 years) S1 D 0.6 Factored deterministic acceleration value(1.0s) PGAd 0.5 Factored deterministic acceleration value(PGA) The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are provided by the U.S.Geological Survey Seismic Design Web Services. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy,suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this information replace the sound judgment of such competent professionals,having experience and knowledge in the field of practice,nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use.Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. 15 £lTC Hazards by Location Search Information - miQnngton Rutland Address: 708 Quaker Rd,Queensbury, NY 12804, USA 333ft Coordinates: 43.3180914,-73.616964 Lake;G' I Queen._ ry?' . , Elevation: 333 ft lens�ylls - - Timestamp: 2021-08-03T17:19:09.149Z - Saratoga Springs - Hazard Type: Snow Glo�ersville ': `, I Map data©2021 Goggle ASCE 7-16 ASCE 7-10 ASCE 7-05 Ground Snow Load it 50 lb/sqft Ground Snow Load ___ ® 50 lb/sqft Ground Snow Load ® 50 lb/sqft The reported ground snow load applies at The reported ground snow load The reported ground snow load applies at the query location of 333 feet up to a applies at the query location of 333 the query location of 333 feet up to a maximum elevation of 700 feet. feet up to a maximum elevation of 700 maximum elevation of 700 feet. feet. The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy,suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice,nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. 16 TCHazards by Location Search Information --Kinifigton Rutland Address: 708 Quaker Rd,Queensbury, NY 12804,USA I - 333 ft Coordinates: 43.3180914,-73.616964 Lale'G —. I_ _ Que'er', ry Elevation: 333 ft Glensil=ylls Timestamp: 2021-08-03T17:16:25.591Z _r Saratoga,,: Hazard Type: Wind (GI6versviire 5pro> s, Gob le I __ ! �:,-- _',: _ 'Map data©2021 Google ASCE 7-16 ASCE 7-10 ASCE 7-05 MRI 10-Year 73 mph MRI 10-Year 76 mph ASCE 7-05 Wind Speed 90 mph MRI25-Year 80 mph MRI25-Year 84 mph MRI50-Year 85 mph MRI50-Year 90 mph MRI 100-Year 91 mph MRI 100-Year 96 mph Risk Category I 101 mph Risk Category I 105 mph Risk Category II 108 mph Risk Category II 115 mph Risk Category III 116 mph Risk Category III-IV 120 mph Risk Category IV 122 mph The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer.Per ASCE 7,islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area—in some cases,this website will extrapolate past the last wind speed contour and therefore,provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region . boundaries,the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region. Mountainous terrain,gorges,ocean promontories,and special wind regions shall be examined for unusual wind conditions. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy,suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice,nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website.Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the aovernina buildina code bodies responsible for buildina code aooroval and interpretation for"1V e File: ,Bunsbry General Footing Software copyright ENERCALC,INC.1983-2020 BuiId:12.20.8.28.24 Lic.#:KW-06001656 WILLETT ENGINEERING. DESCRIPTION: Typical footing Code References Calculations per ACI 318-11, IBC 2012, CBC 2013,ASCE 7-10 Load Combinations Used :ASCE 7-16 General Information Material Properties Soil Design Values f c:Concrete 28 day strength = 4.50 ksi Allowable Soil Bearing = 8.0 ksf fy:Rebar Yield = 60.0 ksi Increase Bearing By Footing Weight = Yes Ec:Concrete Elastic Modulus = 3,122.0 ksi Soil Passive Resistance(for Sliding) = 250.0 pcf Concrete Density = 145.0 pcf Soil/Concrete Friction Coeff. = 0.30 cp Values Flexure = 0.90 Shear = 0.750 Increases based on footing Depth Analysis Settings Footing base depth below soil surface = 4.0 ft Min Steel /Bending Reinf. = Allow press.increase per foot of depth = ksf Min Allow%Temp Reinf. = 0.00180 when footing base is below = ft Min.Overturning Safety Factor = 1.0 :1 Min.Sliding Safety Factor = 1.0 :1 Increases based on footing plan dimension Add Ftg Wt for Soil Pressure Yes Allowable pressure increase per foot of depth Use ftg wt for stability,moments&shears Yes = ksf Add Pedestal Wt for Soil Pressure No when max.length or width is greater than = ft Use Pedestal wt for stability,mom&shear No Dimensions Width parallel to X-X Axis = 5.0 ft Length parallel to Z-Z Axis = 5.0 ft Footing Thickness = 36.0 in a . --.uE r—H .r1 = , 1 4.1 Pedestal dimensions... X -•=-- 4, % -g- px:parallel to X X Axis = in F,, �� pz:parallel to Z-Z Axis = in . � _ - - Height - in 7— "T ' , Rebar Centerline to Edge of Concrete... ; '4 I, •.1 1 T_ at Bottom of footing = 3.0 in r N'ONrNIO Reinforcing I= 1 Bars parallel to X-X Axis -- - Number of Bars = 16.0 Reinforcing Bar Size = # 5 Bars parallel to Z-Z Axis - Number of Bars = 16.0 Reinforcing Bar Size = # 5 I{ ' Bandwidth Distribution Check (ACI 15.4.4.2) •. . c ' Direction Requiring Closer Separation �. #Bars required within zone n/a -- # _ #Bars required on each side of zone n/a - - Applied Loads D Lr L. S W E H P:Column Load = 3.0 24.0 22.0 -5.0 k OB:Overburden = ksf M-xx = k-ft M-zz = k-ft V-x = 1.0 9.50 8.0 -4.0 k V-z = k 18 , General FootingFile:Queensbury.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic.#:KW-06001656 WILLETT ENGINEERING DESCRIPTION: Typical footing DESIGN SUMMARY Design OK Min.Ratio Item Applied Capacity Governing Load Combination PASS 0.3701 Soil Bearing 3.122 ksf 8.435 ksf +D+Lr about Z-Z axis PASS n/a Overturning-X-X 0.0 k-ft 0.0 k-ft No Overturning PASS 1.819 Overturning-Z-Z 14.70 k-ft 26.738 k-ft +0.60D+0.60W PASS 2.054 Sliding-X-X 10.50 k 21.563 k +D+Lr PASS n/a Sliding-Z-Z 0.0 k 0.0 k No Sliding PASS 3.325 Uplift -3.0 k 9.975 k +0.60D+0.60W PASS 0.07042 Z Flexure(+X) 10.170 k-ft/ft 144.418 k-ft/ft +1.20D+1.60Lr PASS 0.006494 Z Flexure(-X) 0.9379 k-ft/ft 144.418 k-ft/ft +1.20D+1.60S+0.50W PASS 0.03635 X Flexure(+Z) 5.250 k-ft/ft 144.418 k-ft/ft +1.20D+1.60Lr PASS 0.03635 X Flexure(-Z) 5.250 k-ft/ft 144.418 k-ft/ft +1.20D+1.60Lr PASS n/a 1-way Shear(+X) 0.0 psi 100.623 psi n/a PASS 0.0 1-way Shear(-X) 0.0 psi 0.0 psi n/a PASS n/a 1-way Shear(+Z) 0.0 psi 100.623 psi n/a PASS n/a 1-way Shear(-Z) 0.0 psi 100.623 psi n/a PASS n/a 2-way Punching 6.830 psi 100.623 psi +1.20D+1.60Lr Detailed Results Soil Bearing Rotation Axis& Xecc Zecc Actual Soil Bearing Stress @ Location Actual I Allow Load Combination... Gross Allowable (in) Bottom,-Z Top,+Z Left,-X Right,+X Ratio X-X,D Only 8.435 n/a 0.0 0.6650 0.6650 n/a n/a 0.079 X-X,+D+Lr 8.435 n/a 0.0 1.625 1.625 n/a n/a 0.193 X-X,+D+S 8.435 n/a 0.0 1.545 1.545 n/a n/a 0.183 X-X,+D+0.750Lr 8.435 n/a 0.0 1.385 1.385 n/a n/a 0.164 X-X,+D+0.750S 8.435 n/a 0.0 1.325 1.325 n/a n/a 0.157 X-X,+D+0.60W 8.435 n/a 0.0 0.5450 0.5450 n/a n/a 0.065 X-X,+D+0.750Lr+0.450W 8.435 n/a 0.0 1.295 1.295 n/a n/a 0.154 X-X,+D+0.750S+0.450W 8.435 n/a 0.0 1.235 1.235 n/a n/a 0.146 X-X,+0.60D+0.60W 8.435 n/a 0.0 0.2790 0.2790 n/a n/a 0.033 X-X,+0.60D 8.435 n/a 0.0 0.3990 0.3990 n/a n/a 0.047 Z-Z,D Only 8.435 2.165 n/a n/a n/a 0.5224 0.8076 0.096 Z-Z,+D+Lr 8.435 9.305 n/a n/a n/a 0.1281 3.122 0.370 Z-Z,+D+S 8.435 8.388 n/a n/a n/a 0.2620 2.828 0.335 Z-Z,+D+0.750Lr 8.435 8.448 n/a n/a n/a 0.2267 2.543 0.302 Z-Z,+D+0.750S 8.435 7.608 n/a n/a n/a 0.3271 2.323 0.275 Z-Z,+D+0.60W 8.435 -3.699 n/a n/a n/a 0.7446 0.3454 0.088 Z-Z,+D+0.750Lr+0.450W 8.435 7.033 n/a n/a n/a 0.3933 2.197 0.261 Z-Z,+D+0.750S+0.450W 8.435 6.063 n/a n/a n/a 0.4937 1.976 0.234 Z-Z,+0.60D+0.60W 8.435 -9.290 n/a n/a n/a 0.5356 0.02239 0.064 Z-Z,+0.60D 8.435 2.165 n/a n/a n/a 0.3135 0.4845 0.057 Overturning Stability Rotation Axis& Load Combination... Overturning Moment Resisting Moment Stability Ratio Status X-X,D Only None 0.0 k-ft nfinity OK X-X,+D+Lr None 0.0 k-ft nfinitv OK X-X,+D+S None 0.0 k-ft nfinitv OK X-X,+D+0.750Lr None 0.0 k-ft nfinitv OK X-X.+D+0.750S None 0.0 k-ft nfinitv OK X-X.+D+0.60W None 0.0 k-ft nfinitv OK X-X.+D+0.750Lr+0.450W None 0.0 k-ft nfinitv OK X-X.+D+0.750S+0.450W None 0.0 k-ft nfinitv OK X-X,+0.60D+0.60W None 0.0 k-ft nfinity OK X-X,+0.60D None 0.0 k-ft nfinity OK Z-Z,D Only 3.0 k-ft 41.563 k-ft 13.854 OK Z-Z,+D+Lr 31.50 k-ft 101.563 k-ft 3.224 OK Z-Z,+D+S 27.0 k-ft 96.563 k-ft 3.576 OK Z-Z,+D+0.750Lr 24.375 k-ft 86.563 k-ft 3.551 OK Z-Z,+D+0.750S 21.0 k-ft 82.813 k-ft 3.943 OK Z-Z,+D+0.60W 14.70 k-ft 44.563 k-ft 3.031 OK 19 , File:Queensbury.ec6 General Footing Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic.# KW-06001656 WILLETT ENGINEERING DESCRIPTION: Typical footing Overturning Stability Rotation Axis& Load Combination... Overturning Moment Resisting Moment Stability Ratio Status Z-Z,+D+0.750Lr+0.450W 30.0 k-ft 91.963 k-ft 3.065 OK Z-Z,+D+0.7505+0.450W 26.625 k-ft 88.213 k-ft 3.313 OK Z-Z,+0.60D+0.60W 14.70 k-ft 26.738 k-ft 1.819 0K Z-Z,+0.60D 1.80 k-ft 24.938 k-ft 13.854 OK Sliding Stability All units k Force Application Axis Load Combination... Sliding Force Resisting Force Stability Ratio Status X-X,D Only 1.0 k 14.363 k 14.363 OK X-X,+D+Lr 10.50 k 21.563 k 2.054 OK X-X,+D+S 9.0 k 20.963 k 2.329 OK X-X,+D+0.750Lr 8.125 k 19.763 k 2.432 OK X-X,+D+0.750S 7.0 k 19.313 k 2.759 OK X-X,+D+0.60W -1.40 k 13.463 k 9.616 OK X-X,+D+0.750Lr+0.450W 6.325 k 19.088 k 3.018 OK X-X.+D+0.750S-0.450W 5.20 k 18.638 k 3.584 OK X-X,+0.60D+0.60W -1.80 k 11.468 k 6.371 OK X-X,+0.60D 0.60 k 12.368 k 20.613 OK Z-Z,D Only 0.0 k 14.363 k No Sliding OK Z-Z,+D+Lr 0.0 k 21.563 k No Sliding OK Z-Z.+D+S 0.0 k 20.963 k No Sliding OK Z-Z,+D+0.750Lr 0.0 k 19.763 k No Sliding OK Z-Z,+D+0.7505+0.450W 0.0 k 18.638 k No Sliding OK Z-Z,+0.60D+0.60W 0.0 k 11.468 k No Sliding OK Z-Z,+0.60D 0.0 k 12.368 k No Sliding OK Z-Z,+D+0.750S 0.0 k 19.313 k No Sliding OK Z-Z,+D+0.60W 0.0 k 13.463 k No Sliding OK Z-Z,+D+0.750Lr+0.450W 0.0 k 19.088 k No Sliding OK Footing Flexure Mu Side Tension As Req'd Gym.As Actual As Phi*Mn Flexure Axis&Load CombinationStatus k-ft Surface 102 inA2 102 k-ft X-X,+1.40D 0.5250 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.40D 0.5250 -Z Bottom 0.7776 Min Temp% 0,9920 144.418 OK X-X,+1.20D+0.50Lr 1.950 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 0K X-X,+1.20D+0.50Lr 1.950 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.50S 1.825 +Z Bottom 0,7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.50S 1.825 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60Lr 5.250 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60Lr 5.250 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60Lr+0.50W 4.938 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60Lr+0.50W 4.938 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60S 4.850 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60S 4.850 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60S+0.50W 4.538 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+1.60S+0.50W 4.538 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.50Lr+W 1.325 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X.+1.20D+0.50Lr+W 1.325 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.50S+W 1.20 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.50S+W 1.20 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+0.90D+W 0.2875 +Z Top 0.7776 Min Temp% 0.9920 144.418 OK X-X,+0.90D+W 0.2875 -Z Top 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.20S 1.0 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+1.20D+0.20S 1.0 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+0.90D 0.3375 +Z Bottom 0.7776 Min Temp% 0.9920 144.418 OK X-X,+0.90D 0.3375 -Z Bottom 0.7776 Min Temp% 0.9920 144.418 0K Z-Z,+1.40D 0.1050 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.40D 0.9450 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50Lr 0.1652 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50Lr 3.735 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50S 0.2652 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50S 3.385 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK 20 General FootingFile:Queensbury.ec6 Software copyright ENERCALC,INC.1983-2020,Build:12.20.8.24 Lic.#:KW-06001656 WILLETT ENGINEERING DESCRIPTION: Typical footing Footing Flexure Mu Side Tension As Req'd Gym.As Actual As Phi*Mn Flexure Axis&Load CombinationStatus k-ft Surface i02 in^2 in^2 k-ft Z-Z,+1.20D+1.60Lr 0.3303 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z.