Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
CC-0081-2023
• w • Office Use Only PRINCIPLE STRUCTURE PERMIT APPLICATI ON- Permit#: CL- O0$1. 2e 2 � Permit Fee:$ 1 0• le0 Town of Qyeensbury t E ll E *Rec Fee: K Ft - E! 742 Bay Road, Queensbury, NY 4 P: 518-761-8256 www.queensb . e MAR 01 2023 Invoice TOWN OF QUEENSBURY Flood Zone? Y N eviewed • BUILDING &CODES Project Location: 920 Route 9, Queensbury NY 12804 Tax Map #:296.17-1-45 Subdivision Name: *TOWN BD.RESOLUTION 385-2020:$1000 recreation fee for new dwelling units:single family,duplexes/two- family, multiple family, apartments, condominiums,townhouses, and/or manufactured &modular homes, but not mobile homes.This is in addition to the permit fee(s). PROJECT INFORMATION: Residential I Commercial, Proposed Use: B - Business ❑Single-Family: _Two-Family ❑Multi-Family(#of units: 1. [l Custom 2. ❑Modular(REQUIRED: NYS stamped engineered drawings of foundation plans) Townhouse n Garage (#of cars ) 1Business Office J I Retail nHotel/Motel ❑Industrial nHeated Warehouse/Storage Building n Amusement Ride ❑Unheated Warehouse/Storage Building ❑Other(describe: ) MAIN STRUCTURE SQUARE FOOTAGE: GARAGE SQUARE FOOTAGE: 1sT floor: 3,516 1sT floor: 2nd floor: 2"d floor: 3rd floor: Total square feet: Basement(habitable space): Total square feet: 3,516 Principle Structure Packet Revised September 2022 I ADDITIONAL PROJECT INFORMATION: 1. Estimated Cost of Construction: $ 585,000 2. Proposed use of the building: Business - urgent care facility 3. If Commercial or Industrial, indicate the name of the business: WeIINOW Urgent Care to be included on tenant interior drawings 4. Source of Heat: Gas❑Oil n Propane n Solar Other: (Fireplaces need a separate Fuel Burning Appliances&Chimney Application, one per appliance) 5. Are there any structures not shown on the plot plan?[l YES Q NO Explain, if yes: 6. Are there any easements on the property?❑YES 12 NO 7. SITE INFORMATION: .52 acre a. What are the dimen ' or acrea f the parcel? b. Is this a corner lot? IYES I NO c. Will the grade be changed al-a,l esult ofthescnstruction7 YES ❑NO d. What is the water source? J PUBLIC _PRIV WELL e. What type of wastewater system is on the parcel? ✓T SEWER J I PRIVATE SEPTIC DECLARATION: 1. I acknowledge that no construction shall be commenced prior to the issuance of a valid permit and will be completed within a 12 month period.Any changes to the approved plans prior to/during construction will require the submittal of amended plans,additional reviews and re-approval. 2. If,for any reason,the building permit application is withdrawn,30%of the fee is retained by the Town of Queensbury.After 1 year from the initial application date, 100%of the fee is retained. 3. I certify that the application, plans and supporting materials are a true and complete statement and/or description of the work proposed, that all work will be performed in accordance with the NYS Building Codes, local building laws and ordinances, and in conformance with local zoning regulations. 4. I acknowledge that prior to occupying the facilities proposed I, or my agents,will obtain a certificate of occupancy. 5. I also understand that I/we are required to provide an as-built survey by a NYS licensed land surveyor of all newly constructed facilities prior to issuance of certificate of occupancy. I have read and agree to the above: PRINT NAME: Jay Johnson, Excel Engineering, Inc. DATE: 2/22/2023 2/22/2023 SIGNATURE: DATE: Principle Structure Packet Revised September 2022 � t CONTACT INFORMATION: PLEASE PRINT LEGIBLY OR TYPE, PLEASE INCLUDE AN EMAIL • Applicant: Name(s):Jay Johnson-Excel Engineering,Inc. Mailing Address, C/S/Z: 100 Camelot Drive, Fond du Lac WI 54935 Cell Phone: _( ) Land Line: _(920 )926-3155 Email: archretail@excelengineer.com • Primary Owner(s): Name(s):Queensbury Realty Partners,LLC Mailing Address, C/S/Z: 509 State Route 67,Malta NY 12020 Cell Phone: _( ) Land Line: (518 )858-2637 Email: jgeorge@tricapitalrealty.com ❑ Check if all work will be performed by property owner only • Contractor(s): (List all additional contractors on the back of this form) Contractor Name(s):TBD Contractor Trade: Mailing Address, C/S/Z: Cell Phone: _( ) Land Line: _( Email: **Workers' Comp documentation must be submitted with this application** • Architect(s)/Engineer(s): Business Name: Excel Engineering,Inc. Contact Name: Jeff Liebergen Mailing Address, C/S/Z: 100 Camelot Drive,Fond du Lac WI 54935 Cell Phone: _( ) Land Line: (920 )926-9800 Email: archretail@excelengineer.com Contact Person for Compliance in respect to this project: Jay Johnson-Excel Engineering,Inc. Cell Phone:_( ) Land Line: _(920 )926-3155 Email: archretail@excelengineer.com Principle Structure Packet Revised September 2022 A 1W FIRE MARSHAL'S OFFICE 411111 1h Town of Queensbury 742 , NY 12804 Bay Road, Queensbury, "Home of Natural Beauty ... A Good Place to Live " PLAN REVIEW Wellnow/Q'bury Realty Group 920 State Route 9 ; . Total SQ footage 3516 s.f. 4/26/23 I have reviewed the submitted drawings for the above project; and offer.the following comments: 1).Verify Fire extinguisher locations 2) Locks / latches shall comply with 2020 NYSFC. 3) Verify operation of exit / emergency lights, emergency exterior lights 4) Truss ID 5) Verify Knox Box Deputy Fire Marshal • Tyson Converse 742 Bay Road Queensbury NY 12804 Fire Marshal's Office • Phone: 518-761-8206 • Fax: 518-745-4437 firemarshal@queensbury.net • www.queensbury.net COMcheck Software version 4.1.5.5 Envelope Compliance Certificate �Ev�EwE® F- Project Information ENERG Y CODE COMPLIANCE Energy Code: 2018 IECC Project Title: weIINOW Urgent Care Building Shell COPY' Location: Glens Falls, New York C'1 Climate Zone: 6a r 1� Project Type: New Construction Vertical Glazing/Wall Area: 26% Construction Site: Owner/Agent: Designer/Contractor: • 920 ROUTE 9 Thomas Burke Excel Engineering, Inc Queensbury„ NY 12804 Queensbury Realty Partners, LLC 100 Camelot Drive 509 State Route Fond du Lac,WI 54935 Malta, NY 12020 920-322-1690 Additional Efficiency Package(s) Credits: 1.0 Required 1.0 Proposed_ , Reduced Lighting Power,1.0 credit Building Area Floor Area 1-Health Care-Clinic: Nonresidential 3516 • Envelope Assemblies Assembly Gross Area Cavity Cont. Proposed Budget U- . or R-Value R-Value U-Factor Factorya) Perimeter • Roof 1:Insulation Entirely Above Deck:High Albedo Roof Required, 3516 — 30.0 0:032 0.032 [Bldg.Use 1-Health Care-Clinic] Floor 1:Slab-On-Grade:Unheated,Horizontal with vertical 4 ft.,[Bldg. 259 — 10.0 0.640 0.540 Use 1 -Health Care-Clinic](c) NORTH Exterior Wall-South:Wood-Framed,16"o.c.,[Bldg.Use 1 -Health 700 21.0 0.0 0.062 0.051 Care-Clinic] Window 3:Metal Frame with Thermal Break:Fixed,Perf.Specs.: 252 — — 0.370 0.360 Product ID LOW-E INSULATED GLAZING,SHGC 0.34,PF 0.35,[Bldg. Use 1-Health Care-Clinic](b) • Door 1:Glass(>50%glazing):Metal Frame,Entrance Door,Pert. 21 ' -- -- 0.690 0.770 Specs.:Product ID Kawneer 350 Pair of Doors,SHGC 0.25,PF 0.35, [Bldg.Use 1-Health Care-Clinic](b) EAST Exterior Wall-East:Wood-Framed,16"o.c.,[Bldg.Use 1 -Health 1419 21.0 0.0 0.062 0.051 Care-Clinic] Window 2:Metal Frame with Thermal Break:Fixed,Perf.Specs.: 275 — — 0.270 0.360 Product ID LOW-E INSULATED GLAZING,SHGC 0.27,PF 0.35,[Bldg. Use 1 -Health Care-Clinic](b) SOUTH Exterior Wall-North:Wood-Framed,16"o.c.,[Bldg.Use 1 -Health 700 21.0 0.0 0.062 0.051 Care-Clinic] Window 5:Metal Frame with Thermal Break:Fixed,Perf.Specs.: • 273 — — 0.270 0.360 Product ID LOW-E INSULATED GLAZING,SHGC 0.27,PF 0.35,[Bldg. Project Title: weIINOW Urgent Care Building Shell Report date: 03/16/23 Data filename: F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\plan submittal and Page 1 of 10 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck Assembly Gross Area Cavity Cont. Proposed Budget U- or R-Value R-Value U-Factor Factorra) Perimeter Use 1 -Health Care-Clinic](b) WEST Exterior Wall-West:Wood-Framed,16"o.c.,[Bldg.Use 1 -Health 1419 21.0 0.0 0.062 0.051 Care-Clinic] Window 4:Metal Frame with Thermal Break:Fixed,Perf.Specs.: 252 — — 0.270 0.360 Product ID LOW-E INSULATED GLAZING,SHGC 0.27,PF 0.35,[Bldg. Use 1-Health Care-Clinic](b) Door 3:Glass(>50%glazing):Metal Frame,Entrance Door,Perf. 21 — — 0.690 0.770 Specs.:Product ID Kawneer 350 Pair of Doors,SHGC 0.25,PF 0.35, • [Bldg.Use 1-Health Care-Clinic](b) (a)Budget U-factors are used for software baseline calculations ONLY,and are not code requirements. (b)Fenestration product performance must be certified in accordance with NFRC and requires supporting documentation. (c)Slab-On-Grade proposed and budget U-factors shown in table are F-factors. • Envelope PASSES: Design 2% better than code Envelope Compliance Statement Compliance Statement: The proposed envelope design represented in this document is consistent with the building plans, specifications,and other calculations submitted with this permit application.The proposed envelope systems have been designed to meet the 2018 IECC requirements in COMcheck Version 4.1.5.5 and to comply with any applicable mandatory requirements listed in the Inspection Checklist. Name-Title Signature Date • • • • • Project Title: weIINOW Urgent Care Building Shell . Report date: 03/16/23 Data filename: F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\plan submittal and Page 2 of 10 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck • COMcheck Software Version 4.1.5.5 (it(' Inspection. Checklist Energy Code: 2018 IECC Requirements: 97.0% were addressed directly in the COMcheck software Text in the "Comments/Assumptions" column is provided by the user in the COMcheck Requirements screen. For each requirement,the user certifies that a code requirement will be met and how that is documented, or that an exception is being claimed. Where compliance is itemized in a separate table, a reference to that table is provided. Section Plan Review Complies? Comments/Assumptions & Req.ID C103.2 ;Plans and/or specifications provide all ❑Complies Requirement will be met. [PR1]1 information with which compliance ❑Does Not can be determined for the building ;envelope and document where [Not Observable exceptions to the standard are ONot Applicable ;claimed. C402.4.1 ;The vertical fenestration area <= 30 ❑Complies. Requirement will be met. [PR10]1 percent of the gross above-grade wall ODoes Not area. ['Not Observable ❑Not Applicable C402.4.1 The skylight area <=3 percent of the ❑Complies Requirement will be met. [PR11]l. gross roof area. ❑Does Not ['Not Observable ❑Not Applicable C406 ;Plans,specifications,and/or ❑Complies Requirement will be met. [PR9]1 calculations provide all information ❑Does Not ;with which compliance can be determined for the additional energy [Not Observable. ;efficiency package options. ❑Not Applicable Additional Comments/Assumptions: . • 1 High Impact(Tier 1) 2 Medium Impact(Tier 2) 3 Low Impact(Tier 3) Project Title: welINOW Urgent Care Building Shell Report date: 03/16/23 Data filename: F:'Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\plan submittal and Page 3 of 10 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck Section Footing/Foundation Inspection Complies? Comments/Assumptions & Req.ID J� C303.2. ;Slab edge insulation.installed per EComplies Requirement will be met. [FO412 'manufacturer's instructions. ❑Does Not - ENot Observable ENot Applicable C303.2.1 :Exterior insulation protected against ❑Complies Requirement will be met. [FO6]1 :damage,sunlight, moisture,wind, ❑Does Not landscaping and equipment maintenance activities. ❑Not Observable ENot Applicable C105 ;Installed slab-on-grade insulation type EComplies See the Envelope Assemblies table for values. [FO3]2 )and R=value consistent with insulation ❑Does Not • (specifications'reported in plans and • :COMcheck reports. Not Observable ❑Not Applicable C402.2.4 Slab edge insulation depth/length. EComplies Requirement will be met. [FO7]z Slab insulation extending away from ❑Does Not building is covered by pavement or - See the Envelope Assemblies table for values. I>= 10 inches of soil. ['Not Observable ENot Applicable Additional Comments/Assumptions: • • 1 High Impact(Tier 1) 2 Medium Impact(Tier 2) 3 Low Impact(Tier 3) Project Title: welINOW Urgent Care Building Shell Report date: 03/16/23 Data filename: F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\plan submittal and Page 4 of 10 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck Section 11 Framing/Rough-In Inspection Complies? Comments/Assumptions • & Req.ID 11 C303.1.3 'Fenestration products rated in ❑Complies Requirement will be met. [FR1212 laccordance with NFRC. ❑Does Not :Not Observable ❑Not Applicable C303.1.3 Fenestration products are certified as ❑Complies Requirement will be met. [FR13]1 to performance labels or certificates ❑Does Not provided. ['Not Observable • ❑Not Applicable . C402.4.3 ;Vertical fenestration SHGC value. • ❑Complies See the Envelope Assemblies table for values. [FR10]1 f ❑Does Not :Not Observable ❑Not Applicable C402.4.3, Installed vertical fenestration U-factor ❑Complies See the Envelope Assemblies table for values. • C402.4.3. and SHGC consistent with label ElDoes Not 4 specifications and as reported in plans [FR8]1 and COMcheck reports. [Not Observable ❑Not Applicable C402.5.1. ;The building envelope contains a ❑Complies Requirement will be met. 2.1 continuous air barrier that is sealed in ❑Does Not [FR19]1 ;an approved manner and material permeability<= 0.004 dfm/ft2.Air :Not Observable • barrier penetrations are sealed in an ❑Not Applicable approved manner. C402.5.2, ;Factory-built fenestration and doors ❑Complies Requirement will be met. C402.5.4 I are labeled as meeting air leakage ❑Does Not [FR18]3 I requirements. ['Not Observable • { ❑Not Applicable C402.5.7 'Vestibules are installed on all building ❑Complies Exception: Doors that open directly from a space-=3000 ft2. [FR17]3 !entrances. Doors have self-closing ❑Does Not • ;devices. • ❑Not Observable • ❑Not Applicable Additional Comments/Assumptions: • 1 High Impact(Tier 1) 2 Medium Impact(Tier 2) 3 Low Impact(Tier 3) Project Title: welINOW Urgent Care Building Shell Report date: 03/16/23 Data filename: F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\plan submittal and Page 5 of 10 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck Section # Mechanical Rough-In Inspection Complies? Comments/Assumptions & Req.ID It C402.5.5, ;Stair and elevator shaft vents have ❑Complies Exception: Requirement does not apply. C403.2.4. 