+1.20D+1.60Lr 10.170 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60Lr+0.50W ' 0.6179 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60Lr+0.50W 9.257 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60S 0.6504 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60S 9.050 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60S+0.50W 0.9379 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+1.60S+0.50W 8.137 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50Lr+W 0.7401 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50Lr+W 1.910 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50S+W 0.840 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.50S+W 1.560 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+0.90D+W 0.6471 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+0.90D+W 1.213 +X Top 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.20S 0.1601 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+1.20D+0.20S 1.840 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+0.90D 0.06753 -X Bottom 0.7776 Min Temp% 0.9920 144.418 OK Z-Z,+0.90D 0.6075 +X Bottom 0.7776 Min Temp% 0.9920 144.418 OK One Way Shear Load Combination... Vu @-X Vu @+X Vu @-Z Vu @+Z Vu:Max Phi Vn Vu 1 Phi*Vn Status +1.40D 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+0.50Lr 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+0.50S 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+1.60Lr 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+1.60Lr+0.50W 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+1.60S 0.00 Psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+1.60S+0.50W 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+0.50Lr+W 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+0.50S+W 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +0.90D+W 0.00 Psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +1.20D+0.20S 0.00 Psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK +0.90D 0.00 psi 0.00 psi 0.00 psi 0.00 psi 0.00 psi 100.62 psi 0.00 OK Two-Way"Punching"Shear All units k Load Combination... Vu Phi*Vn Vu 1 Phi*Vn Status +1.40D 0.68 psi 201.25psi 0.003394 OK +1.20D+0.50Lr 2.54 psi 201.25psi 0.01261 OK +1.20D+0.50S 2.37 Psi 201.25psi 0.0118 OK +1.20D+1.60Lr 6.83 psi 201.25psi 0.03394 OK +1.20D+1.60Lr+0.50W 6.42 psi 201.25psi 0.03192 OK +1.20D+1.60S 6.31 psi 201.25psi 0.03135 OK +1.20D+1.60S+0.50W 5.90 psi 201.25psi 0.02933 OK +1.20D+0.50Lr+W 1.72 psi 201.25psi 0.008566 OK +1.20D+0.50S+W 1.56 psi 201.25psi 0.007758 OK +0.90D+W 0.37 psi 201.25psi 0.001859 OK +1.20D+0.20S 1.30 psi 201.25psi 0.006465 OK +0.90D 0.44 psi 201.25psi 0.002182 OK 21 Pole FootingEmbedded in Soilil2:20,Buns1220. .2 Software copyright ENERCALC,INC.INC1983-2020,BuiId:12.20.8.24 Lic:#:KW=06001656 WILLETT ENGINEERING DESCRIPTION: Auger cast footing Code References Calculations per IBC 2012 1807.3, CBC 2013,ASCE 7-10 Load Combinations Used:ASCE 7-16 General Information Pole Footing Shape Circular Pole Footing Diameter 32.0 in Calculate Min.Depth for Allowable Pressures . No Lateral Restraint at Ground Surface Allow Passive 300.0 loci Max Passive 2,500.0 Psf Point Load o Soil Surface J No lateral restraint - Controlling Values 1;;; w g;4;; i; 1-o u-;a-;=u i?1` ; `- Governing Load Combination: +D+Lr ;.7.,:. ;c;;rr,,_71S,;i hr7Tu_p.iy,I.,i S_i. tYJ'U7 Ir Sj,if�,,IIIi. •• il1i2N.L'1,ll;!.0i4r',r ia,.., Lateral Load 10.50 k ,zN .*;u .�.3-,rd.r, v -.,:a;oa•u;i,: g - Moment k-ft __,;-u;,,-u:ur.ui-,,m;u - -v"7.v? r}, _ N NO Ground Surface Restraint ~-1'"' _'"1.0.1 w li; laITAM,. ; 1171„ Y: iiti t ;a;L v7 y'i;1-IFJ_W2Cwai, 0 Pressures at 1/3 Depths ` • yzr� _ Actual 1,009.43 psf �'-,s'»tiii., A i.12 y,';' -4�' 4. Allowable psf -. x_u 3 «:.. ir_, ;3I tit, ' 4,ri374, r' 4= .3 1y,3 7,3$,_ -L-U h,-0 A ,,i;11l; 4.1'�i Q',V����1i1;ti{eti•r,_'r='.Yati�tl���'lru;ll:'3 ialt- Minimum Required Depth 10.125 ft Footing Base Area 5.585 ft"2 Maximum Soil Pressure 4.834 ksf Applied Loads Lateral Concentrated Load (k) Lateral Distributed Loads (Mt) Vertical Load (k) D:Dead Load 1.0 k k/ft 3.0 k Lr:Roof Live 9.50 k k/ft 24.0 k L:Live k k/ft k S:Snow 7.70 k . k/ft 22.0 k W:Wind -3.20 k k/ft 4.0 k E:Earthquake k k/ft k H:Lateral Earth k k/ft k Load distance above TOP of Load above ground surface ground surface 1.0 ft ft BOTTOM of Load above ground surface ft Load Combination Results Forces @ Ground Surface Required Pressure at 1/3 Depth Soil Increase Load Combination Loads-(k) Moments-(ft-k) Depth-(ft) Actual-(psf) Allow-(psf) Factor D Only 1.000 1.000 3.50 339.8 340.8 1.000 +D+Lr 10.500 10.500 10.13 1,009.4 1,011.2 1.000 +D+S 8.700 8.700 9.25 922.8 924.8 1.000 +D+0.750Lr 8.125 8.125 9.00 893.3 895.3 1.000 +D+0.750S 6.775 6.775 8.25 820.5 820.8 1.000 +D+0.60W 0.920 0.920 3.38 327.4 328.4 1.000 +D+0.750Lr+0.450W 6.685 6.685 8.25 814.8 816.1 1.000 +D+0.7505+0.450W 5.335 5.335 7.38 732.7 733.8 1.000 +0.60D+0.60W 1.320 1.320 3.88 384.8 386.0 1.000 22 Pole Footing Embedded in Soil File: Bunsb2ry.ec6 Software copyright ENERCALC,INC.19B&2020, BuiId:1 .20.8.24 Lic.#:KW-06001656 WILLETT ENGINEERING DESCRIPTION: Auger cast footing +0.60D 0.600 0.600 2.75 271.1 272.0 1.000 23 � 41 ,F=-AP.A. ,sentiegr Willett Engineering Current Date:9/14/2021 3:45 PM Units system:English Steel connections Detailed report Connection name : Pinned BP-HSS Member Connection ID : 1 Family:Column-Base(CB) Type:Base plate Description:At typical canopy footing GENERAL INFORMATION Connector 44 o � t N y D i B i 4A 411111 \ D * . N g •tyre � f � D I " S MEMBERS Column Column type • Prismatic member Section • W 18X60 Material • A992 Gr50 CONNECTOR Base plate Plate shape • Rectangular Connection type • Unstiffened Position on the support • Center N:Longitudinal dimension • 20 in B:Transversal dimension • 10 in Thickness • 0.75 in Material • A36 Column weld • E70XX Outer welds flanges only • No Pagel 24 D:Column weld size(1/16 in) 5 Override A2/A1 ratio No Include shear lug No Support With pedestal No Longitudinal dimension 60 in Transversal dimension 60 in Thickness 36 in Material C 4-60 Include grouting No Anchor Anchor position Longitudinal position Rows number per side 1 Anchors per row 2 Longitudinal edge distance on the plate 8 in Transverse edge distance on the plate 3 in Anchor type Headed Head type Heavy hexagonal Include lock nut No Anchor 3/4" Effective embedment depth 12 in Total length 13.74 in Material F1554 Gr36 Fy 36 kip/in2 Fu 58 kip/in2 Cracked concrete Yes Brittle steel No Anchors welded to base plate No Anchor reinforcement Type of reinforcement Primary Tension reinforcement No Shear reinforcement No Design code:AISC 360-16 LRFD,ACI 318-11 DEMANDS Description Pu Mu22 Mu33 Vu2 Vu3 Load type [kip] [kip*ft] [kip*ft] [kip] [kip] Snow -22.00 0.00 0.00 7.70 0.00 Design Wind 4.60 0.00 0.00 -3.20 0.00 Design D1 -4.20 0.00 0.00 1.26 0.00 Design D2 -15.60 0.00 0.00 5.83 0.00 Design D3 -14.60 0.00 0.00 4.93 0.00 Design . D4 -42.00 0.00 0.00 16.28 0.00 Design D5 -38.80 0.00 0.00 13.40 0.00 Design D6 -1.30 0.00 0.00 -0.52 0.00 Design D7 -39.70 0.00 0.00 14.68 0.00 Design D8 -36.50 0.00 0.00 11.80 0.00 Design D9 1.00 0.00 0.00 -2.12 0.00 Design D10 -11.00 0.00 0.00 2.63 0.00 Design D11 -10.00 0.00 0.00 1.73 0.00 Design D12 1.90 0.00 0.00 -2.39 0.00 Design D13 -8.00 0.00 0.00 2.62 0.00 Design Design for major axis Base plate(AISC 360-16 LRFD) GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Base plate Distance from anchor to edge [in] 2.62 0.25 -- ,p Weld size [1/16in] 5 3 -- d table J2.4 Page2 25 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Concrete base Axial bearing [Kip/in2] 4.42 0.21 D4 0.05 DG1 3.1.1; Base plate Flexural yielding(bearing interface) [Kip*ft/ft] 4.56 0.41 D4 0.09 DG1 Sec 3.1.2 Flexural yielding(tension interface) [Kip*ft/ft] 4.56 0.58 Wind 0.13 DG1 Eq.3.3.13 Column Weld capacity [Kip/ft] 125.29 3.85 Wind 0.03 p.8-9, Sec.J2.5, Sec.J2.4, DG1 p.35 Elastic method weld shear capacity [Kip/ft] 83.53 6.11 D4 0.07 p.8-9, Sec.J2.5, Sec.J2.4 Elastic method weld axial capacity [Kip/ft] 125.29 2.05 Wind 0.02 p.8-9, Sec.J2.5, Sec.J2.4 Ratio 0.13 Design for minor axis Base plate(AISC 360-16 LRFD) GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Base plate Distance from anchor to edge [in] 2.62 0.25 Weld size [1/16in] 5 3 -- ✓ table J2.4 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Concrete base Axial bearing [Kip/in2] 4.42 0.21 D4 0.05 DG1 3.1.1; Base plate Flexural yielding(bearing interface) [Kip*ft/ft] 4.56 0.41 D4 0.09 DG1 Sec 3.1.2 Flexural yielding(tension interface) [Kip*ft/ft] 4.56 0.58 Wind 0.13 DG1 Eq.3.3.13 Column Weld capacity [Kip/ft] 125.29 3.85 Wind 0.03 p.8-9, Sec.J2.5, Sec.J2.4, DG1 p.35 Elastic method weld shear capacity [Kip/ft] 83.53 0.00 Snow 0.00 p.8-9, Sec.J2.5, Sec.J2.4 Elastic method weld axial capacity [Kip/ft] 125.29 2.05 Wind 0.02 p.8-9, Sec.J2.5, Sec.J2.4 Ratio 0.13 Major axis Anchors GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Anchors Anchor spacing [in] 4.00 3.00 - I Sec.D.8.1 Concrete cover [in] 27.62 3.00 -- I Sec.7.7.1 Effective length [in] 12.49 - 35.51 se Page3 26 11 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Anchor tension [Kip] 14.55 1.15 Wind 0.08 Eq.D-2 Breakout of anchor in tension [Kip] 44.55 1.15 Wind 0.03 Eq.D-3, Sec.D.3.3.4.4 Breakout of group of anchors in tension [Kip] 55.00 4.60 Wind 0.08 Eq.D-4, Sec.D.3.3.4.4 Pullout of anchor in tension [Kip] 20.41 1.15 Wind 0.06 Sec.D.3.3.4.4 Anchor shear [Kip] 7.57 4.07 D4 0.54 Eq.D-29 Breakout of anchor in shear [Kip] 36.44 4.07 D4 0.11 Table D.4.1.1, Sec.D.4.3 Breakout of group of anchors in shear [Kip] 36.44 16.28 D4 0.45 Table D.4.1.1, Sec.D.4.3 Pryout of anchor in shear [Kip] 89.11 4.07 D4 0.05 Eq.D-3, Table D.4.1.1, Sec.D.4.3 Pryout of group of anchors in shear [Kip] 110.01 3.20 Wind 0.03 Eq.D-4, Table D.4.1.1, Sec.D.4.3 Interaction of tensile and shear forces [Kip] 1.20 0.00 Wind 0.00 Eq.D-2, Eq.D-3, Sec.D.3.3.4.4, Eq.D-4, Eq.D-29, Table D.4.1.1, Sec.D.4.3, Sec.D.7 Ratio 0.54 Minor axis Anchors GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Anchors Anchor spacing [in] 4.00 3.00 -- a' Sec.D.8.1 Concrete cover [in] 27.62 3.00 -- vr Sec.7.7.1 Effective length [in] 12.49 - 35.51 d DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Anchor tension [Kip] 14.55 1.15 Wind 0.08 Eq.D-2 Breakout of anchor in tension [Kip] 44.55 1.15 Wind 0.03 Eq.D-3, Sec.D.3.3.4.4 Breakout of group of anchors in tension [Kip] 55.00 4.60 Wind 0.08 Eq.D-4, Sec.D.3.3.4.4 Pullout of anchor in tension [Kip] 20.41 1.15 Wind 0.06 Sec.D.3.3.4.4 Anchor shear [Kip] 7.57 0.00 Snow 0.00 Eq.D-29 Breakout of anchor in shear [Kip] 36.44 0.00 Snow 0.00 Table D.4.1.1, Sec.D.4.3 Pryout of anchor in shear [Kip] 89.11 0.00 Snow 0.00 Eq.D-3, Table D.4.1.1, Sec.D.4.3 Pryout of group of anchors in shear [Kip] 110.01 0.00 Wind 0.00 Eq.D-4, Table D.4.1.1, Sec.D.4.3 Ratio 0.08 Global critical strength ratio 0.54 Page4 27 Major axis Maximum compression(D4) Base plate Base plate Concrete stress Anchors tension [Ma] [kip] I 210 ;.rr>..4.."----:r.1,a :tiat', 0 i tr- 210 0 210 st ; ;,. ,.tip=„' '�=�"'�:e 0 1 t� ah I4' y ,:., 0 210 .q 'k• iI .210 4 ' k�t3 %.44., ,". U I ' , © I m''3; 210 3'°�"p �k 2r; 0 n 210 � 1,� 0 .� fl 210 °�r'.P�:^,�a€ ' 0 •lF?1 J C�$ 210 YSr Ile ,,e; 0 f 210 . , ,!,!' :0 210 • 0 4i, s s 0 SI II o 210 ,, 0 • d 290 -- ' 0 210 0 210 0 Maximum bearing pressure 210.00 [Ib/in2] Minimum bearing pressure 210.00 [Ib/in2] Maximum anchor tension 0.00 [kip] Minimum anchor tension 0.00 [kip] Neutral axis angle 0.00 [deg] Bearing length 1.2E31 [in] ------------------------ Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] --------------------------- 1 -2.00 -2.00 4.07 0.00 2 -2.00 2.00 4.07 0.00 3 2.00 2.00 4.07 0.00 4 2.00 -2.00 4.07 0.00 Maximum tension(Wind) Base plate Base plate Concrete stress Anchors tension [ibrin2] [kip] CI 1155 cs 0 t '. -1.15 ,a Or t5"w,* 0 t ISM k,. -1.15 ,-?,:,,, , • ci4, ..„, Q, NCO y. '_,0 i O 4• , t;T 3 -1.15 9k ` -1.15 girl rm 1 0 T ! , -1.15 r 44,,,,,A° p = 0 O , 0 -1.15 % -p'' 0 f ' out -1.15 " , O Y' -1.95 4w•,�,, 0 *� im -1.15 w; z. 0 Aa;� it -1.15 0 am'. -1.15 O -1.15 O -1.15 Maximum bearing pressure 0.00 [Ib/in2] Minimum bearing pressure 0.00 [Ib/in2] Maximum anchor tension 1.15 [kip] Minimum anchor tension 1.15 [kip] Neutral axis angle 0.00 [deg] Page5 28 Bearing length -1.2E31 [in] -------------------------- Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] • ---------------------------------- 1 -2.00 -2.00 -0.80 1.15 2 -2.00 2.00 -0.80 1.15 3 2.00 2.00 -0.80 1.15 4 2.00 -2.00 -0.80 1.15 Minor axis Maximum compression(D4) Base plate Base plate Concrete stress Anchars tension [mho] [kip] 0 is 210 ', . :Y,N. Al ' 0 210 } 0 CO 210 75,; ;N vev, .- $ _)0 1 210 .V G�44°,'' I'' 0 1210 ,, z'.. 1�. -ac r I 0 a 1 w: 210 ...7. 10 I,.Q r 0 210 ,,;:. .:; 7 .,' 0 j210 ,..: �Y' ! }'' r 210 [1,= ' 00 ' 210 210 0 210 0 -------------------------- Maximum bearing pressure 210.00 [Ib/in2] Minimum bearing pressure 210.00 [Ib/in2] Maximum anchor tension 0.00 [kip] Minimum anchor tension 0.00 [kip] Neutral axis angle 0.00 [deg] Bearing length 1.2E31 [in] ----------------------- Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] 1 -2.00 -2.00 0.00 0.00 2 -2.00 2.00 0.00 0.00 3 2.00 2.00 0.00 0.00 4 2.00 -2.00 0.00 0.00 Page6 29 Maximum tension(Wind) Base plate Base plate Concrete stress Anchors tension [ n2l (kip] O ` -1.15 ,' ' 0 l+ • n „,, -1.15 0 rat -1.15 0 , ,e -1_15 ��`�t . -1.15 5� o o L'0 ,� 'a'. � Yi n 0 . ' 1.15 vgl• 0 c: ) "-1.15 4.1 v a 0 D 0 `•. °e -1.15 y 0 r -1.15 t ! 0 1.. -1.15 O -1.15 z i .�° 0 -1.15 cL <: d v, r._..>. e -1.15 o -1.15 ------------------------- Maximum bearing pressure 0.00 [Ib/in2] Minimum bearing pressure 0.00 [Ib/in2] Maximum anchor tension 1.15 [kip] Minimum anchor tension 1.15 [kip] Neutral axis angle 0.00 [deg] Bearing length -1.2E31 [in] ------------------------ Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] ----------------------------- 1 -2.00 -2.00 0.00 1.15 2 -2.00 2.00 0.00 1.15 3 2.00 2.00 0.00 1.15 4 2.00 -2.00 0.00 1.15 Major axis Results for tensile breakout(Wind) 3• r:R pp..ti i AO N. , ,..‹.. ,, ,,I,.,. .,...., t...,,,.:, ,,,:...„,, ,„.4,, ,.,. ,.,, 4'r._ ,.1,4,10 k�, 4'�t r - Rt iiia "� .a, is � Iit���i��� Group Area Tension Anchors [in2] [kip] 1 1600.00 4.60 1,2,3,4 -------------------- Pagel 30 ,, 4 1 Results for shear breakout(D4) k•rNs re..:.:-,. Ot 4,0,, ,�p N Group Area Shear Anchors [in2] [kip] ----------------- 1 2160.00 16.28 1,2,3,4 2 2160.00 8.14 2,3 -------------------------- Minor axis Results for tensile breakout(Wind) t by CH ;0,- 4g . Group Area Tension Anchors [in2] [kip] 1 1600.00 4.60 1,2,3,4 Connection name : Pinned BP-HSS Member Connection ID : 2 Page8 31 Family:Column-Base(CB) Type:Base plate Description:At auger cast footing GENERAL INFORMATION Connector -1, , _ 1 B I 34 *, N 4 D _ '` I • ..:L:j 10.- -.4 D e; N C D wt MEMBERS Column Column type Prismatic member Section W 18X60 Material A992 Gr50 CONNECTOR Base plate Plate shape Rectangular Connection type Unstiffened Position on the support Center N:Longitudinal dimension 20 in B:Transversal dimension 10 in Thickness 0.75 in Material A36 Column weld E70XX Outer welds flanges only No D:Column weld size(1/16 in) 5 Override A2/A1 ratio No Include shear lug No Support With pedestal No Longitudinal dimension 22 in Transversal dimension 22 in Thickness 60 in Material C 4-60 Include grouting No Anchor Anchor position Longitudinal position Rows number per side 1 Anchors per row 2 Longitudinal edge distance on the plate 6 in Transverse edge distance on the plate 3 in Anchor type Headed Head type Heavy hexagonal Page9 32 Include lock nut No Anchor 3/4" Effective embedment depth 12 in Total length 13.74 in Material F1554 Gr36 Fy 36 kip/in2 Fu 58 kipfin2 Cracked concrete Yes Brittle steel No Anchors welded to base plate No Anchor reinforcement Type of reinforcement Primary Tension reinforcement No Shear reinforcement Yes Shear bar size no.4 Shear bar grade 40 kip/iin2 Shear number of bars in major axis direction 6 Shear number of bars in minor axis direction 6 Design code:AISC 360-16 LRFD,ACI 318-11 DEMANDS Description Pu Mu22 Mu33 Vu2 Vu3 Load type [kip] [kip*ft] [kip*ft] [kip] [kip] Snow 0.00 0.00 0.00 0.00 0.00 Design Wind 0.00 0.00 0.00 0.00 0.00 Design D1 -37.80 0.00 0.00 14.70 0.00 Design D2 -33.90 0.00 0.00 17.85 0.00 Design D3 -32.40 0.00 0.00 12.60 0.00 Design D4 -37.20 0.00 0.00 29.40 0.00 Design D5 -32.40 0.00 0.00 12.60 0.00 Design D6 -32.40 0.00 0.00 12.60 0.00 Design D7 -37.20 0.00 0.00 29.40 0.00 Design D8 -32.40 0.00 0.00 12.60 0.00 Design D9 -32.40 0.00 0.00 12.60 0.00 Design D10 -33.90 0.00 0.00 17.85 0.00 Design D11 -32.40 0.00 0.00 12.60 0.00 Design D12 -24.30 0.00 0.00 9.45 0.00 Design D13 -32.40 0.00 0.00 12.60 0.00 Design Design for major axis Base plate(AISC 360-16 LRFD) GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Base plate Distance from anchor to edge [in] 2.62 0.25 -- e/ Weld size [1/16in] 5 3 -- d table J2.4 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Concrete base Axial bearing [Kip/in2] 2.43 0.19 D1 0.08 DG1 3.1.1; Base plate Flexural yielding(bearing interface) [Kip*ft/ft] 4.56 0.37 D1 0.08 DG1 Sec 3.1.2 Flexural yielding(tension interface) [Kip*ft/ft] 4.56 0.00 Snow 0.00 DG1 Eq.3.3.13 Column Weld capacity [Kip/ft] 125.29 0.00 Snow 0.00 p.8-9, Sec.J2.5, Sec.J2.4 Elastic method weld shear capacity [Kip/ft] 83.53 11.03 D4 0.13 p.8-9, Sec.J2.5, Sec.J2.4 Pagel() 33 Elastic method weld axial capacity [Kip/ft] 125.29 0.00 Snow 0.00 p.8-9, Sec.J2.5, Sec.J2.4 Ratio 0.13 Design for minor axis Base plate(AISC 360-16 LRFD) GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Base plate Distance from anchor to edge [in] 2.62 0.25 - oI Weld size [1/16in] 5 3 -- ✓ table J2.4 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Concrete base Axial bearing [Kip/in2] 2.43 0.19 D1 0.08 DG1 3.1.1; Base plate Flexural yielding(bearing interface) [Kip*ft/ft] 4.56 0.37 D1 0.08 DG1 Sec 3.1.2 Flexural yielding(tension interface) [Kip*ft/ft] 4.56 0.00 Snow 0.00 DG1 Eq.3.3.13 Column Weld capacity [Kip/ft] 125.29 0.00 Snow 0.00 p.8-9, Sec.J2.5, Sec.J2.4 Elastic method weld shear capacity [Kip/ft] 83.53 0.00 Snow 0.00 p.8-9, Sec.J2.5, Sec.J2.4 Elastic method weld axial capacity [Kip/ft] 125.29 0.00 Snow 0.00 p.8-9, Sec.J2.5, Sec.J2.4 Ratio 0.08 Major axis Anchors GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Anchors Anchor spacing [in] 4.00 3.00 -- I Sec.D.8.1 Concrete cover [in] 6.62 3.00 -- Sec.7.7.1 Effective length [in] 12.49 - 59.51 i/ DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Anchor tension [Kip] 14.55 0.00 Snow 0.00 Eq.D-2 Breakout of anchor in tension [Kip] 15.18 0.00 Snow 0.00 Eq.D-3, Sec.D.3.3.4.4 Pullout of anchor in tension [Kip] 20.41 0.00 Snow 0.00 Sec.D.3.3.4.4 Anchor shear [Kip] 7.57 7.35 D4 0.97 Eq.D-29 Pryout of anchor in shear [Kip] 30.36 7.35 D4 0.24 Eq.D-3, Table D.4.1.1, Sec.D.4.3 Anchors reinforcement in shear [Kip] 36.00 29.40 D4 0.82 Sec.D.5.2.9, D.6.2.9 Ratio 0.97 • Pagell 34 Minor axis Anchors GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Anchors Anchor spacing [in] 4.00 3.00 -- d Sec.D.8.1 Concrete cover [in] 6.62 3.00 -- d Sec.7.7.1 Effective length [in] 12.49 — 59.51 ./ DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Anchor tension [Kip] 14.55 0.00 Snow 0.00 Eq.D-2 Breakout of anchor in tension [Kip] 15.18 0.00 Snow 0.00 Eq.D-3, Sec.D.3.3.4.4 Pullout of anchor in tension [Kip] 20.41 0.00 Snow 0.00 Sec.D.3.3.4.4 Anchor shear [Kip] 7.57 0.00 Snow 0.00 Eq.D-29 Pryout of anchor in shear [Kip] 30.36 0.00 Snow 0.00 Eq.D-3, Table D.4.1.1, Sec.D.4.3 Ratio 0.00 Global critical strength ratio 0.97 Major axis Maximum compression(D1) Base plate Base prate Concrete stress Anchors tension [thrn21 [kip] i 189 tt 0 ��'(� 189 ' 0 i 189 ti • r o ED © Io , o 189 � 1 189 � 4 .1 0 n 189 a,�` i-�0 189 = t ' 0 I 189 0 • U ; a 189 V.W t 0 189 0 j 189 1.4.,•''$ r 4p. 0 � 189 �. '� 0 '1 189 ;i 0 189 0 189 0 --------------------------- Maximum bearing pressure 189.00 [Ib/in2] Minimum bearing pressure 189.00 [Ib/in2] Maximum anchor tension 0.00 [kip] Minimum anchor tension 0.00 [kip] Neutral axis angle 0.00 [deg] Bearing length 1.2E31 [in] Page12 35 ,t 'r Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] 1 -2.00 -4.00 3.68 0.00 2 -2.00 4.00 3.68 0.00 3 2.00 4.00 3.68 0.00 4 2.00 -4.00 3.68 0.00 ----------------------------------- Maximum tension(Snow) Base plate Base plate Concrete stress Anchors tension [m«] [bP] *r - 0 0 ' y 0 0 i ,Y1 0 him Q o a °.Q , loo r3�,, 0 y 4�+`�� • 7M1 f t AI 0 ,.r :,-?,,,,,e, i 0 R.i9 1 Q i. [ K 1 0 0 ' � 1�� O ". a y 0 t f As. 0 ,IcYy =�a4� 0 0 a 0 0 0 Maximum bearing pressure 0.00 [Ib/in2] Minimum bearing pressure 0.00 [Ib/in2] Maximum anchor tension 0.00 [kip] Minimum anchor tension 0.00 [kip] Neutral axis angle 0.00 [deg] Bearing length 0.00 [in] ------------------------ Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] 1 -2.00 -4.00 0.00 0.00 2 -2.00 4.00 0.00 0.00 3 2.00 4.00 0.00 0.00 4 2.00 -4.00 0.00 0.00 Page13 36 Minor axis Maximum compression(D1) Base plate Base prate Concrete stress Anchors tension [in2] [kip] 1 189M 0 !!oei 489 ":s '":K,` ,' 0 189 { a �',' i 189 st;r 1- 0 to I 189 d0k f{ yC+]. • 0 ll 189 e. 11. 0 1 r 189 J .`a:: 0 i r189 I0 r,, .tee '„ ; ii 189 = ._ ? 00 is "fip : �'� ,Z4i)...: 189 `*," T .�:;ti'';,' 0 189 i , i !'. "-.3v;" d, 0 189 V - -..,' 0 189 0 189 0 -------------------------- Maximum bearing pressure 189.00 [Ib/in2] Minimum bearing pressure 189.00 [Ib/in2] Maximum anchor tension 0.00 [kip] Minimum anchor tension 0.00 [kip] Neutral axis angle 0.00 [deg] Bearing length 1.2E31 [in] ------------------------------- Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] ------------------------------- 1 -2.00 -4.00 0.00 0.00 2 -2.00 4.00 0.00 0.00 3 2.00 4.00 0.00 0.00 4 2.00 -4.00 0.00 0.00 Maximum tension(Snow) Base plate Base plate ,.,,,,„1.. .14 kt..:,. ::!..;,!!, Concrete stress Anchors tension 0 ,,,.;:::,:,0,, ,,,,,„ .,:.‘ ,.,,, ,,,.,„,,,,„, ,:„.: [Mrs] [kip] ,'::!',',!,1 ! ,, ,,,„,,i;";: IA. i.- '', ae a kt. 1 0 r w .)-...1;c:. 4,- twit-I . o :,:,,i-,.\k-i.a „LaWa-3, o F ',v.`�s'g�q^i ���� v�'` a L �ti` `�' �.a°: 5.', 0 10 . gOti x ",�+ 0 �,:. 0 r a r7 a �Lt -. 0 ,;"; §° °a o 0 :, .� .« }. 0 0 0 Maximum bearing pressure 0.00 [Ib/in2] Minimum bearing pressure 0.00 [Ib/in2] Maximum anchor tension 0.00. [kip] Minimum anchor tension 0.00 [kip] Neutral axis angle 0.00 [deg] Page14 37 Bearing length 0.00 [in] ------------------------------- Anchors tensions Anchor Transverse Longitudinal Shear Tension [in] [in] [kip] [kip] 1 -2.00 -4.00 0.00 0.00 2 -2.00 4.00 0.00 0.00 3 2.00 4.00 0.00 0.00 4 2.00 -4.00 0.00 0.00 Page15 38 orb- �4 . `1 e��i 1 ��_ Willett Engineering Current Date:9/14/2021 3:48 PM Units system:English Steel connections Detailed report Connection name : SP BCF Connection ID : 1V Family:Beam-Column flange(BCF) Type:Single plate GENERAL INFORMATION Connector a, , Dist'lop L Is nr b I H s b MEMBERS Beam General Beam section W 18X50 Beam material A992 Gr50 sb: Beam setback 0.5 in Horizontal angle(deg) 0 Vertical angle(deg) 26.6 Horizontal eccentricity 0 in Coped dct: Top cope depth 0 in ct: Top cope length 0 in dcb: Bottom cope depth 0 in cb: Bottom cope length 0 in Column General Support section W 18X60 Support material A992 Gr50 Is column end No SINGLE PLATE Connector Section PL 3/8x4 1/2x9 b: Width 4.5 in L: Length 9 in tp: Plate thickness 0.375 in Material A36 Plate position on beam Center Bolts 3/4"A325 N nr: Rows of Bolts 3 nc:Bolt columns 1 s: Pitch-longitudinal center-to-center spacing 3 in Lev: Vertical edge distance 1.5 in Pagel 39 1 ' , Leh: Horizontal edge distance 1.5 in a: Distance between weld and bolts 3 in Hole type on plate Standard(STD) Hole type on beam Standard(STD) Welding electrode to support E70XX D: Weld size to support(1/16 in) 4 Wo:Obtuse side weld size(AWS)(1/16 in) 4 Wa:Acute side weld size(AWS)(1/16 in) 4 Wo:Obtuse side weld size(AISC)(1/16 in) 4 Wa:Acute side weld size(AISC)(1/16 in) 4 Design code:AISC 360-16 ASD DEMANDS Beam Column Description Ru Pu Pu Mu22 Mu33 Load type [kip] [kip] [kip] [kip*ft] [kip*ft] P 7.59 27.28 0.00 0.00 0.00 Design N 7.59 27.28 0.00 0.00 0.00 Design GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Shear plate Number of bolts 3 2 12 V p 10-102 Distance from the bolt line to the weld line [in] 3.00 - 3.50 V p 10-102 Minimum plate or beam web thickness [in] 0.36 - 0.44 s Table 10-9 Length [in] 9.00 8.03 16.06 V p.10-104 Vertical edge distance [in] 1.50 1.00 -- V Tables J3.4, J3.5 Horizontal edge distance [in] 1.50 1.50 -- d p.10-103 Vertical center-to-center spacing(pitch) [in] 3.00 2.00 8.52 V Sec.J3.3, Sec.J3.5 Beam Vertical edge distance [in] 7.07 1.00 -- V Tables J3.4, J3.5 Horizontal edge distance [in] 2.50 1.50 -- d p.10-103 Support Weld size [1/16in] 4 4 -- V p.10-87 Weld length [in] 9.00 1.00 -- V Sec.J2.2b DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Shear plate Bolts shear [Kip] 31.07 28.32 P 0.91 Tables(7-1..14) Bolt bearing under shear load [Kip] 37.16 7.59 P 0.20 Eq.J3-6, p.7-18 Shear yielding [Kip] 48.60 7.59 P 0.16 Eq.J4-3 Shear rupture [Kip] 41.60 7.59 P 0.18 Eq.J4-4 Block shear [Kip] 41.93 7.59 P 0.18 Eq.J4-5 Bolt bearing under axial load [Kip] 37.16 27.28 P 0.73 Eq.J3-6, p.7-18 Tension yielding [Kip] 72.75 27.28 P 0.38 Eq.J4-1 Tension rupture [Kip] 69.33 27.28 P 0.39 Eq.J4-2 Tear out under axial load [Kip] 58.37 27.28 P 0.47 Eq.J4-5 Plate(support side) Weld capacity [Kip] 98.42 28.32 P 0.29 Tables 8-4..8-11 Beam Bolt bearing under shear load [Kip] 54.06 7.59 P 0.14 Eq.J3-6, p.7-18 Shear yielding [Kip] 127.80 7.59 P 0.06 Eq.J4-3 Bolt bearing under axial load [Kip] 62.30 27.28 P 0.44 Eq.J3-6 Yielding strength due to axial load [Kip] 440.12 27.28 P 0.06 Eq.D2-1 Page2 40 Tension rupture [Kip] 182.19 27.28 P 0.15 Eq.J4-2 Tear out under axial load [Kip] 75.66 27.28 P 0.36 Eq.J4-5 Support Welds rupture [Kip/ft] 325.26 25.64 P 0.08 p.9-5 Global critical strength ratio 0.91 NOTES The plate is designed with the conventional configuration criteria. Connection name : FP BCF Bolted Connection ID : 1M Family:Beam-Column flange(BCF) Type:Flange-plated GENERAL INFORMATION Connector / D D2 D2 d I L LLL*f Hsb 000=I i lad I nr of s s Lev MEMBERS Configuration Exists opposite connection No Beam General Beam section W 18X50 Beam material A992 Gr50 Horizontal angle(deg) 0 Vertical angle(deg) 26.6 sb: Beam setback 0.5 in Horizontal eccentricity 0 in Column General Support section W 18X60 Support material A992 Gr50 Is column end No FLANGE PLATE Connector Top plate section PL 3/4x6 1/2x15 1/2 L:Top plate length 15.5 in b: Top plate width 6.5 in tp: Top plate thickness 0.75 in Bottom plate section PL 3/4x6 1/2x15 1/2 Lb:Bottom plate length 15.5 in bb: Bottom plate width 6.5 in tpb: Bottom plate thickness 0.75 in Plate material A36 Beam side Connection type Bolted Bolts 3/4"A325 N Page3 41 nc: Bolt columns 2 nr: Rows of Bolts 5 g: Gage-transverse center-to-center spacing 3.5 in s: Pitch-longitudinal center-to-center spacing 3 in Lev: Longitudinal distance to top plate edge 1.5 in Leh: Transverse distance to top plate edge 1.5 in ef: Longitudinal distance to beam edge(top plate) : 1.5 in Levb: Longitudinal distance to bottom plate edge 1.5 in Lehb: Transverse distance to bottom plate edge 1.5 in efb: Longitudinal distance to beam edge(bottom... : 1.5 in Hole type on beam Standard(STD) Hole type on top plate Standard(STD) Hole type on bottom plate Standard(STD) Support side Top plate weld type Full penetration Bottom plate weld type Full penetration STIFFENERS Transverse stiffeners A A IH cc 1b1 ,1. . MI A-A Section PL 3/8x2x16.81 Position Bottom Full depth Yes Length 16.81 in bs:Transverse stiffeners width 2 in cc:Corner clip length • 1 in cc:Corner clip width 1 in ts:Transverse stiffener thickness 0.375 in Material A36 Weld type Fillet Welding electrode to support E70XX D: Weld size to support(1/16 in) 3 Column web panel zone stiffeners Stiffener type Without stiffener Design code:AISC 360-16 ASD DEMANDS Beam Right beam Left beam Column Panel Description Ru Pu Mu PufTop PufBot PufTop PufBot Pu Vu Load type [kip] [kip] [kip*ft] [kip] [kip] [kip] [kip] [kip] [kip] P -9.40 18.78 155.00 -86.03 104.81 0.00 0.00 0.00 104.81 Design N -9.40 18.78 155.00 -86.03 104.81 0.00 0.00 0.00 104.81 Design GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Plate(beam side) Vertical center-to-center spacing(pitch) [in] 3.00 2.00 12.00 d Sec.J3.3, Sec.J3.5 Horizontal center-to-center spacing(gage) [in] 3.50 2.00 12.00 if Sec.J3.3, Sec.J3.5 Top flange plate data Vertical edge distance [in] 1.50 1.00 -- Tables J3.4, J3.5 Horizontal edge distance [in] 1.50 1.00 -- Tables J3.4, Page4 42 J3.5 Bottom flange plate data Vertical edge distance [in] 1.50 1.00 -- V Tables J3.4, J3.5 Horizontal edge distance [in] 1.50 1.00 -- ,t Tables J3.4, J3.5 Plate(support side) Top plate weld size-column flange [1/16in] 5 4 -- if table J2.4 Bottom plate weld size-column flange [1/16in] 5 4 -- +e table J2.4 Beam Vertical edge distance [in] 1.50 1.00 -- +/ Tables J3.4, J3.5 Horizontal edge distance [in] 2.00 1.00 -- if Tables J3.4, J3.5 Transverse