'motorized dampers that automatically EDoes Not 3 !close. Refernece section C403.7.7 for [ME3]3 operational details. [Not Observable ❑Not Applicable C403.7.7 !Outdoor air and exhaust systems have ❑Complies Requirement will be met. [ME58]3 'motorized dampers that automatically ODoes Not (shut when not in use and meet I maximum leakage rates.Check ❑Not Observable I gravity dampers where allowed. ❑Not Applicable • Reference section language for operational details. Additional Comments/Assumptions: • 1 High Impact(Tier 1) 2 Medium Impact(Tier 2) 3 Low Impact(Tier 3) Project Title: weIINOW Urgent Care Building Shell Report date: 03/16/23 Data filename: F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\plan submittal and Page 6 of 10 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck ' Section # Rough-In Electrical Inspection Complies? Comments/Assumptions & Req.ID C405.6 ;Low-voltage dry-type distribution ❑Complies Requirement will be met. [EL2612 I electric transformers meet the ElDoes Not (minimum efficiency requirements of Table C405.6. ❑Not Observable ❑Not Applicable C405.7 Electric motors meet the minimum ❑Complies Requirement will be met. [EL2712 'efficiency requirements of Tables ❑Does Not C405.7(1)through C405.7(4). I Efficiency verified through certification ['Not Observable under an approved certification ❑Not Applicable program or the equipment efficiency ratings shall be provided by motor manufacturer(where certification programs do not exist). C405.8.2, ;Escalators and moving walks comply ❑Complies Requirement will be met. C405.8.2. !with ASME A17.1/CSA B44 and have ❑Does Not 1 automatic controls configured to [EL28]z 'reduce speed to the minimum ❑Not Observable permitted speed in accordance with ❑Not Applicable ASME A17.1/CSA B44 or applicable 'local code when not conveying • passengers. C405.9 (Total voltage drop across the ❑Complies Requirement will be met. [EL29]z (combination of feeders and branch ❑Does Not circuits<=5%. [Not Observable ❑Not Applicable Additional Comments/Assumptions: • • 1 High Impact(Tier 1) 2 Medium Impact(Tier 2) 3 Low Impact(Tier 3) Project Title: welINOW Urgent Care Building Shell Report date: 03/16/23 Data filename: F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\plan submittal and Page 7 of 10 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck Section Insulation Inspection Complies? Comments/Assumptions & Req.ID C303.1 Roof insulation installed per ❑Complies Requirement will be met. [IN3]1 manufacturer's instructions. Blown or ❑Does Not poured loose-fill insulation is installed only where the roof slope is <=3 in ❑Not Observable 12. ❑Not Applicable C402.2.1 ;Insulation installed on a suspended ❑Complies 'Requirement will be met. [IN20]1 ceiling having ceiling tiles is not being ❑Does Not ;specified for roor/ceiling assemblies. ;Continuous insulation board installed Not Observable in 2 or more layers with edge joints ❑Not Applicable offset between layers. C303.1 ;Building envelope insulation is labeled ❑Complies [IN10]z 'with R-value or insulation certificate ❑Does Not providing R-value and other relevant data. ❑Not Observable ❑Not Applicable C303.2 Above-grade wall insulation installed EComplies Requirement will be met. [IN7]1 per manufacturer's instructions. ❑Does Not ❑Not Observable ❑Not Applicable C303.2.1 ;Exterior insulation is protected from ❑Complies Requirement will be met. [IN14]2 (damage with a protective material. ['Does Not ;Verification for exposed foundation insulation may need to occur during ❑Not Observable Foundation Inspection. ❑Not Applicable C105 Installed above-grade wall insulation ❑Complies See the Envelope Assemblies table for values. [IN6]1 type and R-value consistent with ❑Does Not insulation specifications reported in plans and COMcheck reports. ['Not Observable ❑Not Applicable C402.2.3 I Installed floor insulation type and R- ❑Complies See the Envelope Assemblies table for values. [IN8]z !value consistent with insulation ❑Does Not (specifications reported in plans and 'COMcheck reports. Not Observable ❑Not Applicable C402.2.6 !Radiant panels and associated ❑Complies Requirement will be met. [IN18]3 !components,designed for heat ❑Does Not transfer from the panel surfaces to the occupants or indoor space are ['Not Observable !insulated with a minimum of R-3.5. ❑Not Applicable C105 Installed roof insulation type and R- ❑Complies See the Envelope Assemblies table for values. [IN2]1 value consistent with insulation ❑Does Not specifications reported in plans and COMcheck reports. For some ceiling Not Observable systems,verification may need to ❑Not Applicable occur during Framing Inspection. C402.5.1. :All sources of air leakage in the ElComplies Requirement will be met. 1 ;building thermal envelope are sealed, ❑Does Not [IN1]1 ;caulked, gasketed,weather stripped ❑Not Observable or wrapped with moisture vapor- permeable wrapping material to ❑Not Applicable ;minimize air leakage. Additional Comments/Assumptions: 1 High Impact(Tier 1) 2 Medium Impact(Tier 2) 3 Low Impact(Tier 3) Project Title: weIINOW Urgent Care Building Shell Report date: 03/16/23 Data filename: F:Uob Files\2260800 Queensbury Realty-weIINOW Shell-Queensbury NY\plan submittal and Page 8 of 10 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck • Section I Final Inspection Complies? Comments/Assumptions & Req.ID �l C402.5.6 Weatherseals installed on all loading ❑Complies Exception: Requirement does not apply. • [FI37]1 dock cargo door openings and provide ❑Does Not direct contact along the top and sides of vehicles parked in the doorway. ['Not Observable ❑Not Applicable C402.5.8 Recessed luminaires in thermal ❑Complies Requirement will be met. [FI26]3 'envelope to limit infiltration and be IC ODoes Not ;rated and labeled. Seal between l interior finish and luminaire housing. ❑Not Observable ❑Not Applicable C408.1.1 ;Building operations and maintenance ❑Complies Requirement will be met. [FI57]1 documents will be provided to the ❑Does Not ;owner. Documents will cover manufacturers'information, ❑Not Observable specifications,programming ❑Not Applicable procedures and means of illustrating to owner how building,equipment and systems are intended to be installed, maintained, and operated. • Additional Comments/Assumptions: • • • • • • • 1 High Impact(Tier 1) 2 Medium Impact(Tier 2) 3 Low Impact(Tier 3) Project Title: welINOW Urgent Care Building Shell Report date: 03/16/23 Data filename: F:\Job Files\2260800 Queensbury Realty-welINOW.Shell-Queensbury NY\plan submittal and Page 9 of 10 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck • • Project Title: welINOW Urgent Care Building Shell Report date: 03/16/23 Data filename: F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\plan submittal and Page 10 of 10 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck F r _ 1 • COMcheck Software Version 4.1.5.5 ,( 1 i Exterior Lighting Compliance Certificai * o ko J J h n � z o FIT p v 3 m 3 � � Project Information r \,,1� rp f� V1 Energy Code: 2018 IECC D -^---" "-"" �• tC C Project Title: weIINOW Urgent Care Building Shell ®� o �� 1 g W Project Type: - New Construction 1"AA� 23 Q 4 Exterior Lighting Zone 2(Neighborhood business district(LZ2 ) _ _...�..- — to n TOwl�i O}=Q�1 G��:7 UF'Y gy n 13UILl�IFdr'a r G_©C7 .- 4 0 Construction Site: Owner/Agent: a e(gnerl�ontractor: Q 920 ROUTE 9 Thomas Burk Excel Engineering, Inc W C) CO Queensbury„ NY 12804 Queensbury •e-:i+ •art,•-rs, LLC 100 Camelot Drive Cn I�+ 509 State o ,,��'`;� Fond du Lac,WI 54935 I—i C Ni Malta, 1 t. 920-322-1690 .0 Q Allowed Exterior Lighting Power � , W A ,� B C D Area/Surface Category 4 Quantity Allowed Tradable Allowea wares Watts/Unit Wattage (B X C) Front Door(Pedestrian and vehicular entrances and exits) 3 ft of door 14• Yes 42 Back Door(Pedestrian and vehicular entrances and exits) 3 ft of door 14 Yes 42 Exterior Walls(Illuminated area of facade wall or surface) 4476 ft2 0.07 No 336 Total Tradable Watts(a)= 84 Total Allowed Watts= 420 Total Allowed Supplemental Watts(b)= 400 (a)-Wattage tradeoffs are only allowed between tradable areas/surfaces. (b)A supplemental allowance equal to 400 watts may be applied toward compliance of both non-tradable and tradable areas/surfaces. Proposed Exterior Lighting Power A B - C D E • Fixture ID : Description/Lamp/Wattage Per Lamp/Ballast Lamps/ #of Fixture (C X D) Fixture Fixtures Watt. Front Door(Pedestrian and vehicular entrances and exits 3 ft of door width):Tradable Wattage LED 1:WP1:LED Wall Pack:Other: 1 1 26 26 Back Door(Pedestrian and vehicular entrances and exits 3 ft of door width):Tradable Wattage LED 2:WP1:LED Wall Pack:Other: 1 1 26 - 26 Exterior Walls (Illuminated area of facade wall or surface 4476 ft2):Non-tradable Wattage LED 3:WS1:Wall Sconce:Other: 1 12 13 156 Total Tradable Proposed Watts= 52 Exterior Lighting PASSES: Design 89% better than code Exterior Lighting Compliance Statement - Compliance Statement: The •ro•osed exterior lighting design represented in this document is consistent with the build nd-plans, specifications, and othe.• •yr•••,�bmitted with this permit application.The proposed exterior lighting to aVe been designed to meet thy'''. •,l. :.9.Fr-• ents in COMcheck Version 4.1.5.5 and.to comply with any apple 'nya) Cory requirements listeor - P .• °'•, ' 'st. '< _6�/,/ co SIPIORSKI *. 'er"'a'�,'•;' Name-Title i. .'i' P.. CC Signature vt/Q <' r— '' ', a w 0w d BOA 105476 // q, ,,,..; 2.ZZ• Z5 Project Title: welINOW - ;- Building Shell <"77. Report date: 11/08/22 Data filename: FA Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\pl submittal and Page 1 of 5 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck r COMcheck Software Version 4.1.5.5 Inspection Checklist I Energy Code: 2018 IECC Requirements: 97.0% were addressed directly in the COMcheck software Text in the "Comments/Assumptions" column is provided by the user in the COMcheck Requirements screen. For each requirement, the user certifies that a code requirement will be met and how that is documented, or that an exception is being claimed. Where compliance is itemized in a separate table, a reference to that table is provided. Section >_#: Plan Revi '::: r ew, Gom I%es.. •,Commenfs7dssum tons..• OC' • - - C103.2 Plans,specifications,and/or ❑Com lies Requirement will be met. [PR8]1 calculations provide all information ❑Does Not with which compliance can be determined for the exterior lighting [Not Observable and electrical systems and equipment DNot Applicable and document where exceptions to the standard are claimed. Information provided should include exterior lighting power calculations,wattage of bulbs and ballasts,transformers and. control devices. C406 Plans,specifications,and/or ❑Complies Requirement will be met. [PR9]1 calculations provide all information ❑Does Not with which compliance can be determined for the additional energy ❑Not Observable efficiency package options. ❑Not Applicable Additional Comments/Assumptions: 1 High Impact(Tier 1) ;2 Medium Impact(Tier 2) 13: Low Impact(Tier 3) Project Title: welINOW Urgent Care Building Shell Report date: 11/08/22 Data filename: F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\plan submittal and Page 2 of 5 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck ^ ~� ID iba C405.2.5 'Manual controls required by the ElComplies Requirement will bemet. [EL28]nuil :energycode are in a location with LJooesNcs reaoyaccessouoccupamsano L]Notobsemab|e located where the controlled lights are visible, nr identify the area served and []NotApplicable |the!rstatus. C405.2.6 -Automatic lighting controls foremerior []Comp|ies ' Requirement will bemet. [EL30]""n lighting installed. Controls will 6e []Does Not ` daylight controlled,set based vn []NotObsemab|e business operation dmenf-day, or educecunne�ed |ighdng > 3OY6. []NotApp|icab|e / / Low'vn|tag distribution []Complies Requirement will bemet. [ L electric transformers meet the L]ovesNot minimum efficiency requirements of Table C405.5. []Not Observable []NoLAop|icab|e Electric motors meet the minimum LJCump|ies Requirement will bemet. [ efficiency requiememsufTables L]ooesNct � v [4O57(l}thmughC4U57(4> ' ' � ' ' ' []NotObsemab|e ' B�ciencyveri�edthmughce�i�cation - underan approved certification []NotApp|icab|e ` program ur the equipment effidency ratings shall be provided by motor , 1...~....^^..^. `,,..^.~`.^..^...n a . programs do not exist). Escalators and moving walks comply []Complies Requirement will be met. with ASMEAl7.1/CSAD44 and have LJouesNot automaticcontm|scon�configured NotObsemab|e [ n� ces edm� i i �� nn�te�speedinaccordancew�h LJNotAp�icab|e � AsMEAl7.1/CSAB44orapplicable |oca|code when not conveying passengers. Tuta|vu�agedmpacrossthe Requirement wiUbemet. [ �p� combination of feeders and branch LJonesNct circuits []Not Observable []NotAppicable Additional Comm ents/Assummptio ns: ' ` l High Impact(Tlerl) Medium Impact(Tier]) Low Impact(rier3) Project Title we|NoVV Urgent Care Building Shell Report date: 11/08/22 Data filename: p:0obR|es\226UOOOQ eensbu NY\pan submittal and Page 3nf 5 appnova|s\cumcheck\ZZ5O8VO'Queensbuny, NY Shell coMcheck.cck ` \ ` C405.5.1 aExterior lighting power is consistent [kComplie� See the Exterior Lighting fixture schedule for values. [H19}1 with what b shown un the approved []DoesNnt lighting plans, demonstrating' []NntObsemab|e proposed �s are-to |od'vva- - []NutApp|icab|e C408.1.1 /Building operations and maintenance []Complies /Requivement will be met. [17157]1 documents will be provided Lothe []DnesNot uwner. Documents ' manufacturers' information, []Notobsemab|e specifications, programming []Nut Applicable procedures and means ofillustrating oo owner how building,equipment and systems are intended tubeinstalled, maintained'and operated. AdditioaaKCommmments/Aasummiptioms: ` ' ' - I H�h |mp���� �� �� ��U�� � i�|����� Project Title weUVOVV Urgent Care Building Shell Repnrt.date 11/08/22 Data filename: F:VubFi|es\325O8OUQueensbu Shell-Queensbu NY\p|ansubmata| and Page 4xf 5 apprnva|s\comcheck\2360800'Queensbury. NY Shell COMcheck.cck • Project Title: weIINOW Urgent Care Building Shell Report date: 11/08/22 Data filename: F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\plan submittal and Page 5 of 5 approvals\comcheck\2260800-Queensbury, NY Shell COMcheck.cck ' CONSTRUCTION TECHNOLOGY INSPECTION & TESTING DIVISION, P.D.&T.S., INC. 4 William Street,Ballston Lake,New York 12019 Phone: (518)399-1848 Email: constructiontech@live.com March 15, 2023 QUEENSBURY REALTY PARTNERS,LLC 509 State Route 67 Malta, New York 12020 Att'n: Building Code Enforcement Officials 0'\g" Re: WELL NOW URGENT CARE: 920 ROUTE 9, QUEENSB RY,NEW YORK Construction Materials Inspection and Testing Services Greetings, Per the request, Mr. Jared George , QUEENSBURY REALTY PARTNERS,LLC, we are pleased to inform you CONSTRUCTION TECHNOLOGY has been retained to provide the construction materials inspection and testing services required of the referenced project including but not limited to: Soil compaction, structural steel, and portland cement concrete inspection and testing. As such, we would like a moment to introduce our organization. CONSTRUCTION TECHNOLOGY is the construction materials inspection division of Product Development &Technical Services, Inc. Since our 1984 incorporation in New York State, we have been devoted to providing the highest standards of on time field inspection, testing and laboratory support to the construction industry. Our desire is a QC/QA involvement with projects committed to timely completion while satisfying the quality controls and assurances necessary to support today's strict design criteria. All too often materials inspections are viewed as a necessary evil or a requirement to be overlooked. Many times the laboratory brings this attitude on itself because of less than fully qualified personnel, tardy response time or uncompromising attitudes of technicians. Given the opportunity, we are confident we can provide the services that reflect our strong desire to be an asset to the construction process. Our facility and field technical force is supported by state of the art test equipment, including nuclear soil/asphalt density test equipment, automatic soil moisture/density (Proctor) apparatus, temperature/humidity controlled curing environments for concrete specimens, and all other necessary equipment to satisfy the requirements of the American Society for Testing and Materials (ASTM) standards C-1077 and E-329 as they relate to a commercial inspection agency. CONSTRUCTION TECHNOLOGY has submitted to outside auditing by having our personnel, equipment, facility and quality assurance plan evaluated by the Cement and Concrete Reference Laboratory (CCRL) of the National Standards Institute. A copy of the CCRL/NSI audit and finding is available upon request. March 15, 2023 QUEENSBURY REALTY PARTNERS,LLC Re: WELL NOW URGENT CARE: 920 ROUTE 9, QUEENSBURY,NEW YORK Construction Materials Inspection and Testing Services Our staff ranges from consultant Professional Engineers, hydrologists and geologists to field technicians and materials inspectors with technical backgrounds of educational degrees and/or substantiated experience in a construction oriented discipline. Field inspectors also possess a combination of the