stiffeners Length [in] 16.81 8.41 16.81 ✓ Sec.J10.8 Width [in] 2.00 1.96 -- V Sec.J10.8 Thickness [in] 0.38 0.38 -- if Sec.J10.8 Weld size [1/16in] 3 3 -- d DG 13 Eq.4.3-6 Support Web thickness [in] 0.41 0.29 -- ./ p.9-5 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Top plate(beam side) Compression [Kip] 105.09 79.31 P 0.75 Sec.J4.4 Tension yielding [Kip] 105.09 0.00 P 0.00 Eq.J4-1 Bolts shear [Kip] 119.34 83.01 P 0.70 Tables(7-1..14) Bolt bearing(Top plate) [Kip] 370.29 83.01 P 0.22 Eq.J3-6 Block shear [Kip] 264.92 0.00 P 0.00 Eq.J4-5 Tension rupture [Kip] 103.31 0.00 P 0.00 Eq.J4-2 Bottom plate(beam side) Tension yielding [Kip] 105.09 98.09 P 0.93 Eq.J4-1 Compression [Kip] 105.09 0.00 P 0.00 Sec.J4.4 Bolts shear [Kip] 119.34 101.78 P 0.85 Tables(7-1..14) Tension rupture [Kip] 103.31 98.09 P 0.95 Eq.J4-2 Block shear [Kip] 264.92 98.09 P 0.37 Eq.J4-5 Bolt bearing(Bottom plate) [Kip] 370.29 101.78 P 0.27 Eq.J3-6 Beam Top flange bending [Kip*ft] 221.07 155.00 P 0.70 Eq.F13-1 Top flange bolt bearing under shear load [Kip] 315.39 104.81 P 0.33 Eq.J3-6 Top flange block shear [Kip] 270.47 104.81 P 0.39 Eq.J4-5 Bottom flange bending [Kip*ft] 221.07 155.00 P 0.70 Eq.F13-1 Bottom flange bolt bearing under shear load [Kip] 315.39 104.81 P 0.33 Eq.J3-6 Bottom flange block shear [Kip] 270.47 104.81 P 0.39 Eq.J4-5 Support Panel web shear [Kip] 135.68 98.09 P 0.72 Sec.J10-6, Eq.J10-9 Support-right side Bottom local flange bending [Kip] 106.55 98.09 P 0.92 Eq.J10-1 Local web yielding [Kip] 102.63 98.09 P 0.96 Eq.J10-2 Top web bearing [Kip] 113.48 79.31 P 0.70 Eq.J10-4 Transverse stiffeners-bottom Yielding strength due to axial load [Kip] 16.17 11.63 P 0.72 Eq.J4-1 Compression [Kip] 9.46 0.00 P 0.00 Sec.J4.4 Flange weld capacity [Kip] 13.57 11.63 P 0.86 Eq.J2-4 Web weld capacity [Kip] 160.76 11.63 P 0.07 Eq.J2-4 Global critical strength ratio 0.96 Page5 43 S B ` Willett Engineering Current Date:9/14/2021 3:48 PM Units system:English Steel connections Detailed report Connection name : SP BCF Connection ID : 1V Family:Beam-Column flange(BCF) Type:Single plate GENERAL INFORMATION Connector DistTop "7/ ` L ••-nr b 1 sb MEMBERS Beam General Beam section • W 12X30 Beam material • A992 Gr50 sb: Beam setback • 0.5 in Horizontal angle(deg) • 0 Vertical angle(deg) • 0 Horizontal eccentricity • 0 in Coped dct: Top cope depth • 0 in ct: Top cope length • 0 in dcb: Bottom cope depth • 0 in cb: Bottom cope length • 0 in Column General Support section • W 16X40 Support material • A992 Gr50 Is column end • No SINGLE PLATE Connector Section • PL 3/8x4 1/2x6 b: Width • 4.5 in L: Length • 6 in tp: Plate thickness • 0.375 in Material • A36 Plate position on beam • Center Bolts • 3/4"A325 N nr: Rows of Bolts • 2 nc:Bolt columns • 1 s: Pitch-longitudinal center-to center spacing • 3 in Lev: Vertical edge distance 1.5 in Pagel 44 a + , i Leh: Horizontal edge distance 1.5 in a: Distance between weld and bolts 3 in Hole type on plate Standard(STD) Hole type on beam Standard(STD) Welding electrode to support E70XX D: Weld size to support(1/16 in) 4 Wo:Obtuse side weld size(AWS)(1/16 in) 4 Wa:Acute side weld size(AWS)(1/16 in) 4 Wo:Obtuse side weld size(AISC)(1/16 in) 4 Wa:Acute side weld size(AISC)(1/16 in) 4 Design code:AISC 360-16 ASD DEMANDS Beam Column Description Ru Pu Pu Mu22 Mu33 Load type [kip] [kip] [kip] [kip*ft] [kip*ft] D1 0.40 -0.10 -1.00 0.00 0.00 Design D2 0.40 -0.10 -1.00 0.00 0.00 Design D3 0.40 -0.10 -1.00 0.00 0.00 Design D4 0.40 -0.10 -1.00 0.00 0.00 Design D5 0.40 -0.10 -1.00 0.00 0.00 Design D6 0.40 -0.10 -1.00 0.00 0.00 Design D7 0.40 -0.10 -1.00 0.00 0.00 Design D8 2.92 -2.32 -3.52 0.00 0.00 Design D9 0.40 -0.10 -1.00 0.00 0.00 Design D10 0.40 -0.10 -1.00 0.00 0.00 Design D11 2.29 -1.77 -2.89 0.00 0.00 Design D12 0.40 -0.10 -1.00 0.00 0.00 Design D13 0.40 -0.10 -1.00 0.00 0.00 Design D14 2.29 -1.77 -2.89 0.00 0.00 Design D15 0.24 -0.06 -0.60 0.00 0.00 Design D16 0.24 -0.06 -0.60 0.00 0.00 Design D17 2.76 -2.28 -3.12 0.00 0.00 Design D18 0.40 -0.10 -1.00 0.00 0.00 Design GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Shear plate Number of bolts 2 2 12 J p 10-102 Distance from the bolt line to the weld line [in] 3.00 -- 3.50 d p 10-102 Minimum plate or beam web thickness [in] 0.26 - 0.44 r0 Table 10-9 Length [in] 6.00 5.41 10.82 i/ p.10-104 Vertical edge distance [in] 1.50 1.00 -- d Tables J3.4, J3.5 Horizontal edge distance [in] 1.50 1.50 -- e1 p.10-103 Vertical center-to-center spacing(pitch) [in] 3.00 2.00 6.24 1 Sec.J3.3, Sec.J3.5 Beam Vertical edge distance [in] 4.65 1.00 -- I Tables J3.4, J3.5 Horizontal edge distance [in] 2.50 1.50 -- 1 p.10-103 Support Weld size [1/16in] 4 4 -- if p.10-87 Weld length [in] 6.00 1.00 -- if Sec.J2.2b Page2 45 ‘ f 1 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Shear plate Bolts shear [Kip] 15.97 3.73 D8 0.23 Tables(7-1..14) Bolt bearing under shear load [Kip] 19.10 2.92 D8 0.15 Eq.J3-6, p.7-18 Shear yielding [Kip] 32.40 2.92 D8 0.09 Eq.J4-3 Shear rupture [Kip] 27.73 2.92 D8 0.11 Eq.J4-4 Block shear [Kip] 29.78 2.92 D8 0.10 Eq.J4-5 Plate(support side) Weld capacity [Kip] 55.48 3.73 D8 0.07 Tables 8-4..8-11 Web crippling [Kip] 72.88 2.32 D8 0.03 Eq.J10-4 Beam Bolt bearing under shear load [Kip] 20.36 2.92 D8 0.14 Eq.J3-6, p.7-18 Shear yielding [Kip] 63.96 2.92 D8 0.05 Eq.J4-3 Bolt bearing under axial load [Kip] 30.42 0.00 D1 0.00 Eq.J3-6 Support Welds rupture [Kip/ft] 236.34 5.99 D8 0.03 p.9-5 Global critical strength ratio 0.23 NOTES The plate is designed with the conventional configuration criteria. Connection name : FP BCF Bolted Connection ID : 1M Family:Beam-Column flange(BCF) Type:Flange-plated GENERAL INFORMATION Connector / D D2 D2 a a--- I L ®ow e -11 \1 IHeb I I • • •� ehlL I P 9� r i � r Li 1 ���� I I I I I nr of s s Lev MEMBERS Configuration Exists opposite connection No Beam General Beam section W 12X30 Beam material A992 Gr50 Horizontal angle(deg) 0 Vertical angle(deg) 0 sb: Beam setback 0.5 in Horizontal eccentricity 0 in Column General Support section W 16X40 Support material A992 Gr50 Is column end No Page3 46 1 FLANGE PLATE Connector Top plate section PL 3/8x6 1/2x6 L:Top plate length 6 in b: Top plate width 6.5 in tp: Top plate thickness 0.375 in Bottom plate section PL 3/8x6x6 Lb:Bottom plate length 6 in bb: Bottom plate width 6 in tpb: Bottom plate thickness 0.375 in Plate material A36 Beam side Connection type Bolted Bolts 3/4"A325 N nc: Bolt columns 2 nr: Rows of Bolts 2 g: Gage-transverse center-to-center spacing 3.5 in s: Pitch-longitudinal center-to-center spacing 2.5 in Lev: Longitudinal distance to top plate edge 1.5 in Leh: Transverse distance to top plate edge 1.5 in ef: Longitudinal distance to beam edge(top plate) : 1.5 in Levb: Longitudinal distance to bottom plate edge 1.5 in Lehb: Transverse distance to bottom plate edge 1.25 in efb: Longitudinal distance to beam edge(bottom... : 1.5 in Hole type on beam Standard(STD) Hole type on top plate Standard(STD) Hole type on bottom plate Standard(STD) Support side Top plate weld type Fillet Bottom plate weld type Fillet Welding electrode to support E70XX D1: Top weld size to support(1/16 in) 3 Welding electrode to support E70XX D2: Bottom weld size to support(1/16 in) 3 STIFFENERS Transverse stiffeners Position None Column web panel zone stiffeners Stiffener type Without stiffener Design code:AISC 360-16 ASD DEMANDS Beam Right beam Left beam Column Panel Description Ru Pu Mu PufTop PufBot PufTop PufBot Pu Vu Load type [kip] [kip] [kip*ft] [kip] [kip] [kip] [kip] [kip] [kip] D1 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D2 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D3 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D4 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D5 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D6 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D7 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D8 0.00 -2.32 30.90 -32.42 30.10 0.00 0.00 -3.52 30.28 Design D9 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D10 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D11 0.00 -1.77 22.80 -23.95 22.19 0.00 0.00 -2.89 22.40 Design D12 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D13 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design D14 0.00 -1.77 22.80 -23.95 22.19 0.00 0.00 -2.89 22.40 Design D15 0.00 -0.06 -0.90 0.88 -0.94 0.00 0.00 -0.60 0.82 Design D16 0.00 -0.06 -0.90 0.88 -0.94 0.00 0.00 -0.60 0.82 Design D17 0.00 -2.28 31.50 -33.01 30.73 0.00 0.00 -3.12 30.79 Design D18 0.00 -0.10 -1.50 1.47 -1.57 0.00 0.00 -1.00 1.37 Design Page4 47 GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Plate(beam side) Vertical center-to-center spacing(pitch) [in] 2.50 2.00 9.00 rr Sec.J3.3, Sec.J3.5 Horizontal center-to-center spacing(gage) [in] 3.50 2.00 9.00 1 Sec.J3.3, Sec.J3.5 Top flange plate data Vertical edge distance [in] 1.50 1.00 -- al` Tables J3.4, J3.5 Horizontal edge distance [in] 1.50 1.00 -- se Tables J3.4, J3.5 Bottom flange plate data Vertical edge distance [in] 1.50 1.00 -- if Tables J3.4, J3.5 Horizontal edge distance [in] 1.25 1.00 - I Tables J3.4, J3.5 Plate(support side) Top plate weld size-column flange [1/16in] 3 3 -- It table J2.4 Bottom plate weld size-column flange [1/16in] 3 3 -- r/ table J2.4 Beam Vertical edge distance [in] 1.50 1.00 - d Tables J3.4, J3.5 - Horizontal edge distance [in] 1.51 1.00 - d Tables J3.4, J3.5 Support Thickness [in] 0.51 0.14 -- se p.9-5 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Top plate(beam side) Compression [Kip] 52.54 30.96 D17 0.59 Sec.J4.4 Tension yielding [Kip] 52.54 1.37 D1 0.03 Eq.J4-1 Bolts shear [Kip] 47.74 31.87 D17 0.67 Tables(7-1..14) Bolt bearing(Top plate) [Kip] 67.70 31.87 D17 0.47 Eq.J3-6 Block shear [Kip] 55.51 1.37 D1 0.02 Eq.J4-5 Tension rupture [Kip] 51.66 1.37 D1 0.03 Eq.J4-2 Bottom plate(beam side) Tension yielding [Kip] 48.50 28.68 D17 0.59 Eq.J4-1 Compression [Kip] 48.50 1.47 D1 0.03 Sec.J4.4 Bolts shear [Kip] 47.74 29.59 D17 0.62 Tables(7-1..14) Tension rupture [Kip] 46.22 28.68 D17 0.62 Eq.J4-2 Block shear [Kip] 50.07 28.68 D17 0.57 Eq.J4-5 Bolt bearing(Bottom plate) [Kip] 67.70 29.59 D17 0.44 Eq.J3-6 Top plate(support side) Weld to column [Kip] 54.29 33.01 D17 0.61 Eq.J2-4 Bottom plate(support side) Weld to column [Kip] 50.12 30.73 D17 0.61 Eq.J2-4 Beam Top flange bending [Kip*ft] 91.60 31.50 D17 0.34 Eq.F13-1 Top flange bolt bearing under shear load [Kip] 89.02 33.01 D17 0.37 Eq.J3-6 Top flange block shear [Kip] 76.79 33.01 D17 0.43 Eq.J4-5 Bottom flange bending [Kip`ft] 91.60 31.50 D17 0.34 Eq.F13-1 Bottom flange bolt bearing under shear load [Kip] 89.02 33.01 D17 0.37 Eq.J3-6 Bottom flange block shear [Kip] 76.79 33.01 D17 0.43 Eq.J4-5 Support Panel web shear [Kip] 87.66 28.74 D17 0.33 Sec.J10-6, Eq.J 10-9 Support-right side Top local flange bending [Kip] 47.72 1.37 D1 0.03 Eq.J10-1 Bottom local flange bending [Kip] 47.72 28.68 D17 0.60 Eq.J10-1 Local web yielding [Kip] 53.73 30.96 D17 0.58 Eq.J10-2 Page5 48 Top web bearing [Kip] 61.46 30.96 D17 0.50 Eq.J10-4 Bottom web bearing [Kip] 61.46 1.47 D1 0.02 Eq.J10-4 Global critical strength ratio 0.67 Page6 49 'Bentley'Willett Engineering Current Date:9/14/2021 3:47 PM Units system:English Steel connections Detailed report Connection name : MEP BS APEX Extended upwards Connection ID : 2 Family:Beam splice(BS) Type:Moment end plate GENERAL INFORMATION Connector I-B-1 Lel e o pfo 1 Ns t1 6 f • L a II pr,j �/ 11 LeH 9 MEMBERS Configuration Is apex Yes Vertical angle(deg) -26.6 Include beam stiffener No Right beam Beams Beam type Prismatic member Beam section W 18X50 Beam material A992 Gr50 END PLATE Connector Plate extension Extended external edge Width 8.5 in tp: Plate thickness 0.375 in Plate material A36 Fy 36 kip/in2 Fu 58 kip/in2 Hole type on plate Standard(STD) Flush extension length 0.874 in Beam side Top flange weld type Fillet Top beam flange weld E70XX DI: Weld size to top beam flange(1/16in) 3 Bottom flange weld type Fillet Bottom beam flange weld E70XX Pagel 50 ' 1 D3: Weld size to bottom beam flange(1/16in) 3 Welding electrode to beam web E70XX D2: Weld size to beam web(1/16in) 5 End plate Bolts 3/4"A325 N g: Gage-transverse center-to-center spacing 3.5 in Lev: Vertical edge distance 1.5 in Leh: Horizontal edge distance 2.5 in Bolt group(top extension) pfo t:Distance from bolt rows to flange 1.5 in Bolt group(top flange) Bolts rows number 1 pfi t:Distance from bolt rows to flange 1.5 in Bolt group(bottom flange) Bolts rows number 1 pfi b:Distance from bolt rows to flange 1.5 in Design code:AISC 360-16 ASD DEMANDS Description ' Ru Pu Mu PufTop PufBot Load type [kip] [kip] [kip*ft] [kip] [kip] DL 2.01 -0.45 0.00 -0.22 -0.22 Design LL 12.08 15.20 0.00 7.60 7.60 Design S 4.03 12.52 0.00 6.26 6.26 Design W -0.44 8.05 0.00 4.03 4.03 Design D14 2.01 -0.45 0.00 -0.22 -0.22 Design D15 14.10 14.75 0.00 7.37 7.37 Design D16 6.04 12.07 0.00 6.04 6.04 Design D17 11.08 10.95 0.00 5.47 5.47 Design D18 5.04 8.94 0.00 4.47 4.47 Design D19 1.75 4.38 0.00 2.19 2.19 Design D20 10.88 14.57 0.00 7.29 7.29 Design D21 4.84 12.56 0.00 6.28 6.28 Design D22 0.94 4.56 0.00 2.28 2.28 Design D23 5.04 8.94 0.00 4.47 4.47 Design GEOMETRIC CONSIDERATIONS Dimensions Unit Value Min.value Max.value Sta. References Extended end plate Vertical edge distance [in] 1.50 1.00 4.50 d Sec.J3.5 Horizontal edge distance [in] 2.50 1.00 4.50 d Sec.J3.5 Vertical bolt spacing(external flange) [in] 3.64 2.00 -- d Sec.J3.3 Horizontal center-to-center spacing(gage) [in] 3.50 2.00 7.50 d Sec.J3.3, DG4 Sec.2.4, DG4 Sec.2.1, 2.4, DG16 Sec.2.5 Outer bolt distance(external flange) [in] 1.50 1.25 -- d DG4 Sec.2.1 Inner bolt distance(external flange) [in] 1.50 1.25 -- V DG4 Sec.2.1 Inner bolt distance(internal flange) [in] 1.50 1.25 -- d DG4 Sec.2.1 Bolt diameter [in] 0.75 - 1.50 d DG4 Sec.1.1 Beam Weld size(external flange) [1/16in] 3 3 -- d table J2.4 Weld size(internal flange) [1/16in] 3 3 -- d table J2.4 Web [1/16in] 5 3 -- d table J2.4 • Page2 51 DESIGN CHECK Verification Unit Capacity Demand Ctrl EQ Ratio References Moment end plate(external flange) Flexural yielding [Kip*ft] 45.89 12.34 LL 0.27 DG16 Sec 2.5 No prying bolt moment strength [Kip*ft] 129.24 12.34 LL 0.10 DG16 Sec 2.5 Bolt rupture with prying moment strength [Kip*ft] 93.23 12.34 LL 0.13 DG16 Sec 2.5 Bolts shear [Kip] 47.74 14.10 D15 0.30 Tables(7-1..14) Bolt bearing under shear load [Kip] 67.70 0.44 W 0.01 Eq.J3-6 Shear yielding [Kip] 41.23 3.80 LL 0.09 DG4 Eq.3.12 Shear rupture [Kip] 44.04 3.80 LL 0.09 DG4 Eq 3.14, AISC 358 Eq.6.9-12, DG4 Eq.3.13 Moment end plate(internal flange) Flexural yielding [Kip*ft] 24.75 12.34 LL 0.50 DG16 Sec 2.5 No prying bolt moment strength [Kip*ft] 58.59 12.34 LL 0.21 DG16 Sec 2.5 Bolt rupture with prying moment strength [Kip*ft] 42.26 12.34 LL 0.29 DG16 Sec 2.5 Bolts shear [Kip] 23.87 14.10 D15 0.59 Tables(7-1..14) Bolt bearing under shear load [Kip] 28.55 14.10 D15 0.49 Eq.J3-6 Shear yielding [Kip] 41.23 3.80 LL 0.09 DG4 Eq.3.12 Beam Web weld shear strength [Kip] 83.33 14.10 D15 0.17 Eq.J2-4 Web weld strength to reach yield stress [Kip/ft] 158.45 127.54 DL 0.80 Eq.J2-4, Eq.J4-1 Shear yielding [Kip] 127.80 14.10 D15 0.11 Eq.J4-3 Flange weld capacity(external flange) [Kip] 61.16 7.60 LL 0.12 Eq.J2-4 Flange weld capacity(internal flange) [Kip] 61.16 7.60 LL 0.12 Eq.J2-4 Global critical strength ratio 0.80 Page3 52 CFS Version 12.0.2 Page 1 Section: Z-Purlin.cfss kgarrett Zee 10x3.5x1x0.105 WECFS2 Rev. Date: 9/14/2021 10:53:23 AM By: kgarrett Printed: 9/14/2021 4:15:52 PM 53 CFS Version 12.0.2 Page 1 Section:Z-Purlin.cfss kgarrett Zee 10x3.5x1x0.105 WECFS2 Rev. Date: 9/14/2021 10:53:23 AM By: kgarrett Printed: 9/14/2021 4:15:52 PM Section Inputs Material: A653 SS Grade 55 No cold work of forming strength increase. No inelastic reserve strength increase. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 55 ksi Tensile Strength, Fu 70 ksi Torsion Constant Override, J 0 in4 Warping Constant Override, Cw 0 in6 Stiffened Zee, Thickness 0.105 in Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 1.000 -50.000 0.18800 None 0.000 0.000 0.500 2 3.500 0.000 0.18800 Single 0.000 0.000 1.750 3 10.000 90.000 0.18800 Zee 0.000 0.000 5.000 4 3.500 0.000 0.18800 Single 0.000 0.000 1.750 5 1.000 -50.000 0.18800 None 0.000 0.000 0.500 54 . 'I CFS Version 12.0.2 Page 1 Analysis: 4-Span Z-Purlin.cfsa kgarrett 4-Span Beams with Laps WECFS2 Rev. Date: 9/14/2021 4:14:24 PM By: kgarrett Printed: 9/14/2021 4:15:52 PM 4 Analysis Inputs General Member Orientation: Horizontal Calculate global buckling using specification equations Do not include torsion in member checks Members Section File Revision Date and Time 1 Z-Purlin.cfss 9/14/2021 10:53:23 AM 2 Z-Purlin.cfss 9/14/2021 10:53:23 AM 3 Z-Purlin.cfss 9/14/2021 10:53:23 AM 4 Z-Purlin.cfss 9/14/2021 10:53:23 AM Material Area Length Weight (in2) (ft) (k) 1 A653 SS Grade 55 1.9380 28.00 0.18449 2 A653 SS Grade 55 1.9380 30.00 0.19767 3 A653 SS Grade 55 1.9380 30.00 0.19767 4 A653 SS Grade 55 1.9380 30.00 0.19767 Total 118.00 0.77751 Start Loc. End Loc. Braced R 4 Lm ex ey (ft) (ft) Flange (k) (ft) (in) (in) 1 0.00 28.00 Top 0.0000 0.0000 28.00 0.000 0.000 2 24.00 54.00 Top 0.0000 0.0000 30.00 0.000 0.000 3 50.00 80.00 Top 0.0000 0.0000 30.00 0.000 0.000 4 76.00 106.00 Top 0.0000 0.0000 30.00 0.000 0.000 55 CFS Version 12.0.2 Page 2 Analysis:4-Span Z-Purlin.cfsa kgarrett 4-Span Beams with Laps WECFS2 Rev. Date: 9/14/2021 4:14:24 PM By: kgarrett Printed: 9/14/2021 4:15:52 PM Supports Type Location Bearing Fastened K (ft) (in) 1 XYT 0.00 4.00 Yes 1.0000 2 XT 8.70 1.00 No 1.0000 3 XT 17.40 1.00 No 1.0000 4 XYT 26.00 4.00 Yes 1.0000 5 XT 34.70 1.00 No 1.0000 6 XT 43.40 1.00 No 1.0000 7 XYT 52.00 4.00 Yes 1.0000 8 XT 60.70 1.00 No 1.0000 9 XT 69.40 1.00 No 1.0000 10 XYT 78.00 4.00 Yes 1.0000 11 XT 87.30 1.00 No 1.0000 12 XT 96.70 1.00 No 1.0000 13 XYT 106.00 4.00 Yes 1.0000 Loading: Dead Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 63.000 0.00 106.00 -0.00500 -0.00500 k/ft Loading: Roof Live Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.00 106.00 -0.04700 -0.04700 k/ft Loading: Snow Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 63.000 0.00 106.00 -0.15700 -0.15700 k/ft Loading: Wind Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.00 106.00 0.04300 0.04300 k/ft Load Combination: D Specification: AISI S100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 Load Combination: D+Lr Specification: AISI S100-16/S1-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 56 CFS Version 12.0.2 Page 3 Analysis:4-Span Z-Purlin.cfsa kgarrett 4-Span Beams with Laps WECFS2 Rev. Date: 9/14/2021 4:14:24 PM By: kgarrett Printed: 9/14/2021 4:15:52 PM Load Combination: D+S Specification: AISI S100-16/S1-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Snow Load 1.000 Load Combination: D+0.75(L+Lr) Specification: AISI S100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Roof Live Load 0.750 4 Product Load 0.750 Load Combination: D+0.75(L+S) Specification: AISI S100-16/S1-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Roof Live Load 0.750 4 Product Load 0.750 5 Snow Load 0.750 Load Combination: D+0.6W Specification: AISI 5100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Wind Load 0.600 Load Combination: D+0.7E Specification: AISI S100-16/S1-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Earthquake Load 0.700 Load Combination: D+0.75(0.6W+L+Lr) Specification: AISI 5100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Roof Live Load 0.750 4 Product Load 0.750 5 Wind Load 0.450 57 CFS Version 12.0.2 Page 4 Analysis: 4-Span Z-Purlin.cfsa kgarrett 4-Span Beams with Laps WECFS2 Rev. Date: 9/14/2021 4:14:24 PM By: kgarrett Printed: 9/14/2021 4:15:52 PM Load Combination: D+0.75(0.6W+L+S) Specification: AISI 5100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Roof Live Load 0.750 4 Product Load 0.750 5 Snow Load 0.750 6 Wind Load 0.450 Load Combination: D+0.75(0.7E+L+5) Specification: AISI 5100-16/S1-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 1.000 2 Dead Load 1.000 3 Roof Live Load 0.750 4 Product Load 0.750 5 Snow Load 0.750 6 Earthquake Load 0.525 Load Combination: 0.6D+0.6W Specification: AISI S100-16/51-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 0.600 2 Dead Load 0.600 3 Wind Load 0.600 Load Combination: 0.6D+0.7E Specification: AISI 5100-16/S1-18, US, ASD Inflection Point Bracing: No Loading Factor 1 Beam Self Weight 0.600 2 Dead Load 0.600 3 Earthquake Load 0.700 Web Crippling Check -AISI S100-16/S1-18, US, ASD Load Combination: D+0.75(L+5) Parameters at 78.00 ft: Total Load: 4.8262 k on bottom flange Total Moment: -160.11 k-in Bearing: 4.0000 in Flange fastened to bearing surface: Yes Distance from edge of bearing to edge of opposite load: 106.00 ft Section: Z-Purlin.cfss Material Type: A653 SS Grade 55, Fy=55 ksi Applied Load: 2.4131 k on bottom flange Applied Moment: -80.06 k-in Distance from edge of bearing to end of member: 1.8333 ft 58 CFS Version 12.0.2 Page 5 Analysis: 4-Span Z-Purlin.cfsa kgarrett 4-Span Beams with Laps WECFS2 Rev. Date: 9/14/2021 4:14:24 PM By: kgarrett Printed: 9/14/2021 4:15:52 PM Part Elem Calculation Type Pa (k) Pay (k) Notes 1 3 Zee, FS-I0F 5.5812 5.5812 Web Crippling Strength 5.5812 Web Crippling Check: 2.4131 k <= 5.5812 k Moment Check: 80.06 k-in <= 170.10 k-in Interaction Equations Eq. H3-la (P, M) 0.238 + 0.282 = 0.520 <= 0.782 Member Check -AISI S100-16/S1-18, US, ASD Load Combination: D+S Design Parameters at 96.700 ft, Left side: Lx 28.000 ft Ly 9.400 ft Lt 9.400 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: Z-Purlin.cfss Material Type: A653 SS Grade 55, Fy=55 ksi Cbx 1.0987 Cby 2.7609 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: Top k4 0 k Red. Factor, R: 0 Lm 30.000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Total 0.000 104.46 -0.234 -8.18 -0.367 Applied 0.000 104.46 -0.234 -8.18 -0.367 Strength 20.711 141.52 10.942 36.06 13.299 Interaction Equations Eq. H1.2-1 (P, Mx, My) 0.000 + 0.738 + 0.227 = 0.965 <= 1.0 Eq. H2-1 (Mx, Vy) Sgrt(0.377 + 0.000)= 0.614 <= 1.0 Eq. H2-1 (My, Vx) Sqrt(0.048 + 0.001)= 0.220 <= 1.0 59 i CFS Version 12.0.2 Page 1 4-Span Z-Purlin.cfsa kgarrett 4-Span Beams with Laps WECFS2 Rev. Date: 9/14/2021 4:14:24 PM By: kgarrett Printed: 9/14/2021 4:15:24 PM Envelope of all combinations, Y Direction Reaction -o, 01 -0.56658 -0.42739 -0.59283 X o.50$05 (k) 1 1.4993 • 1.6409 3.5217 4.6192 4.8262 2.6062 2.1738 1 1.4993 .7378 Shear 0.20805 (k) -0.1901 -1.784 -1.6409 -2.2201 -2.4454 106.84 89.194 39.711 33.301 0.191 Moment 18.363AMlik, 10.65 2 (k-in) -11.308 5.032 -4.2193 -1~ 3�� -84.873 -145.69 -160.11 Deflection 0.10072 0.09325 0.1437 0.041391 0.02505 0.013443 (in) 1111,1r- _��- -0.011844 -0.19789 -0.10634 -0.79453 -1.1335 60 1 1 1 ALLOWABLE VERTICAL AND HORIZONTAL DIAPHRAGM SHEAR AND SHEAR STIFFNESS 61 TABLE 9--ALLOWABLE VERTICAL AND HORIZONTAL DIAPHRAGM SHEAR AND SHE 20'-21' "R" PANEL BASE TYPICAL SIDELAP SHEAR SHEAR SHEAR STEEL THICKNESS DECKSPAN° FASTENER° Ne7 VALUE24•4 VALUE2'•4 STIFFNESS' Panel Type Gauge Inch (feet) SPACING(INCHES) SEISMIC(PLF) WIND(PLF) G(klps per Inch) 29 0.0133 10@2'-0" 12 11 257 274 7.156 "R"Panel 29 0.0133 7@3'-0" 12 8 178 190 6.135 29 0.0133 5@4'-0" 12 6 140 149 5.060 29 0.0133 4@5'-0" 12 5 117 125 4.526 29 0.0133 10@2'-0" 20 11 243 258 7.156 29 0.0133 7@3'-0" 20 8 168 179 6.135 "R"Panel 29 0.0133 5@4'-0" 20 6 132 141 5.060 29 0.0133 4@5'-0" 20 5 110 117 4.526 26 0.0176 10@2'-0" 12 11 356 378 9.469 26 0.0176 7@31-0" 12 8 246 262 8.118 26 0.0176 5@4'-0" 12 6 194 206 6.696 "R" S f R„ Panel 26 0.0176 4@5'-0" 12 5 162 172 5.989 Z 26 0.0176 7-4"-6'-0" 12 3 132 141 3.457 -)-)`6-ZO 26 0.0176 7'-4"-6'-0"-6'-0" 12 4 118 125 5.099 26 0.0176 10@2'-0" 20 11 335 356 9.469 26 0.0176 7@3'-0" 20 8 232 24 -Th - 8.118 W= 2.9 kips 26 0.0176 5@4'-0" 20 6 183 194 96 (ultimate-see RISA) "R" Panel 26 0.0176 4@5'-0" 20 5 152 162 5.989 Frame Length : 38 ft 26 0.0176 7'-4"-6'-0" 20 3 125 133 3.457 V=2.9(0.6)/38= 46 plf 26 0.0176 7-4"-6'-0"-6'-0" 20 4 111 118 5.099 required TABLE 10--ALLOWABLE VERTICAL AND HORIZONTAL DIAPHRAGM SHEAR AND SH 24'-25' "R" PANEL BASE TYPICAL SIDELAP SHEAR SHEAR SHEAR STEEL THICKNESS DECK SPAN" FASTENER° Ner VALUE2m VALUEU•4 STIFFNESS' Panel Typo Gauge Inch (feet) SPACING(INCHES) SEISMIC(PLF) WIND(PLF) G(kips per Inch) 29 0.0133 12@2-0" 12 13 254 270 8.587 "R"Panel 29 0.0133 8@3'-0" 12 9 176 187 7.011 29 0.0133 6@4'-0" 12 7 137 145 6.072 29 0.0133 5@5'-0" 12 6 112 120 5.657 29 0.0133 12@2'-0" 20 13 239 254 8.587 "R" Panel 29 0.0133 8@3'-0" 20 9 165 176 7.011 29 0.0133 6@4'-0" 20 7 129 137 6.072 29 0.0133 5@5'-0" 20 6 106 113 5.657 26 0.0176 12@2'-0" 12 13 350 373 11.363 26 0.0176 8@3'-0" 12 9 243 258 9.278 "R" Panel 26 0.0176 6@4'-0" 12 7 189 201 8.035 26 0.0176 5@5'-0" 12 6 155 165 7.486 26 0.0176 4@6'-0" 12 5 135 143 6.560 26 0.0176 7'-4"-6'-0"-6'-0"-6'-0" 12 5 110 117 6.740 26 0.0176 12@2'-0" 20 13 330 351 11.363 26 0.0176 8@3'-0" 20 9 228 243 9.278 "R"Panel 26 0.0176 6@4'-0" 20 7 178 189 8.035 26 0.0176 5@5'-0" 20 6 146 156 7.486 26 0.0176 4@6'-0" 20 5 127 135 6.560 26 0.0176 7'-4"4-0"-6'-0"-6'-0" 20 5 104 110 6.740 62 • • • TABLE 17—DEFLECTION OF SHEAR DIAPHRAGMS TYPE OF DIAPHRAGM LOADING CONDITION BENDING DEFLECTION,Ab SHEAR DEFLECTION,Ab Simple beam(at center) - Uniform load 51114((2)3 wL2 384E/ 8G'b Simple beam(at center) Load P applied at center PL3(12)3 PL 48E/ 4G'b Simple beam(at center) Load P applied 1/3 points of span 23PL3(12)3 PL 648E/ 3G'b Cantilever beans(at free end) Uniform load un4(12)3 traz 8E/ 2G'b Cantilever beam(at free end) Load P applied at free end Pa3(12)3 Pa 3E1 Gb For SI:1 inch=25.4 run,I ksi=6.89 MPa,1 kip/in.=175 InN/nt,I foot=304.8 nun,1 kip=4.448 kN,'1 kip/foot=14.59 kN/m. where: a = Span length of cantilever beam(feet). b = Depth of analogous beam(feet). E= . Modulus of elasticity of steel,29,500 ksi. • G'= Shear stiffness of the diaphragm obtained from Tables 7 through 16(k/inch). I = Moment of inertia of flange perimeter members about the centroidal axis of the diaphragm 011ch4), L = Span length of a simple beam(feet). • P= Concentrated load(kip). tv= Uniform load(kip/feet). NOTE:The total deflection of shear diaphragms consists of both the bending and shear deflection: Atotal Ab + As where: Atotal = Total deflection of shear diaphragm(inch). . Ay= Bending deflection(inch). A.,- Shear deflection including the deflection due to seam slip and profile distortion(inch). TABLE 18—DIAPHRAGM STIFFNESS LIMITATIONS MAXIMUM SPAN SPAN DEPTH UPdITATTON SHEAR IN FEET FOR STIFFNESS. MASONRY OR •Rotation Not Considered in Diaphragm Design Rotation Considered in Diaphragm Design STIFFNESSCONCRETE CATEGORY -G�(kip inch) WALLS Masonry or Concrete Walls Flexible Walist Masonry or Concrete Wags Flexible Wattst Very flexible >7 Not used • Not used 2:1 Not used 11/2:1 Flexible 7-14 200 2:1 or as required for deflection 3:1 Not used 2:1 Semi-flexible 14-100 400 21/2:1 ores required for deflection 4:I As required for deflection 21/2:1 Semi-stiff 100-1,000 No limitation 3:1 or as required for deflection 5:1 As required for deflection 3:1 Stiff >1,000 No limitation As required for deflection No limitation As required for deflection 31/2:1 For SI:1 foot 304.8 rem,I kip/inch=175 kN/nt. 'When applying these limitations to cantilever diaphragms,the span depth-ratio will be one-half that shown. 3'-O'COVERAGE • SMOOTH WERIOR ` f SURFACE 3 1/8'T1'P. l • • • FIGURE 1—"R"PANEL PROFILE 3'-0'COVERAGE b'1'lP. I'IMP. SMOOTH DGER1OR • - SURFACE 2 5/16' inP. . 1 • t— • FIGURE 2—"U"PANEL PROFILE • • . 