following certifications: * Certification at various levels (AET-I through SET-IV) by the National Institute for Certification in the Engineering Technologies (NICET). * American Concrete Institute (ACI) Grade I Concrete Inspector. * American Concrete Institute (ACI) Certified Concrete Construction Special Inspector. * North East Transportation Training & Certification Program (NETTCP). Certified Soil and Aggregate Inspector * Troxler Nuclear Gauge Training Program for Radiation Safety Officers and Field Operators. * NYSDoT Certified Asphalt Density Inspector. * J&L Testing, Inc. Certification Program for Sanitary Landfill Inspectors. * J&L Testing, Inc. Certification Program for Quality Control and Inspection of Geosynthetic Systems for Use in Solid and Hazardous Waste Disposal Facilities. In addition to particular qualifications, field inspectors are familiar with all phases of construction materials testing and inspection including soils, concrete, reinforcement, masonry, structural steel, fireproofing and roof installation. This generally alleviates the need and expense of employing more than one inspector on a particular project. CONSTRUCTION TECHNOLOGY currently has the capabilities to provide inspection and testing services relating to many construction concerns including but not limited to: subsurface drilling and investigation, soils placement and compaction, foundation design recommendations, portland cement concrete, unit masonry, mortars, grouts, bituminous concrete, structural steel and fireproofing, as well as all associated laboratory services. In general, all forms of materials testing and inspection services, as they relate to the construction industry, may be obtained through CONSTRUCTION TECHNOLOGY. We appreciate your interest in our firm and our line of work. We look forward to completing the construction materials inspection, testing and laboratory requirements for: QUEENSBURY REALTY PARTNERS,LLC. If there are any questions, or when we may be of assistance, please contact this office immediately. Respectfully, CONSTRUCTION TECHNOLOGY Robert Behan, (NICET) Manager Technical Services STATEMENT OF SPECIAL INSPECTIONS PROJECT: weIINOW URGENT CARE LOCATION: 920 ROUTE 9, QUEENSBURY, NY 12804 PERMIT APPLICANT: EXCEL ENGINEERING APPLICANT'S ADDRESS: 100 CAMELOT DRIVE, FOND DU LAC,WI 54935 ARCHITECT OF RECORD: JEFF LIEBERGEN STRUCTURAL ENGINEER OF RECORD: JAMES GERLOFF C)'4 MECHANICAL ENGINEER OF RECORD: DOUG ELGERSMA rjCi ELECTRICAL ENGINEER OF RECORD: MATT SIPIORSKI REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHAR : JEFF LIEBERGEN This Statement of Special Inspections is submitted in accordance with Section 1704.3 of the 2018 International Building Code. It includes a Schedule of Special Inspection Services applicable to the above-referenced Project as well as the identity of the individuals, agencies, or firms intended to be retained for conducting these inspections. If applicable, it includes Requirements for Seismic Resistance and/or Requirements for Wind Resistance. Are Requirements for Seismic Resistance included in the Statement of Special No Inspections? Are Requirements for Wind Resistance included in the Statement of Special Inspections? No The Special Inspector(s)shall keep records of all inspections and shall furnish interim inspection reports to the Building Official and to the Registered Design Professional in Responsible Charge at a frequency agreed upon by the Design Professional and the Building Official prior to the start of work. Discrepancies shall be brought to the immediate attention of the Contractor for correction. If the discrepancies are not corrected, the discrepancies shall be brought to the attention of the Building Official and the Registered Design Professional in Responsible Charge prior to completion of that phase of work. A Final Report of Special Inspections documenting required special inspections and corrections of any discrepancies noted in the inspections shall be submitted to the Building Official and the Registered Design Professional in Responsible Charge at the conclusion of the project. Frequency of interim report submittals to the Registered Design Professional in Responsible Charge: X Weekly _Bi-Weekly _Monthly Other; specify: The Special Inspection program does not relieve the Contractor of the responsibility to comply with the Contract Documents. Jobsite safety and means and methods of construction are solely the responsibility of the Contractor. Statement of Sp:cial Inspections Prepared by: Preparers Seal Jeffre �-berl-n FED• qR esk Type . r •- 'WO, 03/14/2023 'I:`•'; f Signature Date LL ;+}! +i: . 0 Building Official's Acceptance: ! `)•_� " I Signature Date �OOP)t Permit Number: It is a violation of the law for any person unless acting under the direction of a licensed architect to alter an item in any way Frequency of interim report submittals to the Building Official: _Monthly Bi- Monthly _Upon Completion Other; specify: ACEC/SEAOG SI GL 01—12 page Al Statement of Special Inspections Requirements for Seismic Resistance See the Schedule of Special Inspections for inspection and testing requirements Seismic Design Category: B Statement of Special Inspection for Seismic Resistance Required (Yes/No): NO Description of seismic force-resisting system subject to special inspection and testing for seismic resistance: (Required for Seismic Design Categories C, D, E or F in accordance with IBC Sections 1705.12.1.1 through 1705.12.3 and 1705.13) Description of designated seismic systems subject to special inspection and testing for seismic resistance: (Required for architectural, electrical and mechanical systems and their components that require, design in accordance with Chapter 13 of ASCE 7, have a component importance factor, Ip, greater than one and are in Seismic Design Categories C, D, E or F.) Description of additional seismic systems and components requiring special inspections and testing: (Required for systems noted in IBC Section 1705.11, cases 3, 4 & 5 in Seismic Design Categories C, D, E or F.) Statement of Responsibility: Each contractor responsible for the construction or fabrication of a system or component described above must submit a Statement of Responsibility. • ACEC/SEAOG SI GL 01-12 page A2 Statement of Special Inspections Requirements for Wind Resistance See the Schedule of Special Inspections for inspection and testing requirements Nominal Design Wind Speed, Vasd: 84 m.p.h. Wind Exposure Category: B Statement of Special Inspection for Wind Resistance Required (Yes/No): NO (Required in wind exposure Category B, where the nominal design wind speed, Vasd, is 120 miles per hour or greater. Required in wind exposure Category C or D, where the nominal design wind speed, Vasd, is 110 miles per hour or greater.) Description of main wind force-resisting system subject to special inspection for wind resistance: (Required for systems noted in IBC Section 1705.11.1 and 1705.11.2) Description of windforce-resisting components subject to special inspection for wind resistance: (Required for systems and components noted in IBC Section 1705.11.3) Statement of Responsibility: Each contractor responsible for the construction or fabrication of a system or component described above must submit a Statement of Responsibility. ACEC/SEAOG SI GL 01-12 page A3 SCHEDULE OF SPECIAL INSPECTION SERVICES PROJECT APPLICABLE TO THIS PROJECT MATERIAL/ACTIVITY SERVICE Y/N EXTENT AGENT* DATE COMPLETED 1704.2.5 Inspection of Fabricators Verify fabrication/quality control In-plant review(3) Y Periodic procedures 1705.1.1 Special Cases(work unusual in nature,including but not limited to alternative materials and systems,unusual design Submittal review,shop(3) Y Periodic applications,materials and systems and/or field inspection with special manufacturer's requirements)-'SIMPSON'STRONG WALLS 1705.2 Steel Construction 1.Fabricator and erector documents (Verify reports and certificates as listed in AISC 360,chapter N, Submittal Review N Each submittal paragraph 3.2 for compliance with construction documents) 2.Material verification of structural Shop(3)and field inspection N Periodic steel 3.Embedments(Verify diameter, grade,type,length,embedment.See Field inspection N Periodic 1705.3 for anchors) 4.Verify member locations,braces, stiffeners,and application of joint details at each connection comply Field inspection N Periodic with construction documents 5.Structural steel welding: a.Inspection tasks Prior to Welding(Observe,or perform for Observe or Perform each welded joint or member,the Shop(3)and field inspection N as noted(4) QA tasks listed in AISC 360,Table N5.4-1) b.Inspection tasks During Welding (Observe,or perform for each welded joint or member,the QA Shop(3)and field inspection N Observe(4) tasks listed in AISC 360,Table N5.4-2) c.Inspection tasks After Welding (Observe,or perform for each Observe or Perform welded joint or member,the QA Shop(3)and field inspection N as noted(4) tasks listed in AISC 360,Table N5.4-3) d.Nondestructive testing(NDT)of welded joints:see Commentary 1)Complete penetration groove Shop(3)or field ultrasonic welds 5/16"or greater in risk testing-100% Periodic category III or IV 2)Complete penetration groove Shop(3)or field ultrasonic welds 5/16"or greater in risk testing-10%of welds N Periodic category II minimum _ 3)Thermally cut surfaces of Shop(3)or field magnetic access holes when material t> Periodic Partical or Penetrant testing 2" 4)Welded joints subject to Shop(3)or field radiographic fatigue when required by AISC Periodic or Ultrasonic testing 360,Appendix 3,Table A-3.1 5)Fabricator's NDT reports Verify reports N Each submittal(5) when fabricator performs NDT 6.Structural steel bolting: Shop(3)and field inspection a.Inspection tasks Prior to Bolting (Observe,or perform tasks for Observe or Perform each bolted connection,in N as noted(4) accordance with QA tasks listed in AISC 360,Table N5.6-1) ACEC/SEAOG SI GL 01-12 B1 of B12 • SCHEDULE OF SPECIAL INSPECTION SERVICES PROJECT -- APPLICABLE APPLICABLE TO THIS PROJECT MATERIAL/ACTIVITY SERVICE Y/N EXTENT AGENT* DATE COMPLETED b.lnspection tasks During Bolting (Observe the QA tasks listed in N Observe(4) AISC 360,Table N5.6-2) 1)Pre-tensioned and slip- critical joints • a)Turn-of-nut with matching markings - - N Periodic b)Direct tension indicator N Periodic c)Twist-off type tension control bolt N Periodic d)Turn-of-nut without N Continuous matching markings e)Calibrated wrench N Continuous 2)Snug-tight joints N Periodic c.Inspection tasks After Bolting (Perform tasks for each bolted connection in accordance with QA N Perform(4) tasks listed in AISC 360,Table N5.6-3) • 7.Inspection of steel elements of composite construction prior to Shop(3)and field inspection Observe or Perform concrete placement in accordance and testing N as noted(4) with QA tasks listed in AISC 360, Table N6.1 1705.2.2 Cold Formed Steel Deck 1.Inspection of deck and connections (prior to/during/after)deck Field inspection N Periodic placement per SDI QA/QC TABLES 1.1-8 1705.2.3 Openweb Joists and joist girders. 1.Installation of open-web steel joists and joist girders. a.End connections-welding or Field inspection N Periodic bolted._ _ _ __ b.Bridging-horizontal or diagonal Field inspection N Periodic 1.Standard bridging. Field Inspection N Periodic 2.Bridging that differs from the SJI specifications listed in Section Field Inspection N Periodic 2207.1. • 1705.2.4 Cold-formed steel trusses spanning 60 feet or greater a.Verify temporary and permanent restraint/bracing are installed in Field inspection N Periodic accordance with the approved truss submittal package 1705.3 Concrete Construction 1.Inspection of reinforcing steel Shop(3)and field inspection Y Periodic installation&verify placement 2.Reinforcing bar welding Shop(3)and field inspection _N Periodic a.Verify weldability of reinforcing bars other than ASTM A 706; N Periodic b.Inspect single pass fillet welds, maximum'5/16" N Periodic C.Inspect all other welds N Continuous ACEC/SEAOG SI GL 01—12 B2 or a12 SCHEDULE OF SPECIAL INSPECTION SERVICES PROJECT APPLICABLE TO THIS PROJECT MATERIAL/ACTIVITY SERVICE Y/N EXTENT AGENT* DATE COMPLETED 3.Inspection of anchors cast in concrete where allowable loads have Shop(3)and field inspection N Periodic been increased per section 1908.5 or where strength design is used 4.Inspect post-installed in hardened concrete members a.Adhesive anchors installed horizontally or upwardly inclined Field inspection N Continuous orientations to resist sustained loads b.Mechanical anchors and adhesive anchors not defined in Field inspection Y Periodic 4.a 5.Verify use of approved design mix Shop(3)and field inspection Y Periodic 6.Prior to concrete placement, fabricate specimens for strength tests,perform slump air content tests, Shop(3)and field inspection Y Continuous • and determine the temperature of concrete. 7.Inspection of concrete and shotcrete placement for proper Shop(3)and field inspection Y Continuous • application techniques 8.Inspection for maintenance of specified curing temperature and Shop(3)and field inspection Y Periodic techniques 9.Inspection of prestressed concrete: Shop(3)and field inspection N a. Application of prestressing force N Continuous b. Grouting of bonded prestressing tendons in the N Continuous seismic-force-resisting system 10.Inspect erection of precast Field inspection N Periodic concrete members 11.Verification of in-situ concrete strength,prior to stressing of tendons Review field testing and in post tensioned concrete and prior N Periodic to removal of shores and forms from laboratory reports beams and structural slabs 12.Inspection of formwork for shape, Field inspection Y Periodic lines,location and dimensions 13.Concrete strength testing and Field testing and review of verification of compliance with Periodic laboratory reports Y construction documents 1705.4 Masonry Construction (A)Level A,B and C Quality Assurance: 1.Verify compliance with Field Inspection Y Periodic approved submittals (B)Level B Quality Assurance: 1.Verification of fm and frac Testing by unit strength method N Periodic prior to construction or prism test method ACEC/SEAOG SI GL 01-12 B3 of 1312 SCHEDULE OF SPECIAL INSPECTION SERVICES PROJECT APPLICABLE TO THIS PROJECT MATERIAL/ACTIVITY SERVICE Y/N EXTENT AGENT* DATE COMPLETED (C)Level C Quality Assurance: 1.Verification of fm and fA,c prior to construction and for Testing by unit strength method N Periodic every 5,000 SF during or prism test method construction 2.Verification of proportions of materials in premixed or preblended mortar,prestressing Field inspection Y Continuous grout,and grout other than self- consolidating grout,as delivered to the project site 3.Verify placement of masonry Field Inspection Y Periodic units (D)Levels B and C Quality Assurance: 1.Verification of Slump Flow and Visual Stability Index(VSI) Field testing N Continuous of self-consolidating grout as delivered to the project 2.Verify compliance with Field inspection N Periodic approved submittals 3.Verify proportions of site- mixed mortar,grout and Field Inspection N Periodic prestressing grout for bonded tendons 4.Verify grade,type,and size of reinforcement and anchor Field Inspection N Periodic bolts,and prestressing tendons and anchorages 5.Verify construction of mortar Field Inspection Y Periodic joints 6.Verify placement of reinforcement,connectors,and Field Inspection N Level B-Periodic prestressing tendons and anchorages N Level C-Continuous 7.Verify grout space prior to Field Inspection N Level B-Periodic grouting N Level C-Continuous 8.Verify placement of grout and prestressing grout for bonded Field Inspection N Continuous tendons 9.Verify size and location of Field Inspection Y Periodic structural masonry elements 10.Verify type,size,and location of anchors,including details of anchorage of masonry Field inspection N Level B-Periodic to structural members,frames, or other construction. N Level C-Continuous 11.Verify welding of Field inspection N Continuous reinforcement(see 1705.2.2) 12.Verify preparation, construction,and protestion of masonry during cold weather (temperature below 40°F)or hot Field inspection Y Periodic weather(temperature above 90°F) 13.Verify application and measurement of prestressing Field Inspection N Continuous force ACEC/SEAOG SI GL 01-12 B4 01312 SCHEDULE OF SPECIAL INSPECTION SERVICES __ PROJECT APPLICABLE TO THIS PROJECT MATERIAL/ACTIVITY SERVICE Y/N EXTENT AGENT* DATE COMPLETED 14.Verify placement of AAC masonry units and construction Field inspection N Continuous of thin-bed mortar joints(first 5000 SF of AAC masonry) 15.Verify placement of AAC masonry units and construction of thin-bed mortar joints(after Field inspection N Level B-Periodic the first 5000 SF of AAC masonry) N Level C-Continuous 16.Verify properties of thin-bed mortar for AAC masonry (first Field inspection N Continuous 5000 SF of AAC masonry) 17.Verify properties of thin-bed mortar forAAC masonry(after Field inspection N Level B-Periodic the first 5000 SF of AAC masonry) N Level C-Continuous 18.Prepare grout and mortar Field testing N Level B-Periodic specimens N Level C-Continuous 19.Observe preparation of Field inspection N Level B-Periodic prisms N Level C-Continuous 1705.5 Wood Construction 1.Inspection of the fabrication process of wood structural elements In-plant review(3) Y Periodic and assemblies in accordance with Section 1704.2.5 2.For high-load diaphragms,verify grade and thickness of structural Field inspection N Periodic panel sheathing agree with approved building plans 3.For high-load diaphragms,verify nominal size of framing members at adjoining panel edges,nail or staple diameter and length,number of Field inspection N Periodic fastener lines,and that spacing between fasteners in each line and at edge margins agree with approved building plans 4.Metal-plate-connected wood trusses spanning 60 feet or greater or trusses with an overall height of 60 inches or greater:verify temporary Field inspection N Periodic and permanent restraint/bracing are installed in accordance with the approved truss submittal package 1705.6 Soils 1.Verify materials below shallow foundations are adequate to achieve Field inspection Y Periodic the design bearing capacity. 2.Verify excavations are extended to proper depth and have reached Field inspection Y Periodic • proper material. • 3.Perform classification and testing Field inspection Y Periodic of controlled fill materials. 4.Verify use of proper materials, densities,and lift thicknesses during Field inspection Y Continuous placement and compaction of controlled fill 5.Prior to placement of controlled fill, inspect subgrade and verify that site Field inspection Y Periodic has been prepared properly ACEC/SEAOG SI GL 01-12 B5 of B12 • SCHEDULE OF SPECIAL INSPECTION SERVICES PROJECT APPLICABLE TO THIS PROJECT MATERIAL/ACTIVITY SERVICE Y/N EXTENT AGENT* DATE COMPLETED • 1705.7 Driven Deep Foundations 1.Verify element materials,sizes and Field inspection N Continuous lengths comply with requirements 2.Determine capacities of test elements and conduct additional load Field inspection N Continuous tests,as required 13.Inspect driving operations and maintain complete and accurate Field inspection N Continuous records for each element 4.Verify placement locations and plumbness,confirm type and size of hammer,record number of blows per foot of penetration,determine Field inspection N Continuous required penetrations to achieve design capacity,record tip and butt elevations and document any damage to foundation element . 5.For steel elements,perform additional special inspections per See Section 1705.2 N See Section 1705.2 Section 1705.2 • 6.For concrete elements and concrete-filled elements,perform See Section 1705.3 N See Section 1705.3 additional special inspections per Section 1705.3 7.For specialty elements,perform additional inspections as determined In accordance with by the registered design professional Field inspection N construction in responsible charge documents 8.Perform additional inspections and tests in accordance with the In accordance with construction documents and Field Inspection and testing N construction geotechnical report documents • 1705.8 Cast-in-Place Deep Foundations • 1.Inspect drilling operations and maintain complete and accurate Field inspection N Continuous records for each element 2.Verify placement locations and plumbness,confirm element diameters,bell diameters(if applicable),lengths,embedment into Field inspection N Continuous bedrock(if applicable)and adequate end-bearing strata capacity.Record concrete or grout volumes • 3.For concrete elements,perform additional inspections in accordance See Section 1705.3 N See Section 1705.3 with Section 1705.3 • 4.Perform additional inspections and tests in accordance with the In accordance with construction documents and Field Inspection and testing N construction geotechnical report documents 1705.9 Helical Pile Foundations 1.Verify installation equipment,pile dimensions,tip elevations,final Field inspection N Continuous depth,final installation torque and other data as required. 2.Perform additional inspections and tests in accordance with the In accordance with construction documents and Field Inspection and testing N construction qeotechnical report documents 1705.10 Fabricated Items Inspection in accordance w/ N 1704.2.5 ACECISEAOG SI GL 01—12 - B6orB12 SCHEDULE OF SPECIAL INSPECTION SERVICES PROJECT APPLICABLE TO THIS PROJECT MATERIAL/ACTIVITY SERVICE YIN EXTENT AGENT* DATE COMPLETED 1705.11.1 Structural Wood Special Inspections For Wind Resistance 1.Inspection of field gluing operations of elements of the main Field inspection N Continuous windforce-resisting system 2.Inspection of nailing,bolting, anchoring and other fastening of components within the main Shop(3)and field inspection N Periodic windforce-resisting system if less than 6 inches on-center 1705.11.2 Cold-formed Steel Special Inspections For Wind Resistance • 1.Inspection during welding operations of elements of the main Shop(3)and field inspection N Periodic windforce-resisting system • 2.Inspections for screw attachment, bolting,anchoring and other fastening of components within the main windforce-resisting system if Shop(3)and field inspection N Periodic sheathing is other than gyp. Board/fiberboard or the fastener spacing is less than 6 inches on- center 1705.11.3 Wind-resisting Components 1.Roof cladding Shop(3)and field inspection N Periodic 2.Wall cladding Shop(3)and field inspection N Periodic 1705.12.1 Structural Steel Special Inspections for Seismic Resistance 1.Fabricator and erector documents submitted for steel construction. (verify reports and certificates as Submittal review N Each Submittal listed in AISC 341,chapter J,section 2.1 for compliance with construction documents.) 2.Fabricator and erector documents available for review for steel construction.(verify additional reports Submittal review N Each Submittal and certificates listed in the constrciton documents.) 3.Fabricator and erector documents submitted for composite construction. • (verify reports and certificates as Submittal review N Each Submittal listed in AISC 341,chapter J,section 2.3 for compliance with construction documents.) 4.Fabricator and erector documents available for review for composite construction.(verify reports and Submittal review N Each Submittal certificates as listed in AISC 341, chapter J,section 2.4 for compliance with construction documents.) 5.Structural steel welding. a.Visual inspection tasks prior to welding.(observe for each welded Shop(3)and field inspection N Observe(4) joint or member the QA tasks listed in AISC 341 Table J6-1. _ b.Visual inspection tasks during welding.(Observe for each weled Shop(3)and field inspection N Observe(4) joint or member the QA tasks listed in AISC 341 Table J6-2.) c.Visual inspection tasks after welding.(Observe,perform,and Observe,perform and document for each weled joint or Shop(3)and field inspection N document as noted(4) member the QA tasks listed in AISC 341 Table J6-3.) d.Nondestructive testing of welded joints. ACEC/SEAOG SI GL 01—12 67 of e12 • SCHEDULE OF SPECIAL INSPECTION SERVICES PROJECT APPLICABLE TO THIS PROJECT . MATERIAL/ACTIVITY SERVICE YIN EXTENT AGENT* DATE COMPLETED 1)Magnetic particle testing of the web when welding has been Shop and field inspection N Periodic performed in the k-area. 2)Ultrasonic testing shall be performed on 100%of CJP groove welds 5/16 in or thicker. Magnetic particle testing shall Shop and field inspection N Periodic be preformed on 25%of all beam-to-colimn CJP groove welds. 3)Base metal NDT for lamellar Shop and field inspection N Periodic tearing and laminations 4)Beam cope and access Shop and field inspection N Periodic holde NDT. • 5)Reduced beam section Shop and field inspection N Periodic repair NDT. 6)Weld tab removal sites Shop and field inspection N Periodic 7)Reduction of UT is permitted to be reudced in accordance with AISC 360 section H5.5e. Shop and field inspection N Periodic No reduction is permitted for demand critical welds. 8)Reduction of percentage of magnetic particle testing is Shop and field inspection N Periodic permitted per AISC 341 Section J7.2h. 6.Inspection of high-strength bolting a.Inspection tasks prior to bolting (Observe and document tasks for each botled connection in Shop and field inspection N Periodic accordance with QA tasks listed in AISC 341,Table J7-1). b.Inspection tasks during bolting (Observe the QA tasks listed in Shop and field inspection N Periodic AISC 341,Table J7-2). c.Inspection tasks after bolting (Perform and document tasks for Shop and field inspection and each bolted connection in Periodic testing. accordance with QA tasks listed in AISC 341,Table J7-3). ACEC/SEAOG SI GL 01-12 B8 of Bit • SCHEDULE OF SPECIAL INSPECTION SERVICES PROJECT • APPLICABLE TO THIS PROJECT MATERIAL/ACTIVITY SERVICE Y/N EXTENT AGENT* DATE COMPLETED 7.Other structural steel inspections a.Inspect anchor rods and other embedments supporting structural steel during placement(verify Field inpecfion N Periodic diameter,grade,type,length,and embedment)prior to placement of concrete. b.Inspect the fabricated steel or erected steel frame to verify compliance with details including Field inspection N Periodic braces,stiffeners,member locations,and joint details. c.Perform and document tests Shop and field inspection and N Periodic required in AISC 341.Table J8-1. testing. 8.Inspection of composite structures a.Observe the QA tasks listed in AISC,Table J9-1 prior to concrete Field inspection N Periodic placement. b.Observe and document QA tasks listed in ASIC,Table J9-2 Field inspection N Continuous during concrete placement. c.Document QA tasks listed in AISC,Table J9-3 after ocncrete Testing N Periodic placement. 9.Inspection of H-Pilies a.Perform and document the QA tasks listed in AISC 341,Table Field inspection N Periodic J10-1. 1705.12.2 Structural Wood Special Inspections for Seismic Resistance 1.Inspection of field gluing operations of elements of the seismic- Field inspection N Continuous force resisting system 2.Inspection of nailing,bolting, anchoring and other fastening of components within the seismic-force- Shop(3)and field inspection N Periodic resisting system if less than 6 inches on-center 1705.12.3 Cold-formed Steel Light-Frame Construction Special Inspections for Seismic Resistance 1.Inspection during welding operations of elements of the seismic- Shop(3)and field inspection N Periodic force-resisting system 2.Inspections for screw attachment, bolting,anchoring and other fastening Shop(3)and field inspection N Periodic of components within the seismic- force-resisting system 1705.12.4 Designated Seismic Systems Verification • Inspect and verify that that the component label,anchorage or mounting conforms to the certificate Field inspection N Periodic of compliance in accordance with Section 1705.13.3 • ACEC/SEAOG SI GL 01-12 a9 of B12 SCHEDULE OF SPECIAL INSPECTION SERVICES PROJECT APPLICABLE TO THIS PROJECT MATERIAL/ACTIVITY SERVICE Y/N EXTENT AGENT* DATE COMPLETED 1705.12.5 Architectural Components Special Inspections for Seismic Resistance 1.Inspection during the erection and fastening of exterior cladding and Field inspection N Periodic interior and exterior veneer 2.Inspection during anchorage of Field inspection N Periodic access floors 1705.12.6 Plumbing, Mechanical,and Electrical Components Special Inspections for Seismic Resistance 1.Inspection during the anchorage of electrical equipment for emergency or Field inspection N Periodic standby power systems 2.Inspection during the anchorage of Field inspection N Periodic other electrical equipment 3.Inspection during installation and anchorage of piping systems designed to carry hazardous Field inspection N Periodic materials,and their associated mechanical units 4.Inspection during the installation and anchorage of HVAC ductwork Field inspection N Periodic that will contain hazardous materials 5.Inspection during the installation and anchorage of vibration isolation Field inspection N Periodic systems 1705.12.7 Storage Racks Special Inspections for Seismic Resistance • Inspection during the anchorage of storage racks 8 feet or greater in Field inspection N Periodic height 1705.12.8 Seismic Isolation Systems Inspection during the fabrication and installation of isolator units and Shop and field inspection N Periodic energy dissipation devices used as part of the seismic isolation system 1705.12.9 Cold-formed steel special bolted moment frames Installation of cold formed steel special bolted moment frames in Field inspection N Periodic seismic force-resisting system 1705.13.1 Structural Steel Testing and Qualification for Seismic Resistance a.Test structural steel in the seismic resisting system in accordance with Shop(3)and field testing N Per AISC 341 the quality assurance requirements of AISC 341 • b.Test structural steel elements including struts collectors chords and foundation elements in accordance Shop(3)and field testing N Per AISC 341 with the quality assurance requirements of AISC 341 • 1705.13.2 Seismic Certification of Nonstructural Components Review certificate of compliance for Certificate of compliance designated seismic system N Each submittal components. review ACEC/SEAOG SI GL 01-12 B10 of 1312 SCHEDULE OF SPECIAL INSPECTION SERVICES PROJECT APPLICABLE TO THIS PROJECT MATERIAL/ACTIVITY SERVICE Y/N I EXTENT I AGENT* I DATE COMPLETED 1705.13.3 Designated seismic systems • Review certificate of compliance for Certificate of compliance designated seismic system review 1705.13.4 Seismic Isolation Systems Test seismic isolation system in accordance with ASCE 7 Section Prototype testing N Per ASCE 7 17.8 1705.14 Sprayed Fire-resistant Materials 1.Verify surface condition Field inspection N Per IBC Section preparation of structural members 1705.14.2 2.Verify average thickness of sprayed fire-resistant materials Field inspection N Per IBC 1705.14.4 applied to structural members 3.Verify density of the sprayed fire- Per IBC Section resistant material complies with Field inspection and testing N 1705.14.5 approved fire-resistant design 4.Verify the cohesive/adhesive bond Per IBC Section strength of the cured sprayed fire- Field inspection and testing N 1705.14.E resistant material 5.Verify the condition of finished application Field inspection N 1705.15 Mastic and Intumescent Fire-Resistant Coatings Inspect mastic and intumescent fire- resistant coatings applied to Field inspection N Periodic structural elements and decks 1705.16 Exterior Insulation and Finish Systems(EIFS) 1.Verify materials,details and installations are per the approved Field inspection N Periodic construction documents 2.Inspection of water-resistive barrier Field inspection N Periodic over sheathing substrate ACEC/SEAOG SI GL 01-12 B11 of B12 • SCHEDULE OF SPECIAL INSPECTION SERVICES PROJECT APPLICABLE TO THIS PROJECT MATERIAL/ACTIVITY SERVICE Y/N EXTENT AGENT* DATE COMPLETED 1705.17 Fire-Resistant Penetrations and Joints 1.Inspect penetration firestop Field testing N Per ASTM E2174 2.Inspect fire-resistant joint systems Field testing N Per ASTM E2393 1705.18 Smoke Control Systems 1.Leakage testing and recording of Field testing N Periodic device locations prior to concealment 2.Prior to occupancy and after • sufficient completion,pressure difference testing,flow Field testing N Periodic measurements,and detection and control verification • *INSPECTION AGENTS FIRM ADDRESS TELEPHONE NO. 1. Construction Technology-Bob Behan 4 William St,Ballston Lake NY 12019 518-399-1848 2. 