63 3'-0' b' b _ ' b' 6' 6' 3' • V PK1 PROOF DO SUPPORT 3'-0" 3' l'-0' 1'-0' 9' • V PM PROOF • ITERIfLN7E SUPPORT 2 1/2' I 7' I7' 5' 7' 2 1/2" 1? PJ7ft PRGfIF ENO SUPPORT 3'-0" 2 1/2' I'_p• 1_p• 9 1/2' lY PRRRL['RCM tffWdEWJE SUPPORT FIGURE 3—END SUPPORT AND INTERIOR SUPPORT FASTENER PATTERNS • • • • • 64 Y ' Z�I• 8.2 k W12X30 " N2 N4 0 0 v v X X CO CO T T i 1 3 Loads:LC 5,WIND ONLY Envelope Only Solution Willett Engineering TW-Queensbury-Portal Frame SK-1 KAG Sep 15, 2021 221285 Tidal Wave-Queensbury-Portal F... 65 ICompany 'R'S : Willett Engineering Design er : 221 Job Number : 21285 Checked By: BJH ANEMETSCHEKCOMPANY Model Name : TW-Queensbury-Portal Frame Detail Report PORTAL COLUMN Unity Check:0.208(LC 2) Load Combination:Envelope it TY Input Data: X Shape: W16X40 I Node: Ni Member Type: Column J Node: N2 Z / z Length(ft): 14 I Release: Fixed Material Type: Hot Rolled Steel J Release: Fixed Design Rule: Typical I Offset(in): N/A Number of Internal Sections: 97 J Offset(in): N/A Material Properties: Material: A992 Therm.Coef£(1e6°F1): 0.65 Ry: 1.1 E(ksi): 29000 Density(k/ft3): 0.49 F„(ksi): 65 G(ksi): 11154 Fy(ksi):• 50 Rf: 1.1 Nu: 0.3 Shape Properties: d(in): 16 Area(ire): 11.8 5,,,(in4): 24 bf(in): 7 Zyy(in3): 12.7 rT(in): 1.82 tf(in): 0.505 Zu(in3): 73 J(in°): 0.794 tW(in): 0.305 C,(in6): 1730 kdet(in): 1.188 Iyy(n'): 28.9 W„o(in2): 27.1 kde5(in): 0.907 IZZ(in4): 518 Design Properties: Lby y(ft): 14 Ky-y: 1 Max Defl Ratio: L2581 Lb Z-Z(ft): 14 K=_r 1 Max Defl Location: 0 LP top(ft): 14 y sway: No Span: N/A Loomp bpf(ft): 14 z sway: No Lm,rje(ft): 14 Function: Lateral Seismic DR: None PORTAL COLUMN 0 O N1 N2 --{--f—;--{— [1.005 at 14 fti _�, j 1 I I- ! ---=--' Diagrams: __ i i 1- { -�.- —4- '. -- I -I I _-- --� � r 1 -�-- [-_------1 I- _1 ___ J_ • 1 -----1- ' ,—1 I 0 at 0 ft-II i - I —�- 1 — f ,� -0at10ft j I I----:a JET —�—, —-- —Y— I- - 1 - --1.005 at 14 ft l - i 1 i---I---j Y Deflection(in) Z Deflection (in) _3.607 at 0 ft_L. ' —T_- -F _ 2.404 at 0 ft I i i __` ' --j-1 1—I L. 4 1—L 2.42 at 14 ft1 2.571 at 0 ft I _--I '_ F - _ I. _ _ _ L I — 1-1 — 1 - ------- — -1—_ _ Axial Force(kips) Y Shear Force(kips) Z Shear Force(kips) RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 1 66 I ICompany 'R'MD : Willett Engineering esigner : KAG Job Number : 221285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Portal Frame ---� —_ —!—_35.999 at 14 ft; _ -- I I .. r_ I I -------!--.� - l i--1 i i i— 1 ..--1 -) I 1 i-! 1 1 I I I ----� — -� I i i ,- --33.657 at 14 ft ! -f —! ! i i 1 Torsion(kip-ft) z-z Moment(kip-ft) y-y Moment(kip-ft) - __ i I -r _-H 214 1 ! 1 F -_-_ I— I- _ - , at ftl . -i r I j : - - I—I I -- -1 -0.205 at 14 ftl 1 -- -6.672 at 14 ft; 1 i f i j Axial Stress(ksi) Biaxial Compression Bending Stress(ksi) Biaxial Tension Bending Stress(ksi) AISC 15th (360-16):ASD Code Check Limit State Gov.LC Required Available Unity Check Result Applied Loading-Bending/Axial 2 - - - - Applied Loading-Shear+Torsion 2 - - - - Axial Tension Analysis 2 0.000 k 353.293 k - - Axial Compression Analysis 2 3.045 k 152.124 k - - Flexural Analysis(Strong Axis) 2 35.999 k-ft 182.136 k-ft - - Flexural Analysis(Weak Axis) 2 0.000 k-ft 31.687 k-ft - - Shear Analysis(Major Axis y) 2 2.571 k 97.6 k 0.026 Pass Shear Analysis(Minor Axis z) 2 0.000 k 127.006 k 0.000 Pass Bending&Axial Interaction Check(UC Bending Max) 2 - - 0.208 Pass RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 2 67 IICompany 1 R'S : Willett Engineering Designer : KAG Job Number •: 221285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Portal Frame Detail Report:PORTAL BEAM Unity Check:0.523(LC 1) Load Combination:Envelope Y Y Input Data: FShape: W12X30 1 Node: N2 Member Type: Beam J Node: N4 X )Z Length(ft): 26 I Release: Fixed Material Type: Hot Rolled Steel J Release: Fixed Design Rule: Typical I Offset(in): N/A Number of Internal Sections: 97 J Offset(in): N/A Material Properties: Material: A992 Therm.Coeff.(1e5oF-1): 0.65 Ry: 1.1 E(ksi): 29000 Density(k/ft3): 0.49 F.(ksi): 65 G(ksi): 11154 Fy(ksi): 50 Rt: 1.1 Nu: 0.3 Shape Properties: d(in): 12.3 Area(in2): 8.79 SW(n4): 13.9 bf(in): 6.52 Zyy(in3): 9.56 rT(n): 1.73 tt(in): 0.44 ZzZ(in3): 43.1 J(ire): 0.457 tw(in): 026 CW(ine): 720 kdet(in): 1.125 lyy(n°)• 20.3 W„o(ire): 19.3 kdes(in): 0.74 Izz(in4): 238 Design Properties: Lby_y(ft): 26 KY-y: 1 Max Defl Ratio: L/2453 Lb z-z(ft): 26 Kz_z: 1 Max Defl Location: 5.688 Lcomp top(ft): 26 y sway: No Span: 1 Lcomp bat(ft): 26 z sway: No Ltorque(ft): 26 Function: Lateral • Seismic DR: None PORTAL BEAM • N2 N4 Diagrams: , -:0.111 at 5.417 I 1 I - � { 1 1 !1 _—1--4 t- 1- — 0 at O ft , I I I II ', I 1 I 1 1 I 1 I I — 1 __I _-1=0.127 at 5.958 ft I -- 1 H I i I —1---1 I I Y Deflection(in) Z Deflection(in) --- 2.536 at 0 1 _{ { { , 3.045a0 ft r_i I i I ! _ ft_f__ _ • r I —_1— — 1 — - — r 1 I - — I I 1 i I i 1 I_ — _ -- -- - -. 1- ; - 1 1 I I 1 1 I TI I I :-2.421 at,Oft-1 I I I--1 - ^I-1 I--1 -3.045 at 26 ftl — 1 I -- I 1— i Axial Force(kips) Y Shear Force(kips) Z Shear Force(kips) RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 3 68 IICompany1 R'� : Willett Engineering DesignerKAG Job Number : 221285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Portal Frame - , � 35.999 at 0 ft� 1 -, - ; I i � � , 1 i-I i I , ! I -1- I 1- -I L-! _ _ ii ! I_____! -1 33.6.57 at 0 ft f- Torsion(kip-ft) z-z Moment(kip-ft) y-y Moment(kip-ft) • I- _- -i - i y- T- _�-1 -r --�- i__� --,� Ir--�-I =11.163 at 0 ft� � ' -ice i 0.288 at 0 ft_,- -_I _4- I -I - -1 a-___`_..-----_�-i- l J L.-'' i _ -- — -- j 1 - --0.275 at 0 ft-I 1 11.163 at 0 ft I- f ;-- i I ; 1-1 Axial Stress (ksi) Biaxial Compression Bending Stress (ksi) Biaxial Tension Bending Stress(ksi) AISC 15th (360-16):ASD Code Check Limit State Gov.LC Required Available Unity Check Result Applied Loading-Bending/Axial 1 - - - - Applied Loading-Shear+Torsion 2 - - - - Axial Tension Analysis 1 0.000 k 263.174 k - - Axial Compression Analysis 1 2.536 k 31.345 k - - Flexural Analysis(Strong Axis) 1 35.941 k-ft 74.469 k-ft - - Flexural Analysis(Weak Axis) 1 0.000 k-ft 23.852 k-ft - - Shear Analysis(Major Axis y) 2 3.045 k 63.96 k 0.048 Pass I Shear Analysis(Minor Axis z) 2 0.000 k 103.071 k 0.000 Pass Bending&Axial Interaction Check(UC Bending Max) 1 - - 0.523 Pass RISA-3D Version 19 • [Tidal Wave-Queensbury-Portal Frame.... Page 4 69 i . • , Company : Willett Engineering IIIRIS� Job(Number : 22 285 Checked By: BJH ANEMETSCHEKCOMPANY Model Name : TW-Queensbury-Portal Frame Node Coordinates Label X[ft] Y[ft] Z[ft] Detach From Diaphragm 1 N1 0 0 0 2 N2 0 14 0 3 N3 26 0 0 4 N4 26 14 0 Node Boundary Conditions Node Label X[Win] Y[k/in] Z[k/in] 1 N3 Reaction Reaction Reaction 2 N1 Reaction Reaction Reaction 3 N2 Reaction 4 N4 Reaction Member Primary Data Label I Node J Node Section/Shape Type Design List Material Design Rule 1 PORTAL COLUMN N1 N2 W16X40 Column Wide Flange A992 Typical 2 M2 N3 N4 W16X40 Column Wide Flange A992 Typical 3 PORTAL BEAM N2 N4 W12X30 Beam Wide Flange A992 Typical Member Point Loads Member Label Direction Magnitude[k, k-ft] Location[(ft, %)] 11 PORTAL COLUMN I X 8.2 I %100 Basic Load Cases BLC Description Category Y Gravity Point 1 Dead DL -1 • 2 Wind Gravity _ WL+Y Win d nd Up WL-Y 4 Snow(unbal) SL 5 Live Roof/S(bal) RLL 6 Wind Min WL+X 1 Load Combinations Description Solve PDelta BLC Factor BLC Factor 1 IBC 16-12(a)(a) Yes Y DL 1 WL+X 0.6 2 IBC 16-12(a)(b) Yes Y DL 1 WL+X -0.6 3 IBC 16-15(a) Yes Y DL 0.6 WL+X 0.6 4 IBC 16-15(b) Yes Y DL 0.6 WL+X -0.6 5 WIND ONLY Y WL+X 1 6 drift Y WL+X 0.45 Envelope Node Reactions Node Label X[k] LC Y[k] LC Z[k] LC MX[k-ft] LC MY[k-ft] LC MZ[k-ft] LC 1 N3 max 2.421 4 3.607 1 0 4 0 4 0 4 0 4 2 min -2.536 1 -2.083 4 0 1 0 1 0 1 0 1 3 N1 max 2.54 2 3.607 2 0 4 0 4 0 4 0 4 4 min -2.426 3 -2.083 3 0 1 0 1 0 1 0 1 5 N2 max 0 4 0 4 0 4 0 4 0 4 0 4 6 min 0 1 0 1 0 1 0 1 0 1 0 1 7 N4 max 0 4 0 4 0 4 0 4 0 4 0 4 8 min 0 1 0 1 0 1 0 1 0 1 0 1 9 Totals: max 4.92 4 1.902 1 0 4 10 min -4.92 1 1.141 4 0 1 RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 5 70 , , ) : Willett Engineering IICompany'RISA Designer : KAG Job Number : 221285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Portal Frame Envelope Node Displacements Node Label X[in] LC Y[in] LC Z[in] LC X Rotation[rad] LC Y Rotation[rad] LC Z Rotation[rad] LC 1 N1 max 0 3 0 3 0 4 0 4 0 4 6.939e-3 2 2 min 0 2 0 2 0 1 0 1 0 1 -6.871e-3 3 3 N2 max 1.005 1 0.001 3 0 4 0 4 0 4 3.949e-3 4 4 min -1.005 2 -0.002 2 0 1 0 1 0 1 -4.085e-3 1 5 N3 max 0 1 0 4 0 4 0 4 0 4 6.847e-3 4 6 min 0 4 0 1 0 1 0 1 0 1 -6.915e-3 1 7 N4 max 1.001 1 0.001 4 0 4 0 4 0 4 4.066e-3 2 8 min -1.001 2 -0.002 1 0 1 0 1 0 1 -3.929e-3 3 Envelope Member Section Forces Member Sec Axial[k] LC y Shear[k] LC z Shear[k] LC Torque[k-ft] LC y-y Moment[k-ft] LC z-z Moment[k-ft] LC 1 PORTAL COLUMN 1 max 3.607 2 2.404 3 0 4 0 4 0 4 0 4 2 min -2.083 3 -2.571 2 0 1 0 1 0 1 0 1 3 2 max 3.467 2 2.404 3 0 4 0 4 0 4 9 2 4 min -2.167 3 -2.571 2 0 1 0 1 0 1 -8.414 3 5 3 max 3.326 2 2.404 3 0 4 0 4 0 4 17.999 2 6 min -2.251 3 -2.571 2 0 1 0 1 0 1 -16.828 3 7 4 max 3.185 2 2.404 3 0 4 0 4 0 4 26.999 2 8 min -2.336 3 -2.571 2 0 1 0 1 0 1 -25.243 3 9 5 max 3.045 2 2.404 3 0 4 0 4 0 4 35.999 2 10 min -2.42 3 -2.571 2 0 1 0 1 0 1 -33.657 3 11 M2 1 max 3.607 1 2.567 1 0 4 0 4 0 4 0 4 12 min -2.083 4 -2.4 4 0_ 1 0 1 0 1 0 1 13 2 max 3.467 1 2.567 1 0 4 0 4 0 4 8.4 4 14 min -2.167 4 -2.4 4 0 1 0 1 0 1 -8.985 1 15 3 max 3.326 1 2.567 1 0 4 0 4 0 4 16.801 4 16 min -2.251 4 -2.4 4 0 1 0 1 0 1 -17.97 1 17 4 max 3.185 1 2.567 1 0 4 0 4 0 4 25.201 4 18 min -2.336 4 -2.4 4 0 1 0 1 0 1 -26.956 1 19 5 max 3.045 _ 1 2.567 1 0 4 0 4 0 4 33.602 4 20 min -2.42 4 -2.4 4 0 1 0 1 0 1 -35.941 1 21 PORTAL BEAM 1 max 2.536 1 3.045 2 0 4 0 4 0 4 35.999 2 22 min -2.421 4 -2.42 3 0 1 0 1 0 1 -33.657 3 23 2 max 2.536 1 2.851 2 0 4 0 4 0 4 17.002 4 24 min -2.421 4 -2.537 3 0 1 0 1 0 1 -17.748 1 25 3 max 2.536 1 2.656 2 0 4 _ 0 4 0 4 -0.624 4 26 min -2.421 4 -2.656 1 0 1 0 1 0 1 -1.115 1 27 4 max 2.536 1 2.537 4 0 4 0 4 0 4 16.945 3 28 min -2.421 4 -2.85 1 0 1 0 1 0 1 -17.692 2 29 5 max 2.536 1 2.42 4 0 4 0 4 0 4 35.941 1 30 min -2.421 4 -3.045 1 0 1 0 1 0 1 -33.602 4 Envelope Maximum Member Section Forces Member Axial[k]Loc[ft]LC Shear[k]Loc[ft]LCz Shear[k]Loc[ft]LCTorque[k-ft1Loc[ft]LCY-y Moment[k-ft1Loc[ft1LCz-z Moment[k-ft1Loc[ft]LC 1 PORTAL COLUMN max 3.607 0 21 2.404 14 3 0 14 4 0 14 41 0 14 4 35.999 14 2 2 min -2.42 14 3 -2.571 0 2 0 0 1 0 0 1 0 0 1 -33.657 14 3 3 M2 max 3.607 0 1 2.567 14 1 0 14 4 0 14 4 0 14 4 33.602 14 4 4 min -2.42 14 4 -2.4 0 4 0 0 1 0 0 1 0 0 1 -35.941 14 1 5 PORTAL BEAM max 2.536 26 1 3.045 0 2 0 26 4 0 26 4 0 26 4 35.999 0 2 6 min-2.421 0 4 -3.045 26 1 0 0 1 0 0 1 0 0 1 -33.657 0 3 Envelope Member End Reactions Member Member End Axial[k]LC y Shear[k]LC z Shear[k]LC Torque[k-ft]LC y-y Moment[k-ft]LC z-z Moment[k-ft]LC 1 PORTAL COLUMN I max 3.607 2 2.404 3 0 4 0 4 0 4 0 4 2 min -2.083 3 -2.571 2 0 1 0 1 0 1 0 1 3 J max 3.045 2 2.404 3 0 4 0 4 0 4 35.999 2 4 min -2.42 3 -2.571 2 0 1 0 1 0 1 -33.657 3 RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 6 71 : , , : Willett Engineering I ICompany 'RISDesigner Job Number : 22 285 Checked By: BJH ANEMETSCHEK COMPANY Model Name : TW-Queensbury-Portal Frame Envelope Member End Reactions(Continued) Member Member End Axial[k]LC y Shear[k]LC z Shear[k]LC Torque[k-ft]LC y-y Moment[k-ft]LC z-z Moment[k-ft]LC 5 M2 I max 3.607 1 2.567 1 0 4 0 4 0 4 0 4 6 min -2.083 4 -2.4 4 0 1 0 1 0 1 0 1 7 J max 3.045 1 2.567 1 0 4 0 4 0 4 33.602 4 8 min -2.42 4 -2.4 4 0 1 0 1 0 1 -35.941 1 9 PORTAL BEAM I max 2.536 1 3.045 2 0 4 0 4 0 4 35.999 . 2 10 min -2.421 4 -2.42 3 0 1 0 1 0 1 -33.657 3 11 J max 2.536 1 2.42 4 0 4 0 4 0 4 35.941 1 12 min -2.421 4 -3.045 1 0 1 0 1 0 1 -33.602 4 Envelope Member Section Torsion Member Sec Torque[k-ft1LCTorsion Shear[ksilLCy-y Warp Shear[ksi]LCz-z Warp Shear[ksilLCz-Top Warp Bend[ksilLCz-Bot Warp Bend[ksi1LC 1 PORTAL COLUMN 1 max 0 4 0 4 0 4 0 4 0 4 0 4 2 min 0 1 0 1 0 1 0 1 0 1 0 1 3 2 max 0 4 0 4 0 4 0 4 0 4 0 4 4 • min 0 1 0 1 0 1 0 1 0 1 0 1 5 3 max 0 4 0 4 0 4 0 4 0 4 0 4 6 min 0 1 0 1 0 1 0 1 0 1 0 1 7 4 max 0 4 0 4 0 4 0 4 0 4 0 4 8 min 0 1 0 1 0 1 0 1 0 1 0 1 9 5 max 0 4 0 4 0 4 0 4 0 4 0 4 10 min 0 1 0 1 0 1 0 1 0 1 0 1 11 M2 1 max 0 4 0 4 0 4 0 4 0 4 0 4 12 min 0 1 0 1 0 1 0 1 0 1 0 1 13 2 max 0 4 0 4 0 4 0 4 0 4 0 4 14 min 0 1 0 1 0 1 0 1 0 1 0 1 15 3 max 0 4 0 4 0 4 0 4 0 4 0 4 16 min 0 1 0 1 0 1 0 1 0 1 0 1 17 4 max 0 4 0 4 0 4 0 4 0 4 0 4 18 min 0 1 0 1 0 1 0 1 0 1 0 1 19 5 max 0 4 0 4 0 4 0 4 0 4 0 4 20 min 0 1 0 1 0 1 0 1 0 1 0 1 21 PORTAL BEAM 1 max 0 4 0 4 0 4 0 4 0 4 0 4 22 min 0 1 0 1 0 1 0 1 0 1 0 1 23 2 max 0 4 0 4 0 4 0 4 0 4 0 4 24 min 0 1 0 1 0 1 0 1 0 1 0 1 25 3 max 0 4 0 4 0 4 0 4 0 4 0 4 26 min 0 1 0 1 0 1 0 1 0 1 0 1 27 4 max 0 4 0 4 0 4 0 4 0 4 0 4 28 min 0 1 0 1 0 1 0 1 0 1 0 1 29 5 max 0 4 0 4 0 4 0 4 0 4 0 4 30 min 0 1 0 1 0 1 0 1 0 1 0 1 Envelope Member Section Stresses Member Sec Axial[ksiQ LC y Shear[ksil LC z Shear[ksil LC y-Top[ksi] LC y-Bot[ksi1 LC z-Top[ksil LC z-Bot[ksi] LC 1 PORTAL COLUMN 1 max 0.306 2 0.493 3 0 4 0 4 0 4 0 4 0 4 2 min -0.177 3 -0.527 2 0 1 0 1 0 1 0 1 0 1 3 2 max 0.294 2 0.493 3 0 4 1.559 3 1.668 2 0 4 0 4 4 min -0.184 3 -0.527 2 0 1 -1.668 2 -1.559 3 0 1 0 1 5 3 max 0.282 2 0.493 3 0 4 3.119 3 3.336 2 0 4 0 4 6 min -0.191 3 -0.527 2 0 1 -3.336 2 -3.119 3 0 1 0 1 7 4 max 0.27 2 0.493 3 0 4 4.678 3 5.004 2 0 4 0 4 8 min -0.198 3 -0.527 2 0 1 -5.004 2 -4.678 3 0 1 0 1 9 5 max 0.258 2 0.493 3 0 4 6.238 3 6.672 2 0 4 0 4 10 min -0.205 3 -0.527 2 0 1 -6.672 2 -6.238 3 0 1 0 1 11 M2 1 max 0.306 1 0.526 1 0 4 0 4 0 4 0 4 0 4 12 min -0.177 4 -0.492 4 0 1 0 1 0 1 0 1 0 1 13 2 max 0.294 1 0.526 1 0 4 1.665 1 1.557 4 0 4 0 4 RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 7 72 Company : Willett Engineering I I RISDesigner : KAG Job Number : 221285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Portal Frame Envelope Member Section Stresses(Continued) Member Sec Axial[ksi] LC y Shear[ksil LC z Shear[ksil LC y-Top[ksil LC y-Bot[ksi] LC z-Top[ksil LC z-Bot[ksi_LC 14 min -0.184 4 -0.492 4 0 1 -1.557 4 -1.665 1 0 1 0 1 15 3 max 0.282 1 0.526 1 0 4 3.33 1 3.114 4 0 4 0 4 16 min -0.191 4 -0.492 4 0 1 -3.114 4 -3.33 1 0 1 0 1 17 4 max 0.27 1 0.526 1 0 4 4.996 1 4.671 4 0 4 0 4 18 min -0.198 4 -0.492 4 0 1 -4.671 4 -4.996 1 0 1 0 1 19 5 max 0.258 1 0.526 1 0 4 6.661 1 6.227 4 0 4 0 4 20 min -0.205 4 -0.492 4 0 1 -6.227 4 -6.661 1 0 1 0 1 21 PORTAL BEAM 1 max 0.288 1 0.952 2 0 4 10.436 3 11.163 2 0 4 0 4 22 min -0.275 4 -0.757 3 0 1 -11.163 2 -10.436 3 0 1 0 1 23 2 max 0.288 1 0.891 2 0 4 5.503 1 5.272 4 0 4 0 4 24 min -0.275 4 -0.793 3 0 1 -5.272 4 -5.503 1 0 1 0 1 25 3 max 0.288 1 0.831 2 0 4 0.346 1 -0.193 4 0 4 0 4 26 min -0.275 4 -0.831 1 0 1 0.193 4 -0.346 1 0 1 0 1 27 4 max 0.288 1 0.793 4 0 4 5.486 2 5.254 3 0 4 0 4 28 min -0.275 4 -0.891 1 0 1 -5.254 3 -5.486 2 0 1 0 1 29 5 max 0.288 1 0.757 4 0 4 10.419 4 11.145 1 0 4 0 4 30 min -0.275 4 -0.952 1 0 1 -11.145 1 -10.419 4 0 1 0 1 Envelope Beam Deflections Member Label Span Location[ft] y'[in] (n) L'/y' Ratio LC 1 PORTAL BEAM 1 max 13.542 0.001 NC 3 2 1 min 5.688 -0.127 2453 1 Envelope AISC 15th(360-16):ASD Steel Code Checks Member Shape Code CheckLoc[ft1LCShear Check Loc[ft DirLCPnc/om[k]Pnt/om[k Mnyy/om[k-ftlMnzz/om[k-ft Cb Eqn 1 PORTAL COLUMN W16X40 0.208 14 2 0.026 14 y 2 152.124 353.293 31.687 182.136 1.667H1-lb 2 M2 W16X40 0.207 14 1 0.026 14 y_1 152.124 353.293 31.687 182.136 1.667H1-lb 3 PORTAL BEAM W12X30 0.523 26 1 0.048 0 y 2 31.345 263.174 23.852 74.469 2.27 H1-lb RISA-3D Version 19 [Tidal Wave-Queensbury-Portal Frame.... Page 8 73 Y Jf-1 .)