3. 4. Notes:1.The inspection and testing agent(s)shall be engaged by the Owner or the Owners Agent,and not by the Contractor or Subcontractor whose work is to be inspected or tested.Any conflict of interest must be disclosed to the Building Official prior to commencing work.The qualifications of the Special inspector(s)and/or testing agencies may be subject to the approval of the Building Official and/or the Design Professional. 2.The list of Special Inspectors may be submitted as a separate document,if noted so above. 3.Special lnsepciions as required by Section 1704.2.5 are not required where the fabricator is approved in accordance with IBC Section 1704.2.5.2 4.Observe on a random basis,operations need not be delayed pending these inspections.Perform these tasks for each welded joint,bolted connection,or steel element. Prepare reports indicating the work has been performed in accordance with the contract documents and whethernocompliance has been satisfactorily repaired. 5.NDT of welds completed in an approved fabricator's shop may be performed by that fabricator when approved by the AHJ.Refer to AISC 360,N7. Are Requirements for Seismic Resistance included in the Statement of Special Inspections? No Are Requirements for Wind Resistance included In the Statement of Special Inspections? No DATE:NOV.8,2022 ACEC/SEAOG SI GL 01-12 B12 of B12 -010 f [ lARO12702 ®� .� STRUCTURAL CALCULATIONS TOWN OI- CUEENSRURY BUILDING&CODES ARCHITECTS•ENGINEERS•SURVEYORS Project:, WELL NOW :E ENJT CARE QUEENSB'JR;; NY . Prepared For: QUEENSBURY REALITY PARTNERS, LLC Date. 11/8/2022 Calculation Index: INDEX 001-003 LATERAL DESIGN 041-056 DESIGN CRITERIA 004-018 GRAVITY DESIGN 057-087 LATERAL LOADS 019-040 APPENDIX A: GEOTECHNICAL REPORT 088-110 Authorization: EXCEL PROJECT NUMBER: 2260800 SUPERVISED BY: JAMES GERLOFF, PE PREPARED BY: ANDREW HAHN FIRM COA NUMBER: NY: 0008791 Stamps: For Con`Struction ..-•, .'�,.� IT IS A VIOLATION OF NEW ti'ORK STA:-.HE W EDUCATION DEPARTMENT ARTICLE GEF�,.'�. 0 PROFESSIONAL ENGINEERING AND LND tv.,7,<G,c, 'S., SURVEYING LAW FOR ANY PERSON TO �- ;�.�� , �,�a "��` `�" _ A.LTER A��IY DOCUfviEi�JT THAT REARS E f /; '%;;;F ' ',veR SEAL OF A PROFESSIONAL ENGINEER! 73,1 ,14r; .,:;<' aY )xu_, UNLESS THE PERSON IS ACTING UNDER ,i\ '� _; ;• �,w THE DIRECTION OF A LICENSED •ro =(190532 PROFESSIONAL ENGINEER. ii Sid °� {� it ,c, is 2L7t3 1 100 Camelot Drive 920.926.9800 Fond du Lac, WI 54935 www.excelengineer.com `0 Project Number 2260800 Page 2/110 ,v= ; Project Name WELLNOW URGENT CARE 100 Camelot Drive Calculations By - AJH Date 11/8/2022 ExIcEL Fond du Lac,WI 54935 Phone:(920)926-9800 Reviewed By JRG Date Fax:(920)926-9801 ARCHITECTS•ENGINEERS•SURVEYORS www.excelengineer.com Subject 1 I Ite - , 1 - -- i �l;i f I _ - --' 1 I I 1 PROJECTSCE I — ' ' 1 , i I i I� I / e ' I I -' I - _. , - 1._ - '--PROVIDE CALCULATIONS FOR NEV -BUILDING DESIGN INCLUDING ALL LATERA AVITY-SYSTEMS:- ' 1 ENGINEER'S PROFESSIONAL STAMP AND SEAL SHALL APPLY ONLY TOTHEPORTIONS OFPLANS,!SPECIFICATION S' , - - _ ENS S-- -IFI A --,IDENTIFIED I-;- RIBED O -jE R S I- -'- , URVEYS REPORTS AND O ENTS PECIFICALLY OR DES I __ _ S' THER DOC M I _ RESPONSIBLE FOR,ANY OTHER ASSOCIAT C BELOW_jENGIN EER NOT i I I I I ! 1 ��I l i i 1 1 � ! i I i 1 1 I WErHAVI � O� - - -I - ' I NOT CO ON-SITE BSERVATIONS'AND HA VE NSIBLE F,OR I E !PROVIDED CONTINUOUS,' I I � ! ' AUE NOT ODS AND SEQUENCING OR THE PERFORMANCE OFBEEN PACT S AND,SUP CONSTRUCTION MEANS ;METH -----I , ' I -- R -- - CONTRACTOR-A D;S -,, PLIERS:- , _ I I SPECIFIED-ENGINEERED SYSTEMS ' - ' ' , - I 1 ! 1 ' WOOD ROOF TRUSSES @ 2' O"'OI CI — —, I 1 ! -- I- ' I ,----! -- - _ ' , :— PROJECT ADDRESS - I I � j I , , ; I I ; I I ; I ' , I ' 1 1 ' 920 ROUTE 9 ' ; i - ; 1 1 i I I I , QUEENSBURY, NY 12804 I- i -! I I I -- ! 1 ' ' I 1 l CODES AND REFERENCES • ' 1 ' - 1 I 1-1 ; ATI O NAL BUILDING I BUILDING CODE� ' � INTERNATIONAL-- - -_I I 2020 N,EW PORK STATE B W/_2018 INTER CODE - ' -'- AMERICAN SOCIETY OF CIVIL ENGINEERS_(ASCE 17;16); MINIMUM_DESIGN LOADS FOR Bu LDINGS AND OTHER ! I STRUCTURES I I L Hi 1 1, 1 , i I ! —1 I I 1 I L..1 i RETE S 402 21016BUILDING I AIbIERICAN CONCRETE INSTIT 14) BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONC THE MASONRY SOCIETY(TM ), BUILDING'CODE FOR MASONRY STRUCTURES I ;---1 _1 !. - 1 II 1 I I iI ,T HE-MASONRY SOCIETY,(-TMS 602=2016),SPECIFICATIONS FOR MASONRY-STRUCTURES 1 ' I ' , , AIMERICAN INSTITUTE STEEL CONSTRUCTION(AISC 360-16),SPECIFICATION FOR STRUCTURALISTEEL-BUILDINGS I ANSI/AMC NDS-2018 NATIONAL DESIGN SPECIFICATION (NDS) FOR WOOD CONSTRUCTION:WITH 2018 NDS Su 'I ' PPLEM ---- - - ENT 1 -- _- --- ' , AP_A.DS-12,F_ _ NEL_DESIGN SPECIFICATION-1 1 1 PA i - _ AISIS100:1 ; A - IOSTEEL MEMBE 16 _ 6, NORTH MERICAN SPECIFICATION FORITHE DESIGNOF COLD-FORMED RS;20 I I I 1 - I- I II I- i - --- - - I � I ' � ' 1 I- I ' IiIli III I , , ' 1 I ' I i. i ! 1 ' -I , ,"' I . II , I It,$,� 0, Project Number 3260800 Page 3/110 P '8[tNa[ne VVELLNOVV URGENT CARE 4�N�' �� "- - 1OO Camelot Drive AJH 11/8/2022 Calculations By Date Fond duLa�VV| S49SS EXCEL ]RG p»une:(yzn)szo�xoo 0evievvedGy Date Fax:(yzo)o2s'ynoz = AxC*ITozs'ENGINEERS`SURVEYORS rvv^exce|enoineeccom Subject _I | ! | -l�� ' — �"�""��^^,""��'"�^~~���"^""�� �- / / Project Number _ 2260800 page 4/110 44/41 Project Name WELLNOW URGENT CARE 100 Camelot Drive Calculations By AJH Date 11/8/2022 „ ExcELFond du Lac,WI 54935 Phone:(920)926-9800 Reviewed By JRG Date Fax:(920)926-9801 ARCHITECTS•ENGINEERS•SURVEYORS www.excelengineer.com Subject i II I i i ! 'I i I — t•J _ : I_ i --- -I---� — �- —I : II I I I I ' — ' I j : I- , I j I—I ! I I II ' 1 I i I , I : : I I ' I I I I I I , I I i . J ' -;- DESIGN-.'CRITERI�I I II I '- , - ..- I- iI I I 1 I l l l I: I I ' , — ! , I—I— —' I ! ! 1 ' I—I —I — ! — 1 :. — 1 — —I Ii F . ' - , - - I I- --- -- -- - - -- - --, -I--I--1- I--- I-- :- - -- -L —'—� 1 IVi .- I IIi-I 1 --- — — — — I , I I i— ' ' -- =i= - - I _ — I_ • . — I — • ' - —L i II i ' I '- ,- - I - --- I i � I. I I , I -- - .- --I I I - I i ' , : I I I 1 H1 1 1 I—, _I • 5/110 STRUCTURAL DESIGN CRITERIA GOVERNING CODES: 2020 BUILDING CODE OF NEW YORK STATE W/2018 INTERNATIONAL BUILDING CODE(USING ASCE 7-16) ALL LOADS SHOWN ON PLANS ARE UNFACTORED FOR ALLOWABLE STRESS DESIGN(ASD)LOAD COMBINATIONS LOAD COMBINATION UTILIZED ARE FROM ASCE 7-16 ROOF SNOW LOAD (PER SECTION 1608 AND ASCE 7-16 SECTION 7) GROUND SNOW LOAD(Pg)(PER FIGURE 1608.2) 50 PSF FLAT ROOF SNOW LOAD(Pf) 35 PSF SLOPED ROOF SNOW LOAD(Ps) 35 PSF SNOW EXPOSURE FACTOR(Ce) 1.0 SNOW IMPORTANCE FACTOR(Is) 1.0(RISK CATEGORY II) THERMAL FACTOR(Ct) 1.0 UNBALANCED SNOW LOADING PER ASCE 7-16(SECTION 7.6) SNOW DRIFT PER ASCE 7-16,(SECTIONS 7.7 AND 7.8) j SEE DRIFTED SNOW PLAN SLIDING SNOW LOADING PER ASCE 7-16,(SECTION 7.9) ROOF LIVE LOAD MINIMUM ROOF LIVE LOAD PER SECTION 1607.13 j 20 PSF ROOF DEAD LOADS AND DEFLECTION REQUIREMENTS DEAD LOAD-TOP CHORD 10 PSF WOOD DEAD LOAD-BOT.CHORD-INCLUDES COLLATERAL LOAD 10 PSF(3 PSF COLLATERAL) TRUSS R.T.U.LOADS PER FRAMING PLANS/SPECIAL TRUSS DIAGRAMS ON STRUCTURAL SHEETS DEFL.REQ.DUE TO GRAVITY LOADS U240 LL U180 TL DEFL.REQ.DUE TO WIND AT TRUSS VERT. U240 LATERAL DIRECTIONAL PROCEDURE PER ASCE 7-16 SECTION 27 BASIC WIND SPEED=108 MPH(RISK CATEGORY II) WIND EXPOSURE_"B" INTERNAL PRESSURE COEFFICIENT=+OR-0.18 WIND LOADS COMPONENT AND CLADDING PRESSURES/SUCTIONS FOR EFFECTIVE AREAS<=10 S.F.AS FOLLOWS: WALL EDGE STRIP(A)=4.17 FT ROOF EDGE STRIP(0.6h)=13.58 FT ROOF CORNER STRIP(0.2h)=4.50 FT ROOF ZONE 1'PRESSURE=16.0 PSF,SUCTION= -19.2 PSF ROOF ZONE 1 PRESSURE=16.0 PSF,SUCTION= -33.4 PSF ROOF ZONE 2 PRESSURE=16.0 PSF,SUCTION= -44.1 PSF ROOF ZONE 3 PRESSURE=16.0 PSF,SUCTION= -60.1 PSF WALL ZONE 4 PRESSURE=19.1 PSF,SUCTION= -20.8 PSF WALL ZONE 5 PRESSURE=19.2 PSF,SUCTION= -25.6 PSF PRESSURES/SUCTIONS MAY BE REDUCED FOR AREAS>10 S.F.PER ASCE 7-16 MINIMUM WIND LOADS PER ASCE 7-16 MWFRS:16.0 PSF ON HORIZONTAL AND VERTICAL PROJECTION COMPONENT AND CLADDING: +OR-16.0 PSF NORMAL TO SURFACE. SEISMIC IMPORTANCE FACTOR=1.00(RISK CATEGORY=II) SPECTRAL RESPONSE COEFFICIENT I S(DS)=0.255 I S(D1)=0.109 EARTHQUAKE SITE CLASS=D(VERIFIED) DESIGN DATA SEISMIC DESIGN CATEGORY=B SEISMIC FORCE RESISTING SYSTEM=LIGHT FRAMED WALLS SHEATHED W/WOOD STRUCTURAL PANELS(R=6.5) DESIGN BASE SHEAR(V)=7,660 LBS. ANALYSIS PROCEDURE:EQUIVALENT LATERAL FORCE PER ASCE 7-16 SECTION 12.8 STABILITY INTERIOR PARTITIONS 5 PSF LOADS ALLOWABLE SOIL BEARING PRESSURE THE VERIFIED SOIL BEARING CAPACITY IS 3,000 PSF FOR ALL FOOTINGS AS DETERMINED BY THE GEOTECHNICAL REPORT PREPARED BY DANIEL G.LOUCKS-GEOTECHNICAL ENGINEERING-PROJECT NUMBER 4199(OCTOBER 14,2022) 10/24/22,1:47 PM ATC Hazards by Location 6/110 A This is a beta release of the new ATC Hazards by Location website.Please contact us with feedback. 0 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why. AltHazards by Location Search Information - VA', €*r- '`� "• #' •t gar Address: 920 US-9 Queensbu NY 12804 USA - _ i ry, �. 0 tt 479ft ' g r ' `• . Coordinates: 43.33699499999999,-73.6787757 :, �¢jir ` _+ Elevation: 479 ft .4 4. /' �. � .� Timestamp: 2022-10-24T18:47:01.037Z } Hazard Type: Seismic \ 04 G e _ ..e c 022,CNES/Airbus,Maxar Technologies,New Report a map error Reference ASCE7-16 o ok GIS,U.S.Geological Survey,USDA/FPAC/GEO Document: Risk Category: II Site Class: D MCER Horizontal Response Spectrum Design Horizontal Response Spectrum Sa(g) Sa(g) 0.25 0.30 0.20 0.15 0.20 0.10 0.10 0.05 0.00 0.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period(s) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period(s) Basic Parameters Name Value Description SS 0.239 MCER ground motion(period=0.2s) Si 0.068 MCER ground motion(period=1.0s) SMS 0.382 Site-modified spectral acceleration value SS' SM1 0.164 Site-modified spectral acceleration value SDS 0.255 Numeric seismic design value at 0.2s SA I SD1 0.109 Numeric seismic design value at 1.0s SA Additional Information Name Value Description SDC B Seismic design category https://hazards.atcouncil.org/#/seismic?lat=43.33699499999999&Ing=-73.6787757&address=920 US-9%2C Queensbury%2C NY 12804%2C USA 1/2 10/24/22,1:47 PM ATC Hazards by Location 7/110 tFa 1.6 Site amplification factor at 0.2s Fv 2.4 Site amplification factor at 1.0s CRg 0.938 Coefficient of risk(0.2s) QR1 0.921 Coefficient of risk(1.0s) PGA 0.133 MCEG peak ground acceleration FPGA 1.533 Site amplification factor at PGA PGAM 0.204 Site modified peak ground acceleration TL 6 Long-period transition period(s) SsRT 0.239 Probabilistic risk-targeted ground motion(0.2s) SsUH 0.255 Factored uniform-hazard spectral acceleration(2%probability of exceedance in 50 years) f SsD 1.5 Factored deterministic acceleration value(0.2s) S1 RT 0.068 Probabilistic risk-targeted ground motion(1.0s) S1 UH 0.074 Factored uniform-hazard spectral acceleration(2%probability of exceedance in 50 years) I S1D 0.6 Factored deterministic acceleration value(1.0s) I IPGAd 0.5 Factored deterministic acceleration value(PGA) The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why. Disclaimer Hazard loads are provided by the U.S.Geological Survey Seismic Design Web Services. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy,suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this information replace the sound judgment of such competent professionals,having experience and knowledge in the field of practice,nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use.Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. https://hazards.atcouncil.org/#/seismic?lat=43.33699499999999&Ing=-73.6787757&address=920 US-9%2C Queensbury%2C NY 12804%2C USA 2/2 10/24/22,1:46 PM ATC Hazards by Location 8/1 10 A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback. 0 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why. CiCHazards by Location Search Information - .4 ` '�- Address: 920 US-9,Queensbury, NY 12804, USA . ,, l '� 479 ft `Tr' �� •� � ',�, •4_ .. Coordinates: 43.33699499999999,-73.6787757i 4}x Elevation: 479 ft i r8,,� ` 1410 t' Timestamp: 2022-10-24T18:45:55.288Z r " w " `-'{ ' Hazard Type: Wind . 4j EXPOSURE 'B' (((��o�� aa 2022 U.S:CNES/Airbus,Maxar Technologies, Report a map error NeN7-or S, .Geological Survey,USDA/FPAC/GEO ASCE 7-16 ASCE 7-10 ASCE 7-05 MRI 10-Year 73 mph MRI 10-Year 76 mph ASCE 7-05 Wind Speed 90 mph MRI 25-Year 80 mph MRI 25-Year 84 mph MRI 50-Year 85 mph MRI 50-Year 90 mph MRI 100-Year 91 mph MRI 100-Year 96 mph Risk Category I 101 mph Risk Category I 105 mph Risk Category II 108 mph Risk Category II 115 mph Risk Category III 116 mph Risk Category III-IV 120 mph Risk Category IV 121 mph The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why. Disclaimer Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area—in some cases,this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries,the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region. Mountainous terrain,gorges, ocean promontories,and special wind regions shall be examined for unusual wind conditions. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility https://hazards.atcouncil.org/#/wind?lat=43.33699499999999&Ing=-73.6787757&address=920 US-9%2C Queensbury%2C NY 12804%2C USA 1/2 10/24/22,1:46 PM ATC Hazards by Location 9/1 1 0 A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback. 0 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why. ITC Hazards by Location Search Information . � ,. r - Address: 920 US-9,Queensbury, NY 12804, USA � ,° a ? 479 ft � Coordinates: 43.33699499999999,-73.6787757 Y Elevation: 479 ft Timestamp: 2022-10-24T18:46:41.394Z �. l Hazard Type: Snow � • .. \ -.^ t ( ane/o°j�} 2022,CNES/Airbus,Maxar Technologies, Report a map error rVevq- oraiiS,U.S.Geological Survey,USDA/FPAC/GEO ASCE 7-16 ASCE 7-10 ASCE 7-05 Ground Snow Load A 50 lb/sqft Ground Snow Load ___ A 50 lb/sqft Ground Snow Load A 50 lb/sqft The reported ground snow load applies at The reported ground snow load The reported ground snow load applies at the query location of 479 feet up to a applies at the query location of 479 the query location of 479 feet up to a maximum elevation of 700 feet. feet up to a maximum elevation of 700 maximum elevation of 700 feet. feet. The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why. Disclaimer Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy,suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. https://hazards.atcouncil.org/#/snow?lat=43.33699499999999&Ing=-73.6787757&address=920 US-9%2C Queensbury%2C NY 12804%2C USA 1/1 ' 10/110 1608.1 General. Design snow loads shall be determined in accordance with Chapter 7 of ASCE 7, but the design roof load shall be not less than that determined by Section 1607. [NY] 1608.2 Ground snow loads. The ground snow loads to be used in determining the design snow loads for roofs shall be' determined in accordance with ASCE 7 or[NY] Figure 1608,2. When using [NY] Figure 1608.2. for sites at elevations above 1,000 feet(304,8 m), the ground snow load shall be increased fror» the mapped value by 2 psf(0.096 kN /rn2)for every 100 feet(30.48 m) above 1,000 felt(304.8 rn). Site specific case studies may be made in lieu of snow loads in [NY] Figure 1608.2 or ASCE 7. Ground snow load determination for site-specific case studies shall be approved Ind shall be based on anextreme value statistical analysis of data available in the vicinity of the site using a value with a 2-percent annual probability of being exceeded (50-year mean recurrence,interval), 1 _IL_1 Air niai so Y tlifl 60 it SITE ELEVATION -- 10 = 479 FT URiOE Rra oaTcr�A {) GROUND SNOW } _ = PSF PRE ' Aj , ' . 4e; LOAD 50 YATES - ,OTSMI 00, n R (� _ y .�artdivt Mrt�sa _ ___ _ _ - I -10—" RRI�infAMAiiro pi L • i -- •I " ► ,�'}� ip t jf e.11 ao Nov f _,,,e 1 [NY] Figure 1608.2 Ground Snow Loads, pga for New York State (psf) This material contains information which is proprietary to and copyrighted by International Code Council, Inc.The information copyrighted by the International Code Council, Inc, has been obtained and reproduced with permission. The acronym"ICC-and the ICC logo are trademarks and service marks of ICC.ALL RIGHTS RESERVED. 774 11/110 Use our New York Ground Snow Loads map to easily determine the ground snow load(2020 Building Code of New York State:Chapter 16 Section 1608)for any location in the State of New Yoric You can click on the map below to find the design ground snow load for that location. The ground snow loads to be used in determining the design snow loads for roofs shall be determined in accordance with ASCE 7 or Ligure 1608.2.When using Figure 1608.2 for sites at elevations above 1,000 feet(304 m),the ground snow load shall be increased from the mapped value by 2 psf(0.095 kN/m2)for every 100 feet(30.48 m)above 1,000 feet(304 m).Site- specific case studies may be made in lieu of snow loads in Figure 1608.2 or ASCE 7. i. Street: 920 Route 9 City: Queensbury State:I New York v J Zip: 12804 @ Find T ES sf r k ,' `� �, ' 60 PS 111 F -r Map Satellite .f ,t GROUND =. ❑Labels t, I! Ai a, '` SNOW ,'' �`,e _5*' ; ' ilk f t ) r ,. f �c ,#'ri ` i . . . .4: • ''''''': L'. -. - r+ ," ' 50PSF ` • �� GROUND I ,4•' . ,14: SNOW I ..5 i t i 4r(:_ . r :.,%'-*".241t.ti-ri. f: � Fr "+s-L.,.`... .f'F t;,, . _ ,, , l:r Ilr�f+r,f I '. .d 1 '• r�l9 , ,„_,. . ,, , , _• . .. iLl M[ .„ , ,f«, New York State:Fig.1608.2 $l'v. # -' �' ' r Elevation: 478 feet Zone:50 psf (478 ft.<_1000 ft.) to 7 s y r " _ mil`' ti � P =Po=50 psfItit I"A"*.* 1 ( '' • t s"• Lat.43.3370° Lng,-73.6787° 9 f fi iOK., t. t :S) F-t {4:, 'l' ,Y t /Airbus,Landsat/Copernicus,Maxar Technologies,New York GIS;U-S.Geological Survey,USDA/FPAC/GEC Terms of Use Report a map error 12/110 Excel Engineering, Inc. 10/27/2022 Page# 2018 IBC (ASCE 7-16) Roof Snow Loading Determination: : Total roof width = 41.8 ft (B) : Total roof length = 81.4 ft (L) : Tributary truss width = 20.9 ft (b) : Truss spacing = 2.00 ft (sp) : Roof pitch = 0.25 /12 (F) : Roof style = monoslope : Ground snow load = 50.0 psf (pg) ASCE F7.2 : Roof cladding = membrane : Building classification = II ASCE T1.5-1 : Importance factor= 1.00 (la) ASCE T1.5-2 : Terrain category = B ASCE 26.7 : Snow exposure factor= 1.00 (Cs) ASCE T7.3.1 : Thermal factor = 1.00 (Ct) ASCE T7.3.2 : Horizontal distance from eave to ridge = 41.75 ft (W) ASCE 7.1 : Roof slope = atan(F/12) = 1.19 deg (0) ASCE 7.1 : Roof slope run for a rise of one = 48.00 (S) ASCE 7.1 Balanced Snow Load (increased by drifted snow loads) : Flat roof snow load = .7(Ce)(Ct)(IS)(Pg) = 35.0 psf (Pf) ASCE E7.3-1 : Slope factor= 1.00 (CS) ASCE F7-2 : Sloped roof snow load = (Pf)(CS) = 35.0 psf (Ps) ASCE E7.4-1 Minimum Snow Load for Low-slope Roofs (separate load case-do not add drifted snow) : Minimum flat roof snow load = 20.0 psf (Pm) ASCE 7.3.4 Ice Dam and Icicle Load : Overhang load = 2(Pf) = 70.0 psf (Pfo) ASCE 7.4.5 Unbalanced Snow Load Monoslope Roofs Need Not Be Considered ASCE E7.7-1 Minimum Roof Live Load : Truss tributary area = (b)(sp) = 41.8 sf (At) : Minimum live roof load = 20.0 psf (Lo) ASCE T4-1 : R1 = 1.0 (R1) ASCE 4.8.2 : R2 = 1.0 (R2) ASCE 4.8.2 : Reduced live roof load = (L0)(R1)(R2) = 20.0 psf (Lr) ASCE E4.8-1 F:\Job Files\2260800 Queensbury Realty-weIINOW Shell-Queensbury NY\2260805 Structural\structural calcs\Load - Snow Roof Loads (ASCE 7-16).xlsx 13/110 "ASCE710S.xls"Program Version 1.1 SNOW LOADING ANALYSIS , Per ASCE 7-16 Code for Buildings with Flat or Low Slope Roofs(<=5 deg.or 1 in./ft.) for Balanced Snow, Drift,and Rain-on-Snow Surcharge Loadings Job Name: welINOW Shell-Queensbury, NY Subject: DRIFT 1 Job No: 2260800 Originator: Checker: Input Data: Building Risk Category= II Table 1.5-1, page 2 Ground Snow Load,pg= 50.00 psf Figure 7.2-1 and Table 7.2-1 -7.2-8 Length of High Roof, Lu= 1.00 ft. Length of Roof Upwind of the Snow Drift Length of Low Roof, LL= 80.25 ft. Length of Roof Downwind of the Snow Drift .Dist.from Eave to Ridge,W= 80.25 ft. Horizontal Distance from Eave to Ridge Type of Roof= Monoslope Type of Roof=Monoslope, Gable,or Hip Obstruction Height, ho= 6.00 ft. High Roof-Low Roof Elevations Roof Slope,S= 0.25 in./ft. S=Rise per foot of Run Exposure Factor,Ce= 1.00 Table 7.3-1 Thermal Factor, Ct= 1.00 Table 7.3-2 Results: Roof Angle,0= 1.1935 deg. 0=ATAN(S/12) Importance Factor,Is= 1.00 Table 1.5-2,page 5 Snow Density,y= 20.50 pcf y=0.13*pg+14<=30 (Eqn.7.7-1) Flat Roof Snow Load, pi= 35.00 psf pf=0.7*Ce*Ct*Is*pg (Eqn.7.3-1) *Min. Roof Snow Load, pm= 20.00 psf pm=pg*Is for pg<=20, pm=20*Is for pg>20 Balanced Snow Load Ht.,hb= 1.71 ft• hb=pf(use)/y (Section 7.1.2) Clear Height, hc= 4.29 ft. hc=ho-hb>=0 (Section 7.1, page 29) Leeward Drift Height,hdL= 2.00 ft. hdL=0.43*Lu^1/3*(pg+10)^1/4-1.5, with Lu>=25' (Figure 7-9) Windward Drift Height, hdw= 2.75 ft. hdw=0.75*(0.43*LL^1/3*(pg+10)^1/4-1.5), with LL>=25' Max.Drift Height, hd(max)= 2.75 ft. hd(max)=maximum of: (hdL or hdw) Ratio, hc/hb= 2.51 If hc/hb>=0.2,then snow drifts are required to be applied Drift Length,w= 10.99 ft. If hd(max)<=hc:w=4*hd(max), if hd(max)>hc:w=4*hd(max)^2/hc Design Drift Height,hd= 2.75 ft. If hd(max)<=hc: hd=hd(max), if hd(max)>hc: hd=hc Drift Length,w(max)= 34.34 ft. W(max)<=8*hc Drift Length,w(use)= 10.99 ft. w(use)=minimum of: w or w(max) Wt.of Drift at High End, pd= 56.30 psf pd=hd*y (maximum value) Wt.of Drift at Low End,pde= 0.00 psf pde=0,as Low Roof Length(LL)>=w(max) Rain-on-Snow Surch.,prs= 0.00 psf prs=5.0 psf when 0<pg<=20 and 0<W/50) (Sect.7.10) Balanced Snow Load, pf(bal)= 35.00 psf pf(bal)=pf+prs **Total Snow Load, p(total)= 91.30 psf p(total)=pf(bal)+pd *Note:Minimum flat roof snow load,pm,need not be used in combination with snow drift. Wind _� Lu=1' Z(Length of High Roof) I A A pd=56.3 psf --A-hip Surcharge Load he=4.29' Due to Drifting ::: :: ho=6' Rain-on-Snow Surch.I O 1 I g// 35psf Balanced Snow Load **Note:Rain-on-snow surcharge w(use)=10.99' (drift) need not be combined with LL=80.25' snow drift for total load. (Length of Low Roof) Configuration of Snow Drift on Lower Roof 1 of 3 10/27/2022 2:52 PM 14/110 "ASCE710S.xls"Program Version 1.1 SNOW LOADING ANALYSIS Per ASCE 7-16 Code for Buildings with Flat or Low Slope Roofs(<=5 deg.or 1 in./ft.) i' for Balanced Snow, Drift,and Rain-on-Snow Surcharge Loadings Job Name: welINOW Shell-Queensbury, NY Subject: DRIFT 2 Job No: 2260800 Originator: Checker: Input Data: Building Risk Category= II Table 1.5-1,page 2 Ground Snow Load,pg= 50.00 psf Figure 7.2-1 and Table 7.2-1 -7.2-8 Length of High Roof, Lu= 1.00 ft. Length of Roof Upwind of the Snow Drift Length of Low Roof, LL= 40.67 ft. Length of Roof Downwind of the Snow Drift . Dist.from Eave to Ridge,W= 40.67 ft. Horizontal Distance from Eave to Ridge Type of Roof= Monoslope Type of Roof=Monoslope, Gable,or Hip Obstruction Height, ho= 6.50 ft. High Roof-Low Roof Elevations Roof Slope,S= 0.25 in./ft. S=Rise per foot of Run Exposure Factor,Ce= 1.00 Table 7.3-1 Thermal Factor, Ct= 1.00 Table 7.3-2 Results: Roof Angle,9= 1.1935 'deg. 6 =ATAN(S/12) Importance Factor,Is= 1.00 Table 1.5-2,page 5 Snow Density,y= 20.50 pcf y=0.13*pg+14<=30 (Eqn.7.7-1) Flat Roof Snow Load, pf= 35.00 psf pf=0.7*Ce*Ct*Is*pg (Eqn.7.3-1) *Min. Roof Snow Load, pm= 20.00 psf pm=pg*Is for pg<=20, pm=20*Is for pg>20 Balanced Snow Load Ht., hb= 1.71 ft. hb=pf(use)/y (Section 7.1.2) Clear Height, hc= 4.79 ft. hc=ho-hb>=0 (Section 7.1, page 29) Leeward Drift Height, hdL= 2.00 ft. hdL=0.43*Lu^1/3*(pg+10)^1/4-1.5, with Lu>=25' (Figure 7-9) Windward Drift Height, hdw= 1.96 ft. hdw=0.75*(0.43*LL^1/3*(pg+10)^1/4-1.5), with LL>=25' Max. Drift Height, hd(max)= 2.00 ft. hd(max)=maximum of: (hdL or hdw) Ratio,hc/hb= 2.81 If hc/hb>=0.2,then snow drifts are required to be applied Drift Length,w= 8.00 ft. If hd(max)<=hc:w=4*hd(max), if hd(max)>hc:w=4*hd(max)^2/hc Design Drift Height, hd= 2.00 ft. If hd(max)<=hc: hd=hd(max), if hd(max)>hc: hd=hc Drift Length,w(max)= 38.34 ft. W(max)<=8*hc Drift Length,w(use)= 8.00 ft. w(use)=minimum of: w or w(max) Wt.of Drift at High End, pd= 40.99 psf pd=hd*y (maximum value) Wt.of Drift at Low End, pde= 0.00 psf pde=0,as Low Roof Length(LL)>=w(max) Rain-on-Snow Surch., prs= 0.00 psf prs=5.0 psf when 0<pg<=20 and 0<W/50) (Sect.7.10) Balanced Snow Load, pf(bal)= 35.00 psf pf(bal)=pf+prs **Total Snow Load, p(total)= 75.99 psf p(total)=pf(bal)+pd *Note:Minimum flat roof snow load,pm,need not be used in combination with snow drift. Wind Lu=1' >17. (Length of High Roof) ^ ^ pd=40.99 psf Surcharge Load hc'4.79' Due to Drifting hd= 2' ho=6.5' ' v v v v v Rain-on-Snow Surch. ** v W r V W V v W W r V v v r W hb= 1.71' r v v v w Y Y r v p f=3 5 psf Balanced Snow Load - **Note:Rain-on-snow surcharge < w(use)=8' (drift) ) need not be combined with LL=40.67' snow drift for total load. (Length of Low Roof) Configuration of Snow Drift on Lower Roof 2 of 3 10/27/2022 2:52 PM 15/110 "ASCE710S.xls"Program Version 1.1 SNOW LOADING ANALYSIS Per ASCE 7-16 Code for Buildings with Flat or Low Slope Roofs(<=5 deg.or 1 in./ft.) - for Balanced Snow, Drift,and Rain-on-Snow Surcharge Loadings I Job Name: weIINOW Shell-Queensbury,NY Subject: DRIFT 3 Job No: 2260800 Originator: Checker: Input Data: Building Risk Category= II Table 1.5-1,page 2 Ground Snow Load,pg= 50.00 psf Figure 7.2-1 and Table 7.2-1 -7.2-8 Length of High Roof, Lu= 1.00 ft. Length of Roof Upwind of the Snow Drift Length of Low Roof, LL= 40.67 ft. Length of Roof Downwind of the Snow Drift . Dist.from Eave to Ridge,W= 40.67 ft. Horizontal Distance from Eave to Ridge Type of Roof= Monoslope Type of Roof=Monoslope, Gable,or Hip Obstruction Height, ho= 3.00 ft. High Roof-Low Roof Elevations Roof Slope,S= 0.25 in./ft. S=Rise per foot of Run Exposure Factor, Ce= 1.00 Table 7.3-1 Thermal Factor, Ct= 1.00 Table 7.3-2 Results: Roof Angle,9= 1.1935 deg. 0=ATAN(S/12) Importance Factor,Is= 1.00 Table 1.5-2, page 5 Snow Density,y= 20.50 pcf y=0.13*pg+14<=30 (Eqn.7.7-1) Flat Roof Snow Load, pf= 35.00 psf pf=0.7*Ce*Ct*Is*pg (Eqn.7.3-1) *Min. Roof Snow Load, pm= 20.00 psf pm=pg*Is for pg<=20, pm=20*Is for pg>20 Balanced Snow Load Ht.,hb= 1.71 ft. hb=pf(use)/y (Section 7.1.2) Clear Height,hc= 1.29 ft. hc=ho-hb>=0 (Section 7.1, page 29) Leeward Drift Height, hdL= 2.00 ft. hdL=0.43*Lu^1/3*(pg+10)^1/4-1.5, with Lu>=25' (Figure 7-9) Windward Drift Height, hdw= 1.96 ft. hdw=0.75*(0.43*LL^1/3*(pg+10)^1/4-1.5), with LL>=25' Max. Drift Height,hd(max)= 2.00 ft. hd(max)=maximum of:(hdL or hdw) Ratio,he/hb= 0.76 If hc/hb>=0.2,then snow drifts are required to be applied Drift Length,w= 12.37 ft. If hd(max)<=hc:w=4*hd(max), if hd(max)>hc:w=4*hd(max)^2/hc Design Drift Height, hd= 1.29 ft. If hd(max)<=hc: hd=hd(max), if hd(max)>hc: hd=hc Drift Length,w(max)= 10.34 ft. w(max)<=8*hc Drift Length,w(use)= 10.34 ft. W(use)=minimum of: w or w(max) Wt.of Drift at High End, pd= 26.50 psf pd=hd*y (maximum value) Wt.of Drift at Low End, pde= 0.00 psf pde=0,as Low Roof Length(LL)>=w(max) Rain-on-Snow Surch.,prs= 0.00 psf prs=5.0 psf when 0<pg<=20 and 0<W/50) (Sect.7.10) Balanced Snow Load,pf(bal)= 35.00 psf pf(bal)=pf+prs **Total Snow Load, p(total)= 61.50 psf p(total)=pf(bal)+pd *Note:Minimum flat roof snow load,pm,need not be used in combination with snow drift. I,777 Wind Lu=1' (Length of High Roof) pd=26.5 psf --A-- Surcharge Load he=1.29' Due to Drifting hd= 1.29' ho=3' v x r w v v v v v r Rain-on-Snow Surch. A ** v v r v v r v v v r r v v v v hb= 1.71' „ y y y r w r r w y y y . ., pf=35 psf Balanced Snow Load **Note:Rain-on-snow surcharge w(use)=10.34' (drift) > need not be combined with LL=40.67' snow drift for total load. (Length of Low Roof) Configuration of Snow Drift on Lower Roof 3 of 3 10/27/2022 2:52 PM 16/110 Roof Framing System Dead Load Calculator: Weight (psf) Roofing Layer 1 Insulation 1 2 Layer 2. Adhered Membrane and Insulation y 1 Sheathing and Decking Layer 1 5/8"OSB I 1.8 Layer 2, _ None _ J 0 Framing System 50'Span Trusses 24"o.c. _1 7 Ceiling System Finish" Accoustical Drop In i 1 Insulation 1 R-21 Rolled-5.5"thick 0.625 Insulation 2 None M 0 Collateral Typical_ .- _ 3 Sprinkler � Yes I 1 Misc. Yes 1 2 Maximum Minimum Top Chord DL= 11.8 11.8 psf Bottom Chord DL= 7.625 1.625 psf Total Dead Loads= 19.425 13.425 psf USE: _ 20.0 E 13.0 psf Add Line Load for Self-Weight of Joist Girders 17/110 Date: 10/27/2022 Project:weIINOW Shell-Queensbury,NY Job# 2260800 EXC EL ARCHITECTS•ENGINEERS•SURVEYORS RTU ZONE LOAD CALCS Truss Span(ft)= 41.8 RTU WEIGHT(Ibs)= 2200 RTU Width(ft)= 5 Truss Spacing(ft)= 2.0 RTU Length(ft)= 7 RTU Point Loads: Location Load(Ibs) P1 10.0 880.00 P2 20.9 880.00 P3 31.8 880.00 • P1 Calculations: Max.Shear(Ibs)= 669.2 Max.Moment(Ibs-ft)= 6692.2 P2 Calculations: Max.Shear(Ibs)= 613.1 61.54 Max.Moment(Ibs-ft)= 9185.0 0.0 Uniform Load(plf)= 61.538 61.54 RTU Load(psf)= 31.0 P3 Calculations: Max Shear(Ibs)= 669.2 Max.Moment(ft-Ibs)= 6692.2 F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\2260805 Structural\structural calcs\RTU Zone PSF Calc.xlsx • i-- - 1 I I _1_ 1 Roof Truss Span` ales I Alpine truss designs are Total load(PSF) 55 47 40 40 engineered to meet specific Duration factor 1.15 1.15 1.15 1.25 span, configuration and load Live load(PSF) 40 snow 30 snow 20 snow 20** Roof type shingle shingle shingle shingle conditions. The shapes and 55 spans shown here represent 1.15 **construction onlya fraction of the 30 snow or rain, � not snow load millions of designs processed tile byAlpine Top Chord 2x4 2x6 2x6 2x4 2x6 2x6 2x4 2x6 2x6 2x4 2x6 2x6 pne engineers. Bottom Chord 2x4 2x4 2x6 2x4 2x4 2x6 2x4 2x4 2x6 2x4 2x4 2x6 Common--Truss configurations for the Pitch Spans in feet to out of bearing' most widely designed roof shapes. 2/12 24 24 33 27 27 37 31 31 43 33 33 46 2.5/12 29 29 39 33 33 45 37 38 52 39 40 55 3/12 34 34 46 37 39 53 40 44 60 43 46 64 3.5/12 39 39 53 41 44 61 44 50 65 47 52 70 4/12 41 43 59 43 49 64 46 56 69 49 57 74 5/12 44 52 67* 46 58 69* 49 66 4* 53 66 80* 6/12 46 60* 69* 47 67* 71* 51 74* 76* 55 74* 82* 7/12 47 67* 70* 48* 72* 72* 52* 77* 77* 56* 80* 83* Mono--Used where the roof is required to 2/12 24 24 33 25 27 38 27 31 41 29 32 44 slope only in one direction. Also in pairs 2.5/12 28 29 40 29 32 43 31 37 46 33 37 49 with their high ends abutting 'on 3/12 30 33 45 31 37 47 34 42 50 36 42 54 extremely long spans with a 3.5/12 • 33 37 49* 34 41 51* 36 46 54* 39 46 58* support underneath ,4 4/12 35 41 52* 36 45* 54* 39 50* 58* 42* 49* 62* the high end. /-__ 5/12 38* 47* 57* 39* 51* 59* 42* 56* , 45* 54* 68* •v 'i Scissors--Provides a cathedral or 6/12-2/12$ 40 43 59* 42 49 62* 45 56* 66 48 57* 71* vaulted ceiling. Most economical when the 6/12-2.5/12$ 37 38 52 38 44 57* 41 50 61* 44 52 66* difference in slope between the top and 6/12-3/12$ 33 33 45 35 38 52 ' 38 43 56* 40 46 60* bottom chords is at least 3/12 or the bottom 6/12-3.5/12$ 28 28 38 32 32 44 34 37 50 36 39 54 chord pitch is no more than half the top chord pitch. , 6/12-4/12$ 22 22 31 26 26 36 30 30 41 32 32 44 1111.I $Other pitch combinations available with these spans `1 For Example,a 5/12-2/12 combination has approx.the same allowable span as a 6/12-3/12 cr Flat--The most economical flat truss for a Total load(PSF) 55 47 40 ,, 40 roof is provided when the depth of the truss in Duration factor 1.15 1.15 1.15; 1.25 inches is approximately equal to 7%of the Live load(PSF) 40 snow 30 snow 20 snow 20 rain or constn. span in inches. Top Chord 2x4 2x6 2x6 2x4 2x6 2x6 2x4 2x6 2x6 2x4 2x6 2x6 r, Bottom Chord 2x4 2x4 2x6 2x4 2x4 2x6 2x4 2x4 2x6 2x4 2x4 2x6 Nz 5////r /j�� Depth Spans in feet to out of bearing, 16" 23 24 25§ 25§ 25§ 25§ 25§ 25§ 25§ 25§ 25§ 25§ 18" . 