( -1.75 k/ft -0.33 k/ft -1.1 k/ft i'.^�hi 0 V %4%%41111 N2 ' N4 0 0 co Co CO 03 411 4P13 Loads:BLC 4,Snow(unbal) Envelope Only Solution Willett Engineering TW-Queensbury-Canopy Frame SK-2 KAG Sep 15,2021 221285 Tidal Wave-Queensbury-Canopy... 74 IICompany i R IM : Willett Engineering Desi gner : 221 Job Number : 21285 Checked By: BJH ANEMETSCHEKCOMPANY Model Name : TW-Queensbury-Canopy Frame Detail Report CANOPY FRAME COLUMN Unity Check:0.514(LC 6) Load Combination:Envelope ii____ AY Input Data: X Shape: W18X60 I Node: Ni Member Type: Column J Node: N2 Z Z Length(ft): 14 I Release: Fixed Material Type: Hot Rolled Steel J Release: Fixed Design Rule: Typical I Offset(in): N/A Number of Internal Sections: 97 J Offset(in): N/A Material Properties: Material: A992 Therm.Coeff.(1e5°F-t): 0.65 Ry: 1.1 E(ksi): 29000 Density(k/ft3): 0.49 Fu(ksi): 65 G(ksi): 11154 Fy(ksi): 50 Rt: 1.1 Nu: 0.3 Shape Properties: d(in): 18.2 Area(in=): 17.6 Sw(ire): 43.5 bf(in): 7.56 Zyy(in3): 20.6 rT(in): 1.96 tf(n): 0.695 Za(in5): 123 J(in4): 2.17 tw(in): 0.415 Cw(ire): 3850 kdet(in): 1.375 Iyy(ire): 50.1 Wno(in): 33.1 kde5(in): 1.1 Ia(in'): 984 Design Properties: Lby-y(ft): 14 KY-y: 0.8 Max Defl Ratio: L/586 Lb=-z(ft): 14 KZ-z: 0.8 Max Defl Location: 0 Lcor„p top(ft): 14 y sway: No Span: N/A LW,np hot(ft): 14 z sway: No Lmrque(ft): 14 Function: Lateral Seismic DR: None CANOPY FRAME COLUMN • • N1 N2 , _: 'Hi " ILi -Dia rams' -- — � t_ 725at14fti - i-g --- ! L_ } — �— i- 1 1---I 1--0.29 at 14 ftl -— I I—1--1— I Y Deflection(in) Z Deflection(in) I 26.203 at 0 ft _ . 1.384 at 0 ft--_ — ! --! 4--!_ i_ —____ c _, . -_- - 1 I I— _ I - 1 1 _ 1 —;— F r 1 I1_-2 4 10.434 at Oft ! 1 I- --1 1 i—— ! Axial Force(kips) Y Shear Force(kips) Z Shear Force(kips) RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 1 75 II Il I R I SA ,coobnn Designer Number : 221 P anY : Willett Engineering : G285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame -7r11 --T 1_--1 I I ] _____IL:Ti__ -F-. -1-146.072 at 14 ftl --------7-----I--.I.---__I._ _1 1 I --1---1------1-----I I 1 I I 4 i--1---1 ---r---+--, , , , 1---- _ ----i I . [--_-_, ---- , i _ , _ , , . , . - , _ ____ , 1 1 , , , i i , _ _i____ r I-:_._I_ • _ : _. _ - i1----ij . -__L , 1 I 1 i_1 __I . „I ! , ! i I 1 1 Il _1-1-— 1---.1 .__I --I -- - -- _ 3 1 _i___ . . i _ 1---1 --:_:HT.17.1 ' 1 - r------- 1-----7 1---I I 1— -----;-----r_-_ _7=-19.371 at 14 ftj I 1 Torsion(kip-ft) z-z Moment(kip-ft) y-y Moment(kip-ft) I 11- ---1----1-1-1i1--- , , 1-1 1 I -71621 at 14 ft ---- I, !----L- 1A89 at 0 ft-i Hi 1 i----T 1 1 _____i --j, -I-- I---[ • 1 ----r ----1- f--- 1- 1I---I- : _4___ H , -----1-----!-----L--- - t -----__ _,_ ,_-, . , -. 1 .-----1--.. -; I- 1 / • --- ---' --1-1----41-1-- ------1----f ----1 ..L. . , ----:;.-----I'll.--171-7:1-:--4=1---.-L- 1 'i---71=-7 -.1=ti-7:1 0157 at 14 fti :- i I -----#=-F- ---+---16.21 at 14 ft.] -- I -I H----4----1----1 Axial Stress(ksi) Biaxial Compression Bending Stress(ksi) Biaxial Tension Bending Stress(ksi) AISC 15th (360-16):ASD Code Check Limit State Gov.LC Required Available Unity Check Result Applied LOading-Bending/Axial 6 - - - - Applied Loading-Shear+Torsion 6 - - - - Axial Tension Analysis 6 0.000 k 526.946 k - - Axial Compression Analysis 6 25.364 k 331.333 k - - Flexural Analysis(Strong Axis) 6 146.072 k-ft 306.886 k-ft - . - Flexural Analysis(Weak Axis) 6 0.000 k-ft 51.397 k-ft - - Shear Analysis(Major Axis y) 6 10.434 k 151.06 k 0.069 Pass Shear Analysis(MinorAxis z) 6 0.000 k 188.774 k 0.000 Pass Bending&Axial Interaction'Check(UC Bending Max) 6 - - 0.514 Pass RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 2 . 76 a IICompany 'R'S : Willett Engineering Des ign e r : KAG Job Nu mber : 221285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame Detail Report CANOPY FRAME LEFT BEAM Unity Check:0.651(LC 6) Load Combination:Envelope i____÷z Y Input Data: -d X Shape: W18X50 I Node: N5 Member Type: Beam J Node: N2 >2 - Length(ft): 21.243 I Release: BenPIN - Material Type: Hot Rolled Steel J Release: Fixed Design Rule: Typical I Offset On): N/A At - .' Number of Internal Sections: 97 1 Offset(in): N/A Material Properties: Material: A992 Therm.Coeff.(1es°F-1): 0.65 Ry: 1.1 E(ksi): 29000 Density(k/ft3): 0.49 F.(ksi): 65 G(ksi): 11154 Fy(ksi): 50 Rt: 1.1 Nu: 0.3 Shape Properties: d(in): 18 Area(1n9: 14.7 S,,,0n4): 34.9 bf(n): 7.5 Zyy(in3): 16.6 rT(in): 1.94 tf(in): 0.57 Za(in3): 101 J(in4): 1.24 t„,(in): 0355 C„,(in6): 3040 kdet(in): 1.25 lyy(in4): 40.1 W„.(inz): 32.7 kde5(in): 0.972 a(in4): 800 Design Properties: Lb y_y(ft): 21243 Ky:: 0.8 Max Defl Ratio: L/417 Lb z_=(ft): 21243 K=_r 0.8 Max Defl Location: 0 Lc„„p top(ft): 21243 y sway: No Span: 1 I-comp bot(ft): 21243 z sway: No Ltoryee(ft): • 21243 Function: Lateral Seismic DR: None CANOPY FRAME LEFT BEAM • 0 • N5 N2 __-I-- 0.319 at 20.358 ft_-_-]Diagrams: — 1 -z L — -i — - , — I , -0 at 0 ft-�-- �--J 1. t I 1 I — OatO -1.14at0ft.' ! 1 1 ---- f 1 ' -i - Y Deflection(in) Z Deflection(in) ,— 1 _20.539 at 21.243 ft 9.847 at 0 ft-,+_-__--- - I - - - - } � - : t - I —! _2.457 at 0 ft'- -1 --f- . 1 -- -I { 1 18.22 at 21.243 ft _-----1---i-_-i------- 1:- T- Axial Force(kips) Y Shear Force(kips) Z Shear Force(kips) RISA-3D Version 19 - [Tidal Wave-Queensbury-Canopy Fram... Page 3 - 77 r 1 IComspany : Willett Engineering 1 RASA Job iNumber : 22 285 Checked By: BJH ANEMETSCHEKCOMPANY Model Name : TW-Queensbury-Canopy Frame TTi - --L-— 1 —I i --1_�— -, T -146.072 at 21.243 k -1I_ I 1 I I H 't 1 1IL I— ---7--� -- i 1 11 1 _ — - —---I i I —I I I I l 1 - 1 �-31.546 at 6.417 ft' 1 — I I 1 I i Torsion(kip-ft) z-z Moment(kip-ft) y-y Moment(kip-ft) ' I f (• - _ I L 1 - I l I I 1_ ! 1 � I �1.397 at 21243 fty ( I � --I 19.72 at 21.243 ft - I , I -I 1 I 1---L--j 11 L —I LH - :±± II I I 1 i I I I --1 _Li _ 1 1 Z-0.167 at0 ft i ! -I I�^ 1^ -- -1� -19.72 at 21.243 fti _—t--i -- t Axial Stress(ksi) Biaxial Compression Bending Stress(ksi) Biaxial Tension Bending Stress(ksi) AISC 15th (360-16):ASD Code Check Limit State Gov.LC Required Available Unity Check Result Applied Loading-Bending/Axial 6 - - - - Applied Loading-Shear+Torsion 6 - - - - Axial Tension Analysis 6 0.000 k 440.12 k - Axial Compression Analysis 6 20.539 k 144.932 k - - Flexural Analysis(Strong Axis) 6 146.072 k-ft 251.996 k-ft - - Flexural Analysis(Weak Axis) 6 0.000 k-ft 41.417 k-ft - - Shear Analysis(Major Axis y) 6 18.22 k 127.8 k 0.143 Pass ShearAnalysis(MinorAxis z) 6 0.000 k 153.593 k 0.000 Pass Bending&Axial Interaction Check(UC Bending Max) 6 - - 0.651 Pass RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 4 78 1 : Willett Engineering I ICompany'�'�� Designer : KAJob Number : 221G285 Checked By: BJH ANEMETSCHEKCOMPANY Model Name : TW-Queensbury-Canopy Frame Detail Report CANOPY FRAME RIGHT BEAM Unity Check:0.737(LC 6) Load Combination:Envelope iv Y Input Data: X Shape: W18X50 I Node: N5 Member Type: Beam 1 Node: N4 >z / Length(ft): 21.243 I Release: BenPIN Material Type: Hot Rolled Steel J Release: Fixed Design Rule: Typical I Offset(in): N/A Number of Internal Sections: 97 J Offset(in): N/A Material Properties: • Material: A992 Therm.Coeff.(1e5oF-'): 0.65 Ry: 1.1 E(ksi): 29000 Density(k/ft3): 0.49 F„(ksi): 65 G(ksi): 11154 Fy(ksi): 50 Rt: 1.1 Nu: 0.3 Shape Properties: d(in): 18 Area(1n2): 14.7 SW(in°): 34.9 bf(in): 7.5 Zyy(n'): 16.6 rT(in): 1.94 tf(in): 0.57 Z2 (in3): 101 J(in°): 1.24 tv,(in): 0.355 Cw(in`): 3040 kdeS(In): 1.25 lyyfn°): 40.1 Wu°(in2): 32.7 kdes(in): 0.972 In(in°): 800 Design Properties: Lby_y(ft): 21.243 Ky_y: 1 Max Defl Ratio: L/353 Lbz_z(ft): 21.243 KZ_Z: 1 Max Defl Location: 0 Lco,,,r tap(ft): 21.243 y sway: No Span: 1 Le,,,,e bot(ft): 21.243 z sway: No I-torque(ft): 21.243 Function: Lateral Seismic DR None CANOPY FRAME RIGHT BEAM o O N5 N4 t-- -_-__ _ a 04171 at19.4I -ft [.0at0ft-1- l- a_ _I i-1 - Diagrams: 1__._ —= 3a 1 I I - -_— --. _ 1-- I 1 --'____ 0at0ft ( � i 1.1 -- -1-�--r -i- - I f- iiiiI Y Deflection(in) Z Deflection(in) —II '-- ' - ---20 539 at 21.243 ft 5.664 at 0 ft-1,=- J 71 � I I ; I -- 1 1 I � - -- I -1i Jil - - _ Il r ; - - - - - - - _ _ _- I 1 1 1 r __ __- -- 243ft T 3692at0ft iI- ---Lt- - -,-- 1 -I i - -— -18.22 at 21. ! - -1 1-- — -- Axial Force(kips) Y Shear Force(kips) Z Shear Force(kips) RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 5 79 . i• c...: , I I I R I SA sicp:obsmi P na enrY Number : 221 : Willett Engineering : G285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : 'TIN-Queensbury-Canopy Frame - -I- I --r- T--- - --- _______L____ _ ;_,. ; 1---1— ; • — --1 "1 ___. I_-1111.71.__I_ L I ---i 1146.072 at 21.243 ftl 1 i _ 1 _ I 1---- ---1- --I --I-----I-----I --..; -I II i , ,- 29.587 at 21.243 fti i 1 i ! i 1 . . Torsion(kip-ft) z-z Moment(kip-ft) y-y Moment(kip-ft) 1 1 1 1 I ' 1 L--2,-- i I—_-_-I: 11.397 at 21.24 3 ftl _i 7 ' i-- '----7-'=1i_19.72 at 21.243 ft.i --------1---_,---,- r -1- )-- - 1 ! PT ; : -1----1---1-,--_:1 --- i I I---- 1 I ---1- 1 1----i-t--- --h'----' _: --IT--; i 7-1 I ! If -'---.:-.-'---- - i i I I LI--- I I -.;. --7--1.--7•- - i 1 i 1 1 1 i 1 -1 I I I --1 ! ',-- [ -- r•--1 -i--. -1-- !--- -4- -.---1,---- I --jr-i -.- - -1----, , ' -7- .--) _____; _ ; , , , I __ 1 —.1_ I _i I ---7--±..__ - ,— , , 1 I , • ; i 1 .----1 • I----I— 1- 1I- : I • ;I 1- —.111, -- 1 , -11 r------,.-------I-- , 1=4 -----I-------I I 7-----i I L---;- [-------!: 1 " ' -0.251 at 0 ft —- F --r r 7 ; !-19.72 at 21.243 fti " i 1 1 7 !----1.----! -1, --!----i . . . . . , , , Axial Stress(ksi) Biaxial Compression Bending Stress(ksi) Biaxial Tension Bending Stress(ksi) AISC 15th (360-16):ASD Code Check Limit State Gov.LC Required Available Unity Check Result Applied Loading-Bending/Axial 6 - - - - Applied Loading.-Shear+Torsion 6 - - , Axial Tension Analysis 6 0.000 k 440.12 k - -. Axial Compression Analysis 6 20.539 k 92.757 k - - • Flexural Analysis(Strong Axis) . • 6 146.072 k-ft 251.996 k-ft - - Flexural Analysis(Weak Axis) 6 0.000 k-ft 41.417 k-ft - Shear Analysis(Major Axis y) 6 18.22 k 127.8 k 0.143 Pass Shear Analysis(Minor Axis z) 6 0.000 k 153.593 k 0.000 Pass Bending&Axial Interaction Check(UC Bending Max) 6 - 0.737 Pass RISA-3D Version 19 [Thal Wave-Queensbury-Canopy Fram... Page 6 80 Company : Willett Engineering I II RISA Designer : KAG Job Number : 221285 Checked By: BJH ANEMETSCHEKCOMPANY Model Name : TW-Queensbury-Canopy Frame Node Coordinates Label X[ft] Y[ft] Z[ft] Detach From Diaphragm 1 N1 0 0 0 2 N2 0 14 0 3 N3 38 0 0 4 N4 38 14 0 5 N5 19 23.5 0 Node Boundary Conditions Node Label X[k/in] Y[k/in] Z[Win] 1 N2 Reaction 2 N5 Reaction 3 N4 Reaction 4 N3 Reaction Reaction Reaction 5 N1 Reaction Reaction Reaction Member Primary Data Label I Node J Node Section/Shape Type Design List Material Design Rule 1 CANOPY FRAME COLUMN N1 N2 W18X60 Column Wide Flange A992 Typical 2 M2 N3 N4 W18X60 Column Wide Flange A992 Typical 3 CANOPY FRAME LEFT BEAM N5 N2 W18X50 Beam Wide Flange A992 Typical 4 CANOPY FRAME RIGHT BEAM N5 N4 W18X50 Beam Wide Flange A992 Typical Member Distributed Loads Member Label DirectionStart Magnitude[k/ft,F,ksf,k-ft/ft End Magnitude[k/ft,F,ksf,k-fUft]Start Location[(ft,%) End Location[(ft,%)] 1 CANOPY FRAME LEFT BEAM Y -0.052 1 -0.052 0 1 %100 2 CANOPY FRAME RIGHT BEAM Y -0.052 -0.052 0 %100 Member Distributed Loads Member Label Direction Start Magnitude[k/ft,F,ksf,k-ft/ft]End Magnitude[k/ft,F,ksf,k-ft/ftiStart Location[(ft,%)]End Location[(ft,%)] 1 CANOPY FRAME COLUMN Y 0 0 0 %100 2 CANOPY FRAME LEFT BEAM y -0.604 -0.604 0 %100 3 CANOPY FRAME RIGHT BEAM y -0.104 -0.104 0 %100 Member Distributed Loads Member Label Direction Start Magnitude[k/ft,F,ksf,k-ft/ft End Magnitude[k/ft,F,ksf,k-ft/ft Start Location[(ft,%) End Location[(ft,%)] 1 CANOPY FRAME LEFT BEAM y 0.05 0.05 0 %100 2 CANOPY FRAME RIGHT BEAM y 0.43 0.43 0 %100 Member Distributed Loads Member Label Direction Start Magnitude[k/ft,F,ksf,k-fUft]End Magnitude[k/ft,F,ksf,k-ft/ft]Start Location[(ft,%)]End Location[(ft,%)] 1 CANOPY FRAME LEFT BEAM Y -1.1 -1.1 6.5 %100 2 CANOPY FRAME RIGHT BEAM Y -0.33 -0.33 0 %100 3 CANOPY FRAME LEFT BEAM. Y -1.75 -1.75 0 6.5 1 Member Distributed Loads Member Label Direction Start Magnitude[k/ft,F,ksf,k-ft/ft End Magnitude[k/ft,F,ksf,k-fUft Start Location[(ft,%) End