25 27 28 27 27 29§ 29§ 29§ 29§ 29§ 29§ 29§ � �\ 20" 27 28 30 28 28 32 31 30 33§ 32 31 33§ �/ El \emu 24" 29 30 33 31 31 35 34 33 38 35 34 40 28" 32 32 36 34 33 39 37 36 42 38 37 44 • 30" 33 33 38 35 35 40 38 37 44 40 39 45 0A,W\ 32" 34 34 39 36 36 42 39 39 45 41 40 47 36" 36 36 42 39 38 45 42 41 48 43 43 50 x 42" 39 39 45 41 41 48 44 44 52 45 46 54 48" 40 42 49 1 43 44 52 46 47 56 46 49 58 60" 44 47 55 46 49 58 48 53 63 49 55 65 72" 45 51 60 48 54 64 51 57 68 51 59 69 • §=Span Limited by length to depth ratio of 24 '• NOTES: These overall spans are based on NDS spans for 2x4 top chord trusses using sheathing drifting near parapet or slide-off from higher roofs. 91 with 4" nominal bearing each end, 24" o.c. other than plywood(e.g.spaced sheathing or 1x To achieve maximum indicated spans, trusses spacing, a live load deflection limited to L/240 boards)may be reduced slightly. Trusses must may require six or more panels. Trusses with an maximum and use lumber properties as follows: be designed for any special loading such as asterisk (*) that exceed 14' in height may be 2x4fb=2000 psif,=1100 psi E=1.8x1062x6fti 1750 concentrated loads from hanging partitions or air shipped in two pieces. Contact your local Alpine psi f,950 psi f=1900 psi E=1.8x106. Allowable conditioning units, and snow loads caused by truss manufacturerorofficeformoreinformation. . . -- - it - - - - II i i- r..Fi ) 1 I. 1 i I i i r—r ,- 1 i I I P Amine-Fnamplared;-Rrocitints r 40°Iit Project Number 2260800 Page 19/110 Project Name wELLNOW URGENT CARE 100 Camelot Drive Calculations By AJH Date 11/8/2022 LXC E L Fond du Lac,WI 54935 Phone:(920)926-9800 Reviewed By JRG Date Fax:(920)926-9801 ARCHITECTS•ENGINEERS•SURVEYORS www.excelengineer.com Subject I I _ 11 H. i I I I 1 l i i ' i I 1 _ L I ! l ! Hi 1 1 i l i i —I_ l i I I ? I ' 1- 1 I I lit 1 I I I I I 1 1 1 ( T I f ! I 1 1 1 1_ 1 ' I L I I ELT -4 I 1 _ 1 I I 1-i L_ ? _ _I I L!_1 . i 1 _ 1 1 _ I F! 1 _ I I I [ I . I _i I 1 �1- L I _ 1 I_ i 1 1 _H1 1-1 1 1 . _I ! I I 1 i. l ! I 1 1 _ i_�, 1 1 I ! 1—I i1 : 1T— ! i 1-T- --11 1 I 11 I-i ! ? iill —1 i-I 1f 11i i I 1 1 i 1 I I L ? I , ._�{ 1 1 I-- 1 ! i ! _ 1 1 1 1 1 1 1 1 1 . 1 1 l i 1 1 I- 1 i _ _I 1 i i _. I _ I I LL Ill 11i 1 ( I- I ? I i III �! { 1 I I I I ,_ _ 1 i~ i f 1 �_ I T I I 1 1 1-1 I 1 i i 1 1 , 1 1 I I 11 1 I I i 1 1 1 1 11- 1 l--1-1- 11 _ 1 1 i I 11 '_ ?1 1 1 i 1 I 1 11 ' 1 _ 1 1 I 1 1 1 1 �_- ( 1 I 1 1 i I I T1111 I ; i I _ i _ illi I ii 11 __ ! 1 I__ I_ I _I- I i i 1 _ 1 I 1_1 1 , i 1 r 1 1 1 i f 1 -i I I { 1 1 i_! 1 1 I ( -1! I I LII 1 l I L__L 1�_ 1 f 1 I_ I _1 1 j ��� 1 1 , i ! 1 1 1 11 1 ! ! ! I i I I ^1-- I l l i l i 1 I I _L' i 11 1 1 1 I ! - ! i I I _ L I ' I I i I I I L I 1 1 1 I_J_1 I_? mil I i 11 1- 1 - 11 - II • ■ ■ ■ ? 1_I li i k _ _1 I i ___I i i — = — 1 1 1 '_ -1 1 I _._LI 11 �-1- , 1 I 1 i i�i 1 (-1 4- 1 _ i _r 1 —I I I_ i 1 ? i JI I_ _� I Ell -�i-I 1 - r Fr -` 1-1 .1 1_I_ 1-1-1 -, I 1 _ _ i ' 1 1__ _�1 ! _j i_.�f! —i 1 1 , __ _ I I ~I I 11 1 1 1 ! I i i --1 1 11 ~I— 1 i -'r r.• ,- -' �__1-1;- ;±- -! I 1 LAT E RAL OAD=SI _ --1,;_ H L 1 -4 .-{_ ' __!_1 i 11 1 I 1 1 1 I r _i—_ i ' i 1 i i 1-1 1�1 1 1 1 1_1 _ 1 '°' . : ` Li iI i 1 I T Th l -L Ii I I 1 - -1 I� 1 1 `.iY 1 1- d " , i t 1-1 1- 1 i I i ( _ . I I I I � ! � � I ';,.� _ I ! I 1 1yi? I -1I I i � 1- 1 -1 1- i I1. 1 i i I ` ` -t - ° 1 1 1 1 1 1 1 L_!_ i I I i I ! 1- it. 1 ' i I l.'_ ,. 1 1 1 1 1 i i l l I . 1 ! 1I--I I I I i i ' 1' i 1 I I ?T I " ! i �1— 7 1 1 1 I 1 1 i 1 L _ H "..., 1 1 • f. ,_G._� __L -i_. 1 _,_;__ _,_ �_.;� �1 _ i_� i � " I l a 1H Iiii 1 1 1 1 1 i i 1 1 _. r . ' 1 1 1 1 -1 17- 1 1 i t I I I i I 1 .. _•_.1 i + i" I 1-1-i !iii-i i 1 i 1 I _..-1 1 1 r 1 ! I mil i I I I I r 1._. _ iT_1 i I I 1 I ' 1 1-4_ 1 -1 ' iftL _._. 1 _ •• i ( I fi"._rt_1 f � 1 I I I 1 I ... 1 I i_.2 I !-1 :_i 1,- ._i. tLi - _1-4 - -i 1 1 { 1 ', 1 i 1 ,1�'-�::1;,t-i 1 f ? I I- ! I 11 ! 11; 1 i i I ! �1-`F- t f I 1 �I , 11 i .> t .. --- -I ( I i + i _1—� i — i., 1111 I ^ 1 ,.. i- i 1 !_ L_1 171, t -1"- " _/„ _T (- _L i T ' + . 17 1 I 1 1 1 1 -I-! 1 1 1 11 1 --- 1 1 1 1 1 . ' i", 1 1 1 1 1 1 I I l i 1 1 ill r ? I I I I 1 I { I-i-T l I 1 i 20/110 _ Seismic Weight Determination Seismic weight calculated according to Example 10.1 in FEMA P-751,NEHRP Design Examples Seismic Force in Endwalls ° Effective Weight Seismic Farce Cs=0.039 SW-A ' Roof 70.5 4.71 Sidewalls 50.37 Fr-r . --- __ _----�I BACKWALL 23.21 0.91 IU W FRONTWALL 23.2075 0.91 167.28 6.52 kips ID m BACKWALL FRONTWALL Seismic Force In Sidewalls 11 m Effective Weight Seismic Force Cs=0.039 Roof 70.50 3.76 - IA Endwalls 25.81 SW-A 50.23 1.96 SW-B 48.78 1.90 SW-B 195.32 7.62 kips Seismic Design Category°A"Analysis Total Structure Weight 216 kips Stability Force 2.2 kips Roof Weights Area Weight(PSF) Weight(kips) Main Roof - 3275`'N .t. ,20 65.5 .-.. Ar Units Total 70.5 Sidewalls SW-A SW-B Area Weight(PSF) Weight(kips) Centroid(ft) Cent.x Weight. Area Weight(PSF) Weight(kips) Centroid(ft) Cent.x Weight. Brick L._"5710 b : 50 35.5 6 213 Brick .' x:V666 '50r 33.3 6 199.8 EIFS 696 15 10.44 16.5 172.26 EIFS 702 ��:- 155, 10.53 16.5 173.745 Window rt286 15 4.29 6.25 26.8125 Window a*330 - 155 4.95 6.56 32.472 +f y 0 ..- 0 $,f 'ro e ' 0 0 .. 0 0 S T,A 0 0 3 ` � 0 0 :: 0 -'s..... }"v Vt_ - 0 _ •2 0 ..? �'- : 0 '-r'.$ 0 1692 50.23 8.20 412.0725 1698 48.78 8.32 406.017 Diaphragm Height _16.671ft Diaphragm Height r=.--•15.831(t Endwalls BACK FRONT Area Weight(PSF) Weight(kips) Centroid(ft) Cent.x Weight. Area Weight(PSF) Weight(kips) Centroid(ft) Cent.x Weight Brick .,y'.246.55 '50 12.325� ^ u.I 73.95 Brick • -•,c`-sy.•2465 ,:`?'550' 12.325 "'-`'.6I 73.95 EIFS y.°V452 .- -15 6.78 17 115.26 EIFS :' 452 15 6.78 17 115.26 . Window `273.5 x14� 4.1025 ''"�5 20.5125 Window 273.5 .1.5 4.1025 5 20.5125 0 0 a` g 0 0 972 23.2075 9.04 209.7225 972 23.2075 9.04 ' 209.7225 Diaphragm Height r1625lft Diaphragm Height k 4.•...16.251ft 21/110 "IBC2009E.xls"Program Version 1.1 SEISMIC BASE SHEAR Per IBC 2018 and ASCE 7-16 Specifications Equivalent Lateral Force Procedure for Regular Single-Level Building/Structural Systems Job Name: weIINOW Shell-Queensbury, NY Subject: Job Number: 2260800 Originator: Checker: Input Data: Risk Category= II IBC 2018,Table 1604.5,page 336 TTTTTTTTT F Importance Factor, I= 1.00 ASCE 7-16 Table 1.5-2 A Soil Site Class= D ASCE 7-16 Table 20.3-1 page 204 Location Zip Code= (not required) hn Spectral Accel.,Ss= 0.239 ASCE 7-16 Figures 22-1,22-3,22-5,and 22-6 Spectral Accel.,Si = 0.068 ASCE 7-16 Figures 22-2,22-4,22-5,and 22-6 Long.Trans. Period,TL= 6.000 sec.ASCE 7 Fig's.22-14 to 22-17 Structure Height,hn= 22.670 ft. V=Cs*W=7.66 kips Total Seismic Weight,W= 195.30 kips ASCE 7-16 Section 12.7.2 Seismic Base Shear Actual Calc.Period,Tc= 0.000 sec. from independent analysis (Regular Bldg.Configurations Only) Seismic Resist.System= A15 Light-framed(wood)walls sheathed with wood structural panels rated for shear resistance(ASCE 7-16, Results: Table 12.2-1) Site Coefficients: Fa= 1.600 ASCE 7-16 TABLE 11.4-1 Fv= 2.400 ASCE 7-16 TABLE 11.4-2 Maximum Spectral Response Accelerations for Short and 1-Second Periods: SMS= 0.382 SMS=Fa*Ss, ASCE 7-16 Eqn. 11.4-1 SM1 = 0.163 SM1 =Fv*S1, ASCE 7-16 Eqn. 11.4-2 Design Spectral Response Accelerations for Short and 1-Second Periods : SDs= 0.255 SDs=2*SMs/3, ASCE 7-16 Eqn. 11.4-3 SD1 = 0.109 SD1 =2*SM1/3, ASCE 7-16 Eqn. 11.4-4 Seismic Design Category: Category(for SDs)= B ASCE 7-16 TABLE 11.6-1 Category(for SD1)= B ASCE 7-16 TABLE 11.6-2 Use Category= B Most critical of either category case above controls Fundamental Period: Period Coefficient,CT= 0.020 ASCE 7-16 Table 12.8-2 Period Exponent,x= 0.75 ASCE 7-16 Table 12.8-2 Approx.Period,Ta= 0.208 sec., Ta=CT*hn^(x), ASCE 7-16 Section 12.8.2.1, Eqn. 12.8-7 Upper Limit Coef.,Cu= 1.682 ASCE 7-16 Table 12.8-1 Period max.,T(max)= 0.350 sec., T(max)=Cu*Ta, ASCE 7-16 Section 12.8.2 Fundamental Period,T= 0.208 sec., T=Ta<=Cu*Ta, ASCE 7-16 Section 12.8.2 Seismic Design Coefficients and Factors: Response Mod.Coef., R= 6.5 ASCE 7-16 Table 12.2-1 Overstrength Factor,S2o= 3 ASCE 7-16 Table 12.2-1 Defl.Amplif. Factor, Cd= 4 ASCE 7-16 Table 12.2-1 Cs= 0.039 Cs=SDs/(R/I),ASCE 7-16 Section 12.8.1.1, Eqn. 12.8-2 Cs(max)= 0.081 For T<=TL, CS(max)=SD1/(T*(R/l)),ASCE 7-16 Eqn. 12.8-3 Cs(min)= 0.011 CS(min)=0.044*SDS*I>=0.01,ASCE 7-16 Eqn. 12.8-5 Use:Cs= 0.039 CS(min)<=CS<=CS(max) Seismic Base Shear: _ V= 7.66 kips,V=Cs*W,ASCE 7-16 Section 12.8.1, Eqn. 12.8-1 1 of 1 10/27/2022 2:53 PM 22/110 "ASCE705W.xls"Program Version 1.2 WIND LOADING ANALYSIS - Main Wind-Force Resisting System Per ASCE 7-16 Code for Enclosed or Partially Enclosed Buildings ' Using Method 2: Directional Procedure Section 27)for Buildings of Any Height Job Name: welINOW Shell-Queensbury, NY Subject: Job Number: 2260800 Originator: Checker: Input Data: .1111======1 Wind Direction= Normal (Normal or Parallel to building ridge) El I Wind Speed,V= 108 mph (Wind Map, Figure 26.5-1A-D) Bldg. Classification= II (Table 1.4-1 Risk Cat.) El N B Exposure Category= B (Sect.26.7) Wind;, Ridge Height, hr= 22.67 ft. (hr>=he) Eave Height, he= 22.67 ft. (he<= hr) II I Y ��s���� Building Width= 41.75 ft. (Normal to Building Ridge) L Building Length = 81.42 ft. (Parallel to Building Ridge) r Plan Roof Type= Monoslope (Gable or Monoslope) Topo. Factor, Kzt= 1.00 (Sect.26.8&Table 26.8-1) _ Direct. Factor, Kd= 0.85 (Table 26.6-1) �_ Ground Elev., Ke= 1.00 (Table 26.9-1) i �♦ Enclosed?(Y/N) Y (Sect.26.12&Table 26.13-1) S Hurricane Region? N hrMI A Damping Ratio,(3 = 0.050 (Suggested Range=0.010-0.070) Period Coef., Ct= 0.0350 (Suggested Range=0.020-0.035) I l he II (Assume:T=Ct*h^(3/4) , and f= 1/T) i • I� � Y Resulting Parameters and Coefficients: I( L )I Elevation Roof Angle,0= 0.00 deg. Mean Roof Ht., h= 22.67 ft. (h= he,for roof angle<=10 deg.) L=41.75 ft. Windward Wall Cp= 0.80 (Fig. 27.3-1) B=81.42 ft. Leeward Wall Cp= -0.50 (Fig. 27.4-1) Side Walls Cp= -0.70 (Fig. 27-4.1) Roof Cp(zone#1)= -0.91 -0.18 (Fig.27-4.1) (zone#1 for 0 to h/2) Roof Cp(zohe#2)= -0.88 -0.18 (Fig.27-4.1) (zone#2 for h/2 to h) Roof Cp(zone#3)= -0.52 -0.18 (Fig.27-4.1) (zone#3 for h to 2*h) Roof Cp(zone#4)= N.A. N.A. (Fig. 27-4.1) (zone#4 for>2*h) +GCpi Coef. = 0.18 (Table 26.11-1) (positive internal pressure) -GCpi Coef. = -0.18 (Table 26.11-1) (negative internal pressure) If z<= 15 then: Kz=2.01*(15/zg)^(2/a), If z> 15 then: Kz=2.01*(z/zg)^(2/a) (Table 26.11-1) a= 7.00 zg = 1200 (Table 26.11-1) Kh = 0.65 (Kh= Kz evaluated at z= h) Velocity Pressure:qz=0.00256*Kz*Kzt*Kd*Ke*V^2*I (Eq.26.10-1) qh = 16.41 psf qh =0.00256*Kh*Kzt*Kd*Ke*V^2 (qz evaluated at z=h) Ratio h/L= 0.543 freq.,f= 2.750 hz. (f>= 1, Rigid structure) Gust Factor, G= 0.849 (Sect. 26.11) Design Net External Wind Pressures(Sect.27.4): p=qz*G*Cp-qi*(+/-GCpi) for windward wall (psf), where: qi=qh (Eq.27.3-1) p=qh*G*Cp-qi*(+/-GCpi) for leeward wall,sidewalls, and roof (psf), where: qi =qh (Eq.27.3-1) 1 of 10 10/27/2022 2:53 PM 23/110 "ASCE705W.xls"Program Version 1.2 Normal to Ridge Wind Load Tabulation for MWFRS-Buildings of Any Height Surface z Kz qz Cp p=Net Design Press. (psf) (ft.) (psf) (w/+G;Cpi) (w/-GCpi) Windward Wall 15.830 0.57 14.59 0.80 6.95 12.86 15.830 0.58 14.81 0.80 7.11 13.02 16.250 0.59 14.92 0.80 7.18 13.09 16.670 0.59 15.03 0.80 7.26 13.17 18.670 0.61 15.53 0.80 7.59 13.50 19.920 0.62 15.82 0.80 7.79 13.70 For z=hr: 22.670 0.65 16.41 0.80 8.20 14.10 For z=he: 22.67 ' 0.65 16.41 0.80 8.20 14.10 For z=h: 22.67 0.65 16.41 0.80 8.20 14.10 Leeward Wall All - - -0.50 -9.92 -4.01 Side Walls All - - -0.70 -12.71 -6.80 Roof(zone#1)cond. 1 - - _ - -0.91 -15.68 -9.77 Roof(zone#1)cond.2 - - _ - -0.18 -5.46 0.45 Roof(zone#2)cond. 1 - - _ - -0.88 -15.26 -9.35 Roof(zone#2)cond.2 - - - -0.18 -5.46 0.45 Roof(zone#3)cond. 1 - - - -0.52 -10.16 -4.25 Roof(zone#3)cond.2 - - - -0.18 -5.46 0.45 Notes: 1. (+)and (-)signs signify wind pressures acting toward &away from respective surfaces. 2. Per Code Section 27.1.5, the minimum wind load for MWFRS shall not be less than 16 psf. 4. Roof zone#1 is applied for horizontal distance of 0 to h/2 from windward edge. 5. Roof zone#2 is applied for horizontal distance of h/2 to h from windward edge. 6. Roof zone#3 is applied for horizontal distance of h to 2*h from windward edge. I I 2 of 10 10/27/2022 2:53 PM 24/110 "ASCE705W.xls"Program Version 1.2 Determination of Gust Effect Factor,G: Is Building Flexible? No f>=1 Hz. 1: Simplified Method for Rigid Building G= 0.850 Parameters Used in Both Item#2 and Item#3 Calculations(from Table 26.11-1): a^= 0.143 b^= 0.84 a(bar)= 0.250 b(bar)= 0.45 c= 0.30 l = 320 ft. c(bar)= 0.333 z(min)= 30 ft. Calculated Parameters Used in Both Rigid and/or Flexible Building Calculations: z(bar)= 30.00 =0.6*h , but not<z(min) , ft.Table 26.11-1 Iz(bar)= 0.305 =c*(33/z(bar))^(1/6) , Eq.26.11-7 Lz(bar)= 309.99 =l*(z(bar)/33)"(s(bar)), Eq.26.11-9 gq = 3.4 (3.4, per Sect.26.11.5) gv= 3.4 (3.4, per Sect.26.11.5) gr= 4.424 =(2*(LN(3600*f)))^(1/2)+0.577/(2*LN(3600*f))^(1/2), Eq. 26.11-11 Q= 0.871 =(1/(1+0.63*((B+h)/Lz(bar))^0.63))^(1/2) , Eq.26.11-8 2: Calculation of G for Rigid Building G= 0.849 =0.925*((1+1.7*gq*Iz(bar)*Q)/(1+1.7*gv*Iz(bar))), Eq.26.11-6 3: Calculation of Gf for Flexible Building = 0.050 Damping Ratio Ct= 0.035 Period Coefficient T= 0.364 =Ct*h^(3/4), sec. (Approximate fundamental period) f= 2.750 = 1/T, Hz.(Natural Frequency) V(fps)= N.A. =V(mph)*(88/60) , ft./sec. V(bar,zbar)= N.A. =b(bar)"(z(bar)/33)^(a(bar))"V"(tot/bU), 1t./sec. , Eq.26.9-1ti N1 = N.A. =f*Lz(bar)/(V(bar,zbar)), Eq.26.9-14 Rn= N.A. =7.47*N1/(1+10.3*N1)^(5/3), Eq.26.9-13 rih= N.A. =4.6*f*h/(V(bar,zbar)) Rh= N.A. =(1/rih)-1/(2*rih^2)"(1-a^(-2'rih)) forrih>0, or =1 for rih=0,Eq.26.9-15a,b rib= N.A. =4.61*B/(V(bar,zbar)) RB= N.A. =(1/0)-1/(2*rib^2)*(1-e^(-2*0)) forrib>0, or = 1 forrib=0,Eq.26.9-15a,b rid= N.A. = 15.4*f*U(V(bar,zbar)) RL= N.A. =(1/0)-1/(2*rid^2)*(1-e^(-2*7-0)) forrid>0, or = 1 for rid=0,Eq.26.9-15a,b R= N.A. =((1/8)*Rn*Rh*RB*(0.53+0.47*RL))^(1/2) , Eq. 26.9-12 Gf= N.A. =0.925*(1+1.7*Iz(bar)*(gq^2*Q^2+gr^2*R^2)^(1/2))/(1+1.7*gv*Iz(bar)), Use:G= 0.849 Eq.26.9-10 3 of 10 10/27/2022 2:53 PM 25/110 "ASCE705W.xls" Program Version 1.2 Figure 6-9-Design Wind Load Cases of MWFRS for Buildings of All Heights Pwr (MP pry 1111111111119111011 NMI arsrw LISP`r f tax PL.,Y L_.� .._ t f t PLY 1._...I.�1. M" LY CASE 1 CASE 3 ,. ttt - � Br LSO wyl I OSSP R7 MINN rlli� Mr mr -= J anry "PLX I' azsrcr s st r ux i x : 1.343 t / if } t 6.50 PLY Afr=0.75(Pwx+Ptx)Bxer Mr=0.75(Frry+PtdBrer Alr=0.563(1'1rx'F'PWAyer+0.563(Par+PLrlBrer er=±0.15Bx er-�0.15By ex==0.15B,1 ey= 0.15 Br CASE 2 CASE 4 Case 1: Full design wind pressure acting on the projected area perpendicular to each principal axis of the structure, considered separately along each principal axis. Case 2: Three quarters of the design wind pressure acting on the projected area perpendicular to each principal axis of the structure in conjunction with a torsional moment as shown, considered separately for each principal axis. Case 3: Wind pressure as defined in Case 1, but considered to act simultaneously at 75%of the specified value. Case 4: Wind pressure as defined in Case 2, but considered to act simultaneously at 75%of the specified value. Notes: 1. Design wind pressures for windward(Pw)and leeward(PL)faces shall be determined in accordance with the provisions of Section 27.4.1 and 27.4.2 as applicable for buildings of all heights. 