Location[(ft,%)] 1 CANOPY FRAME LEFT BEAM Y -1.092 -1.092 0 %100 0 2 CANOPY FRAME RIGHT BEAM Y -1.092 -1.092 %100 Member Distributed Loads Member Label Direction Start Magnitude[k/ft,F,ksf,k-ft/ft]End Magnitude[k/ft,F,ksf,k-fUft Start Location[(ft,%) End Location[(1t,%)] 1 CANOPY FRAME COLUMN X 0.016 0.016 0 %100 2 CANOPY FRAME LEFT BEAM X 0.208 0.208 0 %100 RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 7 81 I : Willett Engineering ICompany 1 RISDesigner ob Number : 22 285 Checked By: BJH ANEMETSCHEKCOMPANY Model Name : TW-Queensbury-Canopy Frame Basic Load Cases BLC Description Category Y Gravity Distributed 1 Dead DL -1 2 2 Wind Down WL+Y 3 3 Wind Up WL-Y 2 4 Snow(unbal) SL 3 5 Live Roof RLL 2 6 Wind Min WL+X 2 Load Combinations Description Solve PDelta BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 Deflection 1 Yes Y DL 1 2 Deflection 2 Yes Y 5 1 3 Deflection 3 Yes Y DL 1 LL 1 4 IBC 16-8 Yes Y DL 1 5 IBC 16-9 Yes Y DL 1 LL 1 LLS 1 6 IBC 16-10(a) Yes Y DL 1 RLL 1 7 IBC 16-10(b) Yes Y DL 1 SL 1 SLN 1 8 IBC 16-11 (a) Yes Y DL 1 LL 0.75 LLS 0.75 RLL 0.75 9 IBC 16-11 (b) Yes Y DL 1 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 10 IBC 16-12(a)(a) Yes Y DL 1 WL+Y 0.6 11 IBC 16-12(a)(b) Yes Y DL 1 WL+Y -0.6 12 IBC 16-13(a)(a) Yes Y DL 1 WL+Y 0.45 LL 0.75 LLS 0.75 RLL 0.75 13 IBC 16-13(a)(b) Yes Y DL 1 WL+Y -0.45 LL 0.75 LLS 0.75 RLL 0.75 14 IBC 16-13(b)(a) Yes Y DL 1 WL+Y 0.45 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 15 IBC 16-13(b)(b) Yes Y DL 1 WL+Y -0.45 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 16 IBC 16-15(a) Yes Y DL 0.6 WL+Y 0.6 17 IBC 16-15(b) Yes Y DL 0.6 WL+Y -0.6 18 IBC 16-12(a)(a) Yes Y DL 1 WL-Y 0.6 19 IBC 16-12(a)(b) Yes Y DL 1 WL-Y -0.6 20 IBC 16-13(a)(a) Yes Y DL 1 WL-Y 0.45 LL 0.75 LLS 0.75 RLL 0.75 21 IBC 16-13(a)(b) Yes Y DL 1 WL-Y -0.45 LL 0.75 LLS 0.75 RLL 0.75 22 IBC 16-13(b)(a) Yes Y DL 1 WL-Y 0.45 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 23 IBC 16-13(b)(b) Yes Y DL 1 WL-Y -0.45 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 24 IBC 16-15(a) Yes Y DL 0.6 WL-Y 0.6 25 IBC 16-15(b) Yes Y DL 0.6 WL-Y -0.6 26 IBC 16-12(a)(a) Yes Y DL 1 WL+X 0.6 27 IBC 16-12(a)(b) Yes Y DL 1 WL+X -0.6 28 IBC 16-13(a)(a) Yes Y DL 1 WL+X 0.45 LL 0.75 LLS 0.75 RLL 0.75 29 IBC 16-13(a)(b) Yes Y DL 1 WL+X -0.45 LL 0.75 LLS 0.75 RLL 0.75 30 IBC 16-13(b)(a) Yes Y DL 1 WL+X 0.45 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 31 IBC 16-13(b)(b) Yes Y DL 1 WL+X -0.45 LL 0.75 LLS 0.75 SL 0.75 SLN 0.75 32 IBC 16-15(a) Yes Y DL 0.6 WL+X 0.6 33 IBC 16-15(b) Yes Y DL 0.6 WL+X -0.6 34 W Gravity Only Y 2 1 35 W-Uplift Only Y 3 1 36 W-Min Only Y 6 1 37 Snow Only Y 4 1 38 Live Only Y 5 1 Envelope Node Reactions Node Label X[k] LC Y[k] LC Z[k] LC MX[k-ft] LC MY[k-ft] LC MZ[k-ft] LC 1 N2 max 0 33 0 33 0 33 0 33 0 33 0 33 2 min 0 1 0 1 0 1 0 1 0 1 0 1 3 N5 max 0 33 0 33 0 33 0 33 0 33 0 33 4 min 0 1 0 1 0 1 0 1 0 1 0 1 5 N4 max 0 33 0 33 0 33 0 33 0 33 0 33 6 min 0 1 0 1 0 1 0 1 0 1 0 1 7 N3 max 2.123 17 26.203 6 0 33 0 33 0 33 0 33 RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 8 82 : Willett Engineering I ICompany 'RI�� Designer : 221 Job Number : 21285 Checked By: BJH ANEMETSCHEKCOMPANY Model Name : TW-Queensbury-Canopy Frame Envelope Node Reactions(Continued) Node Label X[k] LC Y[k] LC Z[k] LC MX[k-ft] LC MY[k-ft] LC MZ[k-ft] LC 8 min -10.282 6 -2.208 17 0 1 0 1 0 1 _ 0 1 9 N1 max 10.282 6 26.203 6 0 33 0 33 0 33 0 33 10 min -1.387 24 -2.257 17 0 1 0 1 0 1 0 1 11 Totals: max 2.85 11 52.405 6 0 33 12 min -2.85 16 -4.464 17 0 1 Envelope Node Displacements Node Label X[in] LC Y[in] LC Z[in] LC X Rotation[rad] LC Y Rotation[rad] LC Z Rotation[rad] LC 1 N1 max 0 1 24 0 17 0 33 0 33 0 33 6.143e-3 21 2 min 0 6 0 6 0 1 0 1 0 1 -1.958e-3 24 3 N2 max 0.29 32 0.001 17 0 33 0 33 0 33 1.738e-3 17 4 min -0.725 29 -0.011 6 0 1 0 1 0 1 -2.699e-3 14 5 N3 max 0 6 0 17 0 33 0 33 0 33 2.72e-3 17 6 min 0 17 0 6 0 1 0 1 0 1 -7.013e-3 14 7 N4 max 0.895 14 0.001 17 0 33 0 33 0 33 1.651e-3 13 8 min -0.388 17 -0.011 6 0 1 0 1 0 1 -1.629e-3 14 9 N5 max 0.445 14 0.05 17 0 _ 33 0 33 0 33 0 33 10 min -0.368 11 -1.274 6 0 1 0 1 0 1 0 1 Envelope Member Section Forces Member Sec Axial[k]LCy Shear[k]LCz Shear[k]LCTorque[k-ft]LCy-y Moment[k-ft]LCz-z Moment[k-ft]LC 1 CANOPY FRAME COLUMN 1 max26.203 6 1.384 24 0 33 0 33 0 33 0 33 2 min -2.257 17 -10.434 6 0 1 0 1 0 1 0 1 3 2 max25.993 6 1.384 24 0 33 0 33 0 33 36.518 6 4 min -2.383 17 -10.434 6 0 1 0 1 0 1 -4.843 24 5 3 max25.783 6 1.384 24 0 33 0 33 0 33 73.036 6 6 min -2.508 17 -10.434 6 0 1 0 1 0 1 -9.685 24 7 4 max25.574 6 1.384 24 0 33 0 33 0 33 109.554 6 8 min -2.634 17 -10.434 6 0 1 0 1 0 1 -14.528 24 9 5 max25.364 6 1.384 24 0 33 0 33 0 33 146.072 6 10 min -2.76 17 -10.434 6 0 1 0 1 0 1 -19.371 24 11 M2 1 max26.203 6 10.434 6 0 33 0 33 0 33 0 33 12 min -2.208 17 -2.113 17 0 1 0 1 0 1 0 1 13 2 max25.993 6 10.434 6 0 33 0 33 0 33 7.397 17 14 min -2.333 17 -2.113 17 0 1 0 1 0 1 -36.518 6 15 3 max25.783 6 10.434 6 0 33 0 33 0 33 14.794 17 16 min -2.459 17 -2.113 17 0 1 0 1 0 1 -73.036 6 17 4 max25.574 6 10.434 6 0 33 0 33 0 33 22.19 17 18 min -2.585 17 -2.113 17 0 1 0 1 0 1 -109.554 6 19 5 max25.364 6 10.434 6 0 33 0 33 0 33 29.587 17 20 min -2.711 17 -2.113 17 0 1 0 1 0 1 -146.072 6 21 CANOPY FRAME LEFT BEAM 1 max 9.301 21 9.847 14 0 33 0 33 0 33 0 33 22 min -2.457 24 -3.742 17 0 1 0 1 0 1 0 1 23 2 max12.032 6 2.011 16 0 33 0 33 0 33 15.532 17 24 min -2.311 24 -2.464 13 0 1 0 1 0 1 -30.622 14 25 3 max14.868 6 0.912 24 0 33 0 33 0 33 26.169 13 26 min -2.166 24 -6.876 6 0 1 0 1 0 1 -21.6 14 27 4 max17.704 6 1.16 17 0 33 0 33 0 33 64.557 29 28 min -2.02 24 -12.548 6 0 1 0 1 0 1 -16.414 32 29 5 max20.539 6 2.794 17 0 33 0 33 0 33 146.072 6 30 min -1.875 24 -18.22 6 0 1 0 1 0 1 -19.371 24 31 CANOPY FRAME RIGHT BEAM 1 max 11.01 14 5.664 21 0 33 0 33 0 33 0 33 32 min -3.692 17 -3.246 22 0 1 0 1 0 1 0 1 33 2 max12.42412 1.487 25 0 33 0 33 0 33 18.92 22 34 min -3.547 17 -3.879 22 0 1 0 1 0 1 -15.736 21 35 3 max14.868 6 1.393 17 0 33 0 33 0 33 41.199 22 36 min -3.401 17 -6.876 6 0 1 0 1 0 1 -15.792 25 RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 9 83 ICompanyI JobNumber : Willett Engineering I RISDesigner :: 21 221285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame Envelope Member Section Forces(Continued) Member Sec Axial[k1LCy Shear[k1LCz Shear[k1LCTorque[k-ft1LCy-y Moment[k-ft1LCz-z Moment[k-ft1LC 37 4 max17.704 6 1.433 17 0 33 0 33 0 33 76.255 14 38 min -3.256 17 -12.548 6 0 1 0 1 0 1 -21.867 17 39 5 max20.539 6 1.647 24 0 33 0 33 0 33 146.072 6 40 min -3.111 17 -18.22 6 0 1 0 1 0 1 -29.587 17 Envelope Maximum Member Section Forces Member Axial[k]Loc[ft]Lcy Shear[k1Loc[ft]LCz Shear[k]Loc[ft LCTorque[k-ft]Loc[ft]LCy-y Moment[k-ft]Loc[ft]LCz-z Moment[k-ft1Loc[ft]LC 1 CANOPY FRAME COLUMN'max26.203 0 6 1.384 14 24 0 14 133 0 14 33 0 14 33 146.072 14 6 2 .nin-2.76 14 17-10.434 0 6 0 0 1 0 0 1 0 0 1 -19.371 14 24 3 M2 1-a1'26.203 0 6 10.434 14 6 0 14 33 0 14 33 0 14 33 29.587 14 17 4 min-2.711 14 17 -2.113 0 17 0 0 1 0 0 1 0 0 1 -146.072 14 6 5 CANOPY FRAME LEFT BEAM nax20.53921.243 6 9.847 0 14 0 21.24333 0 21.24333 0 21.24333 146.072 21.243 6 6 nin-2.457 0 24 -18.22 21.243 6 0 0 1 0 0 1 0 0 1 -31.546 6.41714 7 CANOPY FRAME RIGHT BEAMmax20.53921.243 6 5.664 0 21 0 21.24333 0 21.24333 0 21.24333 146.072 21.243 6 8 min-3.692 0 17 -18.22 21.243 6 0 0 1 0 0 1 0 0 1 -29.587 21.24317 Envelope Member End Reactions Member Member End Axial[k1LCy Shear[k1LCz Shear[k]LCTorque[k-ft1LCy-y Moment[k-ft LCz-z Moment[k-ft]LC 1 CANOPY FRAME COLUMN I max26.203 6 1.384 24 0 33 0 33 0 33 0 33 2 min-2.25717 -10.434 6 0 1 0 1 0 1 0 1 3 J max25.364 6 1.384 24 0 33 0 33 0 33 146.072 6 4 min -2.76 17 -10.434 6 0 1 0 1 0 1 -19.371 24 5 M2 I max26.203 6 10.434 6 0 33 0 33 0 33 0 33 6 min-2.20817 -2.113 17 0 1 0 1 0 1 0 1 7 J max25.364 6 10.434 6 0 33 0 33 0 33 29.587 17 8 min-2.711 17 -2.113 17 0 1 0 1 0 1 -146.072 6 9 CANOPY FRAME LEFT BEAM I max 9.301 21 9.847 14 0 33 0 33 0 33 0 33 10 min-2.45724 -3.742 17 0 1 0 1 0 1 0 1 11 J max20.539 6 2.794 17 0 33 0 33 0 33 146.072 6 12 min-1.87524 -18.22 6 0 1 0 1 0 1 -19.371 24 13 CANOPY FRAME RIGHT BEAM I max 11.01 14 5.664 21 0 33 0 33 0 33 0 33 14 min-3.69217 -3.246 22 0 1 0 1 0 1 0 1 15 J max20.539 6 1.647 24 0 33 0 33 0 33 146.072 6 16 min -3.111 17 -18.22 6 0 1 0 1 0 1 . -29.587 17 Envelope Member Section Torsion Member Sec Torque[k-ft]LCTorsion Shear[ksi]LCy-y Warp'Shear[ksi]LCz-z Warp Shear[ksi,LCz-Top Warp Bend[ksi]LCz-Bot Warp Bend[ksi]LC 1 CANOPY FRAME COLUMN 1 max 0 33 0 133 0 33 0 33 0 33 0 33 2 min 0 1 0 1 0 1 0 1 0 1 0 1 3 2 max 0 33 0 33 0 33 0 33 0 33 0 33 4 min 0 1 0 1 0 1 0 1 0 1 0 1 5 3 max 0 33 0 33 0 33 0 33 0 33 0 33 6 min 0 1 0 1 0 1 0 1 0 1 0 1 7 4 max 0 33 0 33 0 33 0 33 0 33 0 33 8 min 0 1 0 1 0 1 0 1 0 1 0 1 9 5 max 0 33 0 33 0 33 0 33 0 33 0 33 10 min 0 1 0 1 0 1 0 1 0 1 0 1 11 M2 1 max 0 33 0 33 0 33 0 33 0 33 0 33 12 min 0 1 0 1 0 1 0 1 0 1 0 1 13 2 max 0 33 0 33 0 33 0 33 0 33 0 33 14 min 0 1 0 1 0 1 0 1 0 1 0 1 15 3 max 0 33 0 33 0 33 0 33 0 33 0 33 16 min 0 1 0 1 0 1 0 1 0 1 0 1 17 4 max 0 33 0 33 0 33 0 33 0 33 0 33 18 min 0 1 0 1 0 1 0 1 0 1 0 1 19 5 max 0 33 0 33 0 33 0 33 0 33 0 33 20 min 0 1 . 0 1 0 1 0 1 0 1 0 1 RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 10 84 : Willett Engineering I ICompany'R'�� Designer : 221 Job Number : 21285 Checked By: BJH A NEMETSCHEK COMPANY Model Name : TW-Queensbury-Canopy Frame Envelope Member Section Torsion(Continued) Member Sec Torque[k-ft]LCTorsion Shear[ksi]Lcy-y Warp Shear[ksilLcz-z Warp Shear[ksi]Lcz-Top Warp Bend[ksilLcz-Bot Warp Bend[ksilLC 21 CANOPY FRAME LEFT BEAM 1 max 0 33 0 33 NC NC NC NC 22 min 0 1 0 1 NC NC NC NC _ 23 2 max 0 33 0 33 NC NC NC NC 24 min 0 1 0 1 NC NC NC NC 25 3 max 0 33 0 33 NC NC NC NC 26 min 0 1 0 1 NC NC NC NC 27 4 max 0 33 0 33 NC NC NC NC 28 min 0 1 0 1 NC NC NC NC 29 5 max 0 33 0 33 NC NC NC NC 30 min 0 1 0 1 NC NC NC NC 31 CANOPY FRAME RIGHT BEAM 1 max 0 33 0 33 NC NC NC NC 32 min 0 1 0 1 NC NC NC NC 33 2 max 0 33 0 33 NC NC NC NC 34 min 0 1 0 1 NC NC NC NC 35 3 max 0 33 0 33 NC NC NC NC 36 min 0 1 0 1 NC NC NC NC 37 4 max 0 33 0 33 NC NC NC NC 38 min 0 1 0 1 NC NC NC NC 39 5 max 0 33 0 33 NC NC NC NC 40 min 0 1 0 1 NC NC NC NC Envelope Member Section Stresses Member Sec Axial[ksi]LCy Shear[ksi]LCz Shear[ksi]LCy-Top[ksi]LCy-Bot[ksi]LCz-Top[ksi]LCz-Bot[ksi]LC 1 CANOPY FRAME COLUMN 1 ax 1.489 6 0.183 24 0 33 0 33 0 33 0 33 0 33 2 min -0.128 17 -1.381 6 0 1 0 1 0 1 0 1 0 1 3 2 ax 1.477 6 0.183 24 0 33 0.537 24 4.053 6 0 33 0 33 4 min -0.135 17 -1.381 6 0 1 -4.053 6 -0.537 24 0 1 0 1 5 3 ax 1.465 6 0.183 24 0 33 1.075 24 8.105 6 0 33 0 33 6 min -0.143 17 -1.381 6 0 1 -8.105 6 -1.075 24 0 1 0 1 7 4 ax 1.453 6 0.183 24 0 33 1.612 24 12.158 6 0 33 0 33 8 min -0.15 17 -1.381 6 0 1 -12.158 6 -1.612 24 0 1 0 1 9 5 ax 1.441 6 0.183 24 0 33 2.15 24 16.21 6 0 33 0 33 10 min -0.157 17 -1.381 6 0 1 -16.21 6 -2.15 24 0 1 0 1 11 M2 1 ax 1.489 6 1.381 6 0 33 0 33 0 33 0 33 0 33 12 min -0.125 17 -0.28 17 0 1 0 1 0 1 0 1 0 1 13 2 I ax 1.477 6 1.381 6 0 33 4.053 6 0.821 17 0 33 0 33 14 min -0.133 17 -0.28 17 0 1 -0.821 17 -4.053 6 0 1 0 1 15 3 ax 1.465 6 1.381 6 0 33 8.105 6 1.642 17 0 33 0 33 16 min -0.14 17 -0.28 17 0 1 -1.642 17 -8.105 6 0 1 0 1 17 4 ax 1.453 6 1.381 6 0 33 12.158 6 2.463 17 0 33 0 33 18 min -0.147 17 -0.28 17 0 1 -2.463 17 -12.158 6 0 1 0 1 19 5 ax 1.441 6 1.381 6 0 33 16.21 6 3.283 17 0 33 0 33 20 min -0.154 17 -0.28 17 0 1 -3.283 17 -16.21 6 0 1 0 1 21 CANOPY FRAME LEFT BEAM 1 ax 0.633 21 1.541 14 0 33 0 33 0 33 0 33 0 33 22 min -0.167 24 -0.586 17 0 1 0 1 0 1 0 1 0 1 23 2 1 ax 0.819 6 0.315 16 0 33 4.134 14 2.097 17 0 33 0 33 24 min -0.157 24 -0.386 13 0 1 -2.097 17 -4.134 14 0 1 0 1 25 3 ax 1.011 6 0.143 24 0 33 2.916 14 3.533 13 0 33 0 33 26 min -0.147 24 -1.076 6 0 1 -3.533 13 -2.916 14 0 1 0 1 27 4 , ax 1.204 6 0.182 17 0 33 2.216 32 8.715 29 0 33 0 33 28 min -0.137 24 -1.964 6 0 1 -8.715 29 -2.216 32 0 1 0 1 29 5 ax 1.397 6 0.437 17 0 33 2.615 24 19.72 6 0 33 0 33 30 min -0.128 24 -2.851 6 0 1 -19.72 6 -2.615 24 0 1 0 1 31 CANOPY FRAME RIGHT BEAM 1 i ax 0.749 14 0.886 21 0 33 0 33 0 33 0 33 0 33 32 min -0.251 17 -0.508 22 0 1 0 1 0 1 0 1 0 1 33 2 ax 0.845 12 0.233 25 0 33 2.124 21 2.554 22 0 33 0 33 34 min -0.241 17 -0.607 22 0 1 -2.554 22 -2.124 21 0 1 0 1 35 3 ax 1.011 6 0.218 17 0 33 2.132 25 5.562 22 0 33 0 33 RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 11 85 : Willett Engineering IICompany 1 RISDesigner ob Number : 22 285 Checked By: BJH ANEMETSCHEKCOMPANY Model Name : TW-Queensbury-Canopy Frame Envelope Member Section Stresses(Continued) Member - Sec Axiai[ksilLCy Shear[ksi]LCz Shear[ksi]LCy-Top[ksijLCy-Bot[ksi]LCz-Top[ksilLCz-Bot[ksi]LC 36 min -0.231 17 -1.076 6 0 1 -5.562 22 -2.132 25 0 1 0 1 37 4 max 1.204 6 0.224 17 0 33 2.952 17 10.294 14 0 33 0 33 38 min -0.221 17 --1.964 6 0 1 -10.294 14 -2.952 17 0 1 0 1 39 5 max 1.397 6 0.258 24 0 33 3.994 17 19.72 6 0 33 0 33 40 min -0.212 17 -2.851 6 0 1 -19.72 6 -3.994 17 0 1 0 1 Envelope AISC 15th(360-16):ASD Steel Code Checks r, Member Shape Code Check Loc[ft]LCShear Check Loc[ftJDirLCPnc/om[kjPnt/om[kJMnyy/om[k-ftlMnzz/om[k-ftl Cb Eqn 1 CANOPY FRAME COLUMN W18X60 0.514 14 6 0.069 14 y 6 331.333 526.946 51.397 306.886 1.667H1-lb 2 M2 W18X60 0.526 14 6 0.069 14 y 6 255.223 526.946 51.397 306.886 1.667H1-lb 3 CANOPY FRAME LEFT BEAM W18X50 0.651 21.243 6 0.143 21.243 y 6 144.932 440.12 41.417 251.996 2.873H1-lb 4 CANOPY FRAME RIGHT BEAM W18X50 0.737 21.243 6 0.143 21.243 y 6 92.757 440.12 41.417 251.996 2.873H1-la Envelope Beam Deflections Member Label Span Location[ft] y'[in] (n)L'/y'Ratio LC 1 CANOPY FRAME LEFT BEAM 1 max 20.8 -0.001 NC 28 2 1 min 0 -1.221 417 29 3 CANOPY FRAME RIGHT BEAM 1 max 19.694 0.001 NC 33 4 1 min 0 -1.442 353 14 • • RISA-3D Version 19 [Tidal Wave-Queensbury-Canopy Fram... Page 12 86