2.Above diagrams show plan views of building. 3. Notation: Pwx, Pwy=Windward face pressure acting in the X,Y principal axis,respectively. Pax, Pay= Leeward face pressure acting in the X,Y principal axis, respectively. e(ex,ey)= Eccentricity for the X,Y principal axis of the structure, respectively. MT=Torsional moment per unit height acting about a vertical axis of the building. 4 of 10 10/27/2022 2:53 PM 26/110 "ASCE710W.xls" Program Version 1.0 WIND LOADING ANALYSIS -Wall Components and Cladding Per ASCE 7-16 Code for Buildings of Any Height Using Part 1 &3:Analytical Procedure(Section 30.3&30.6) Job Name: weIINOW Shell-Queensbury, NY Subject: Job Number: 2260800 Originator: Checker: Input Data: Wind Speed,V= 108 mph (Wind Map, Figure 26.5-1A-D) Bldg. Classification= II (Table 1.5-1 Risk Category) Exposure Category= B (Sect. 26.7) B Ridge Height, hr= 22.67 ft. (hr>=he) Eave Height, he= 22.67 ft. (he<= hr) Building Width= 41.75 ft. (Normal to Building Ridge) Building Length = 81.42 ft. (Parallel to Building Ridge) I L Roof Type= Monoslope (Gable or Monoslope) Topo. Factor, Kzt= 1.00 (Sect. 26.8&Figure 26.8-1) Plan Direct. Factor, Kd = 0.85 (Table 26.6-1) A Ground Elev., Ke= 1.00 (Table 26.9-1) Enclosed?(Y/N) Y (Sect. 26.12&Table 26.13-1) Hurricane Region? . N 0 Component Name= Wall (Girt, Siding,Wall,or Fastener) hr Effective Area,Ae= 10 ft."2 (Area Tributary to C&C) he V Y Resulting Parameters and Coefficients: I� L Elevation Roof Angle,0 = 0.00 deg. Mean Roof Ht., h = 22.67 ft. (h=he,for roof angle<=10 deg.) Wall External Pressure Coefficients, GCp: GCp Zone 4 Pos. = 0.90 (Fig. 30.3-1, GCp is reduced by 10%for roof angle<=10 deg. ) GCp Zone 5 Pos. = 0.90 (Fig. 30.3-1, GCp is reduced by 10%for roof angle<=10 deg. ) GCp Zone 4 Neg. = -0.99 (Fig. 30.3-1, GCp is reduced by 10%for roof angle<=10 deg. ) GCp Zone 5 Neg. = -1.26 (Fig. 30.3-1, GCp is reduced by 10%for roof angle<=10 deg. ) Positive&Negative Internal Pressure Coefficients, GCpi (Figure 26.11-1): +GCpi Coef. = 0.18 (positive internal pressure) -GCpi Coef. = -0.18 (negative internal pressure) If z<= 15 then: Kz=2.01*(15/zg)^(2/a) , If z> 15 then: Kz=2.01*(z/zg)^(2/a) (Table 30.3-1) a= 7.00 (Table 26.11-1) (Note:z not<30'for Exp. B,Case 1) zg= 1200 (Table 26.11-1) Kh= 0.70 (Kh= Kz evaluated at z=h) Velocity Pressure: qz=0.00256*Kz*Kzt*Kd*Ke*V^2 (Sect.26.10.2, Eq.26.10-1) qh= 17.78 psf qh=0.00256*Kh*Kzt*Kd*Ke*VA2 (qz evaluated at z=h) Design Net External Wind Pressures (Sect.30.3&30.6): For h<=60 ft.: p=qh*((GCp)-(+/-GCpi)) (psf) For h> 60 ft.: p=q*(GCp)-qi*(+/-GCpi) (psf) where: q=qz for windward walls, q=qh for leeward walls and side walls qi=qh for all walls(conservatively assumed per Sect. 30.6) 5 of 3 10/27/2022 2:53 PM 27/110 "ASCE710W.xls"Program Version 1.0 • Wind Load Tabulation for Wall Components&Cladding {) Component z Kh qh p= Net Design Pressures(psf) (ft.) (psf) Zone 4(+) Zone 4(-) Zone 5(+) I Zone 5(-) Wall 0 0.70 17.78 19.20 -20.80 19.20 -25.61 15.00 0.70 17.78 19.20 -20.80 19.20 -25.61 20.00 0.70 17.78 19.20 -20.80 19.20 -25.61 For z=hr: 22.67 0.70 17.78 19.20 -20.80 19.20 -25.61 For z=he: 22.67 0.70 17.78 19.20 -20.80 19.20 -25.61 For z=h: 22.67 0.70 17.78 19.20 -20.80 19.20 -25.61 Notes: 1. (+)and (-)signs signify wind pressures acting toward&away from respective surfaces. 2.Width of Zone 5(end zones), 'a'= 4.18 ft. 3. Per Code Section 30.2.2, the minimum wind load for C&C shall not be less than 16 psf. 4. References :a.ASCE 7-16,"Minimum Design Loads&Associated Criteria for Buildings and Other Structures". b."Guide to the Use of the Wind Load Provisions of ASCE 7-02" by: Kishor C. Mehta and James M. Delahay(2004). 6 of 3 10/27/2022 2:53 PM 28/110 "ASCE710W.xis"Program Version 1.0 Wall Components and Cladding: s;s;1 Wall Zones for Buildings with h<=60 ft. I WALL ELEVATION Wall Zones for Buildings with h>60 ft. 7 of 3 10/27/2022 2:53 PM 29/110 "ASCE710W.xls"Program Version 1.0 WIND LOADING ANALYSIS -Roof Components and Cladding IF Per ASCE 7-16 Code for Bldgs.of Any Height with Gable Roof 0<=45°or Monoslope Roof 0 <=3° Using Part 1 &3:Analytical Procedure(Section 30.3&30.6) Job Name: weIINOW Shell-Queensbury,NY Subject: Job Number: 2260800 Originator: Checker: Input Data: Wind Speed,V= 108 mph (Wind Map,Figure 26.5-1A-D) Bldg.Classification= II (Table 1-1 Occupancy Category) Exposure Category= B (Sect.26.7) B Ridge Height,hr= 22.67 ft.(hr>=he) Eave Height,he= 22.67 ft.(he<=hr) Building Width= 41.75 ft.(Normal to Building Ridge) Building Length= 81.42 ft.(Parallel to Building Ridge) I L Roof Type= Monoslope (Gable or Monoslope) K �I Topo.Factor,Kzt= 1.00 (Sect.26.8&Figure 26.8-1) Plan Direct. Factor,Kd= 0.85 (Table 26.6-1) Ground Elev.,Ke= 1.00 (Table 26.9-1) Enclosed?(Y/N) Y (Sect.26.12&Table 26.13-1) Hurricane Region? NA 9 Component Name= Joist (Purlin,Joist,Decking,or Fastener) hr Effective Area,Ae= 10 ft.^2 (Area Tributary to C&C) he Overhangs?(Y/N) N (if used,overhangs on all sides) L Resulting Parameters and Coefficients: Elevation Roof Angle,0= 0.00 deg. Mean Roof Ht.,h= 22.67 ft.(h=he,for roof angle<=10 deg.) Roof External Pressure Coefficients,GCp: GCp All Pos.Zones= 0.30 (Fig.30.3-2A,30.3-2B,30.4-2C,and 30.4-2D) GCp Zone 1'Neg.= -0.90 (Fig.30.3-2A,30.3-2B,30.4-2C,and 30.4-2D) GCp Zone 1 Neg.= -1.70 (Fig.30.3-2A,30.3-2B,30.4-2C,and 30.4-2D) GCp Zone 2 Neg.= -2.30 (Fig.30.3-2A,30.3-2B,30.4-2C,and 30.4-2D) GCp Zone 3 Neg.= -3.20 (Fig.30.3-2A,30.3-2B,30.4-2C,and 30.4-2D) Positive&Negative Internal Pressure Coefficients,GCpi(Figure 26.11-1): +GCpi Coef.= 0.18 (positive internal pressure) -GCpi Coef.= -0.18 (negative internal pressure) If z<=15 then: Kz=2.01*(15/zg)^(2/a), If z>15 then: Kz=2.01*(z/zg)^(2/a) (Table 30.3-1) a= 7.00 (Table 26.9-1) zg= 1200 (Table 26.9-1) (Note:z not<30, Exp.B,Case 1) Kh= 0.70 (Kh=Kz evaluated at z=h) Velocity Pressure:qz=0.00256*Kz*Kzt*Kd*Ke*V^2 (Sect.26.10.2,Eq.26.10-1) qh= 17.78 psf qh=0.00256*Kh*Kzt*Kd*Ke*V^2 (qz evaluated at z=h) Design Net External Wind Pressures(Sect.30.3&30.6): For h<=60 ft.: p=qh*((GCp)-(+/-GCpi)) (psf) For h> 60 ft.: p=q*(GCp)-qi*(+/-GCpi) (psf) where:q=qh for roof qi=qh for roof(conservatively assumed per Sect.30.6) 8 of 10 10/27/2022 2:53 PM 30/110 "ASCE710W.xls"Program Version 1.0 Wind Load Tabulation for Roof Components&Cladding �3 z Kh qh p=Net Design Pressures('psf) Component (ft.) (psf) All Zones(+) Zone 1'(-) Zone 1 (-) Zone 2(-) Zone 3(-) Joist 0 0.70 17.78 8.54 -19.20 -33.43 -44.10 -60.10 15.00 0.70 17.78 8.54 -19.20 -33.43 -44.10 -60.10 20.00 0.70 17.78 8.54 -19.20 -33.43 _ -44.10 -60.10 For z=hr: 22.67 0.70 17.78 8.54 -19.20 -33.43 -44.10 -60.10 For z=he: 22.67 0.70 17.78 8.54 -19.20 -33.43 -44.10 -60.10 For z=h: 22.67 0.70 17.78 8.54 -19.20 -33.43 -44.10 -60.10 Notes: 1.(+)and(-)signs signify wind pressures acting toward&away from respective surfaces. 2.Width of Zone 2(edge),'a'= 13.60 ft. 3.Width of Zone 3(corner),'a'= 4.53 ft. 4. For monoslope roofs with 0<=3 degrees,use Fig.30.4-2A for'GCp'values with'qh'. 5. For buildings with h>60'and 0>10 degrees,use Fig.30.6-1 for'GCpi'values with'qh'. 6. For all buildings with overhangs,use Fig.30.4-2B for'GCp'values per Sect.30.10. 7. If a parapet>=3'in height is provided around perimeter of roof with 0<=10 degrees, Zone 3 shall be treated as Zone 2. 8.Per Code Section 30.2.2,the minimum wind load for C&C shall not be less than 16 psf. 9.References :a.ASCE 7-02,"Minimum Design Loads for Buildings and Other Structures". b."Guide to the Use of the Wind Load Provisions of ASCE 7-02" by:Kishor C.Mehta and James M.Delahay(2004). 9 of 10 10/27/2022 2:53 PM 31/110 "ASCE710W.xls"Program Version 1.0 Roof Components and Cladding: _..i. . , •0.6fi i: 1 . , .•,a••• - lal rral Ini _ „ .11 .,-ITI la.-1, — I ' 14,1 -TIT- , --,(PTI•9.,41SifiDii3O,4Q,', _4._Pi 4Q,:ii., , .:, :ii , , 1 di :,:ii 6di:fo t Op; 0.' ;0,0 a a"iorD :o. 0 0 0 I 0 '0'/0 :t • 1 t I 1,0 0.6h I t 1, I I L ILI il I t 1 I 1- pL , OT-9--7,96rZ)-ls 11.:AN AN $:;s1. 0<=7 deg. 7 deg.<0<=20 deg. 20 deg.<0<=27 deg. 27 deg.<0<=45 deg. Roof Zones for Buildings with h<=60 ft. (for Gable Roofs<=45°and Monoslope Roofs<=3°) 1 i i 1 . n `• r; - , ii C1' 'fp • ., , , : 7. '... ? r. .0 007-61'441 -460714..'tailAfia* Roof Zones for Buildings with h>60 ft. (for Gable Roofs<=10°and Monoslope Roofs<=3°) 10 of 10 10/27/2022 2:53 PM 32/110 Y 22'-8"TO 22'-8" .O • O• r N • • 19'-11"TO 19'-11" •O • O• 2 —•— —•— Excel Engineering, Inc. N-S MWFRS Wind Loads SK-1 AJH Oct 27,2022 2260800 N-S MWFRS Wind Loads.r3d 33/110 I I X 24.62 lb/ft 16.441 lb/ft 13119 lb/ft 4.11 lb/ft 23.73 lb/ft 15.82 lb/ft 139 Ib/ftJ1 lb/ft Loads: BLC 1,WL Excel Engineering, Inc. N-S MWFRS Wind Loads SK-2 AJH Oct 27,2022 2260800 N-S MWFRS Wind Loads.r3d 34/110 Y ZI X -O .. -454.4 O• _•4 -75.1 � -11.8 •0 .4 -300.5 0. _ -96.5 _64 -26 Results for LC 1,WL X-direction Reaction Units are lbs and kip-ft Excel Engineering, Inc. •N-S MWFRS Wind Loads SK-3 AJH Oct 27,2022 2260800 N-S MWFRS Wind Loads.r3d 35/110 x 22'-8"TO 22'-8" r N 2 19'-11"TO 19'-11" t 18'-8"TO 18'-8" co rn Excel Engineering, Inc. E-W MWFRS Wind Loads SK-1 AJH Oct 27,2022 2260800 E-W MWFRS Wind Loads.r3d 36/110 Y ZI .x 24.62 lilt lb/ft wis 111 111 • ■ El lb/ft 0 1 1 lb/ft MB/ftz lien lb/ft at lb/ft !silb/ft 23.29l•/ft4 lb/ft • 111 • ■ • Eel lb/ft 61111 lb/ft Loads:BLC 1,WL Excel Engineering, Inc. E-W MWFRS Wind Loads SK-2 AJH Oct 27,2022 2260800 E-W MWFRS Wind Loads.r3d 37/110 Z1-I •X -45 -66.7 -15.7 -302.5 -90.5 -28.4 -241.5 -97.1 -31.6 Results for LC 1,WL X-direction Reaction Units are lbs and kip-ft Excel Engineering, Inc. E-W MWFRS Wind Loads SK-3 AJH Oct 27,2022 2260800 E-W MWFRS Wind Loads.r3d 38/110 Z�I X WIND LOAD FROM N-S •I I I WIND LOAD FROM E-W •I I Excel Engineering, Inc. Diaphragm Forces-All Directions SK-1 AJH - Oct 27,2022 2260800 Diaphragm Forces-All Directions.r3d 39/110 Y ZI •x -454 lb/ft -301 b/tt -301 lb/ft v V V v l l l -457 lb/ft -303 b/tt -303 Ib/ 42 lb/ft -303 lb/ft V V V V V V V v Y • • • • • ` • W W W • W • Y I tI Loads: BLC 1,WL Excel Engineering, Inc. Diaphragm Forces-All Directions SK-2 AJH Oct 27,2022 2260800 Diaphragm Forces-All Directions.r3d 40/110 j X -98.1 8986.4 8985.9 CHORD FORCE = (98.1) (0.6) (1000) / 80.5' = 731# �'ini" � T x �... u i t � GZ:.. .e • } s,� • Ali �� c 42 .l"R� „,.,ski ... • .�..t � #n �' S '� �#3i� kaLyrK`t *' • 11419.E 14939.7 CHORD FORCE = (260.6) (0.6) (1000) /40.83' = 3830# Results for LC 1,WL Member z Bending Moments(kip-ft) Y-direction Reaction Units are lbs and kip-ft Excel Engineering, Inc. Diaphragm Forces-All Directions SK-3 AJH Oct 27,2022 2260800 Diaphragm Forces-All Directions.r3d 00, Project Number 2260800 Page 41/110 Project y�arne WELUNOVVUKGENTCARc —�w�; `' - 1O0 Camelot Drive �JH � ^ Calculations I1/8/2022 By �VV on� Date FnndduLa | S49]S —' EXCEL ]RG phnne:(ozo)ozs'p000 Revievved By Dat8 Fax:(euo)yas'poo1 ^ Axc*/raCrS'ENGINEERS'SURVEYORS wwv«eoe|e»omeeoom Subject LATERAL LOADS: 42/110 .II . ► WL = (8986#) (0.6) = 5392# EL = (3830#) (0.7) = 2681# UNIT SHEAR = 67 PLF A WL = (14940#) (0.6) = 8964# WL = (11420#) (0.6) = 6852# EL = (3830#) (0.7) = 2681# EL = (3830#) (0.7) = 2681# UNIT SHEAR = 213 PLF UNIT SHEAR = 168 PLF V 'sl 111 is WL = (8986#) (0.6) = 5392# EL = (3830#) (0.7) = 2681# UNIT SHEAR = 67 PLF ..__...._.... ••..._._.... ._r._. ..®.,.. W.®.o..slt.....m._..... .. .__....r.. .--- 43/110 ---- -._-o......--...._...__- . __.___o-_..__ DATE PAGE L' 100 CAMELOT DRIVE • ' FOND DU LAC,WI 54935 PROJEG- • , ', l•- / FAX:(920)26 9801 1 ARCHRECTS•ENGINEERS•SURVEYORS , . . �• =-1•- -T=-- - __ _ _t- • -d -�- •- - --• ` -- -' - -- -j----•.•-- �r- -f---•--i --ram .... r-------•--• --• t: 111 1. • • Table 4,2C Nominal Unit Shear Capacities for Wood-Frame Diaphragms Unblocked Wood Structural Panel Diaphragms1,Z3,4,5 ( • A B T SEISMIC WIND © 6 in.Nail Spacing at diaphragm 3 Minimum Minimum Minimum Nominal Width 6 in.Nail Spacing at diaphragm boundaries boundaries and m Fastener Nominal of Nailed Face at and supported panel edges supported panel edges • w Sheathing Grade Common Penetration Panel Supported • Cases F Nail Size Case 1 Cases 2,3,4,5,6 Case 1 in Framing Thickness Edges a and 2,3,4,5,E o (in.) (in.) Cm) vs G. vs G. Vw Vw n (Plf) (kips/in.) (Pit) (kips/in.) • (Pit) (PM OSB PLY OSB PLY :.. y o 2 330 9.0 7.0 250 6.0 4.5 460 350 :136d 1�1/4 511E 3 370 7.0 6.0 280 4.5 4.0 520 390 - PI 0 2 480 8.5 7.0 360 6.0 4.5 670 505 ••-- o Structurall 8d 4-3/8 3/8 =p' 3 530 7.5 6.0 400 5.0 4.0 740 560 �. •ar- 5 2 570 14 10 430 9.5 7.0 800 600 i7 10d 1-1i2 15/32 3 640 12 9.0 480 8.0 6.0 895 670 2 300 9.0 6.5 220 6.0 4.0 420 310 o 5/16 3 340 7.0 5.5 250 5.0 3.5 475 350 .';'Z A� 6d 1-1I4 • 2 330 7.5 5.5 250 5.0 4.0 460 350 . 13rye., eL 3/8Pa 3 370 6.0 4.5 _ 280 4.0 3.0 520 390 .. :Ci. c�c 3/8 2 430 9.0 6.5 320 6.0 4.5 600 450 33 480 7.5 5.5 360 5.0 3.5 670 505 m Sheathing and -2 460 8.5 6.0 340 5.5 4.0 645 475 a 0 Single-Floor 8d 1-3/8 7M6 3 510 7.0 5.5 380 4.5 3.5 715 530 o ram- 15/32 2 480 7.5 5.5 360 5.0 4.0 670 505 o a 3 - 530 6.5 5.0 400 4.0 3.5 740 560 15/32 2 510 15 9.0 380 10 6.0 715 530 r-`' 3 580 12 8.0 430 8.0 5.5 810 6 q� •r m 10d 1-1/2 fix- , \ '.'"' co 19/32; 570 13 8.5 430 8.5 5.5 800 K 3 640 10 7.5 480 7.0 5.0 895 670 s into• Q co • •2 0 I.Nominal unit shear capacities shall be adjusted in accordancewith4.2.3 to de-• Cases 1&3:Continuous Cases 2&4:Continuous Cases 5&6:Continuous G termineASD allowable unit shear capacity and LRFD factored unit resistance. Panel Joints Perpendicuar Panel Joints Parallel to Panel Joints Perpen- ....all' o For general construction requirements see 4.2.6. For specific requirements, to Framing Framing dicular and Parallel to m see4.2.7.Iforwoodstructuralpaneldiaphragns.SeeAppendixAforcommon Framing • . - ' nail dimensions. 0 2. Lon Panel Direction :Oa50.'i Case2 home . .Cce.5 , •frvAa�. ''C7 a For species and grades of framing other than Douglas-Fir-Larch or Souther g �ebd._ w,d r-- a o Pine,reduced nominal unit shear capacities shall be determined by multiplying Perpendicular to Supports a w ,.;.--ikril l ki. '� Ak=-::' -, ., r-'... --�';Iitt"1 o the tabulated nominal unit shear capacity b the Specific Gravity Ad"ustuuent �°�"g{ `I j I m s }��'. '- "ti•,,.. •• ; P tY YtY ] d -`- t ,ll. I ci-' t`, i 7' 2 �' 4• _ "-'.s.i1ti. �•:. �� �l 11 • o Factor=[I-(0.5-G)],where G=Specific Gravity of the framing lumber froth aaQa�r.�ra:. , i=� ' ; -_ L; . the NDS(Table 12.3.3A). The Specific Gravity Adjustment Factor shall not ®` °�'�'' Min�_���" `" r _. .. m be greater than 1. `.raN;naaa,in,.,rtara i` Ofntfidi.*pond join" �1- olap,iapnha..dary L•-•-Chn,g-n1.barM.!s -CT<pluai ,w•.doy �, 3.Apparent shear stiffness values, G„are based on nail slip in framing with ccs"S . easE,2 D. moisture content less than or equal to 19%at time of fabrication and panel Long Panel Direction case 1 p� ,gad. e.ommo: u,d -fi°m^� CI)e stiffness values • for diaphragms constructed with either OSB or 3-ply plywood Parallel to Supports k, T v a;�.r:14 q?1I f 5• panels.When 4-ply or 5-ply plywood panels or composite panels are used,Go "9�"''l'1 j 11l f e' '" • . 1.7 values shall be permitted to be multiplied by 12. d ^'' I 1 E '� cp o, 4. Where moisture content of the framing is greater than 19%at time of fabrica- t"1= ? '•'t-L tion,G,values shall be multiplied by 0.5. �„y p,,➢p„p,,a, Y •i--.Ca......?0,0..,,. \ -,<ns p�rrornr. -,17,:r n,.:dar .t`•..-Dap,mpm,oundtry Z •-6apAw6..,..6.1 5. Diaphragm resistance depends on the direction of continuous panel joints1111 with respect to the loading direction and direction of fiauting members,and is (a) Panel span rating for out-of-plane loads may be lower than the spanrating with the long panel direction perpendicular to supports independent of the panel orientation. (See Section 3.2.2 and Section 3.2.3) SIN3.LSAS JNIISIS321-30210I 1VR131m'1 NM Ill 4b/11 U �, DATE_ PAGE ♦.1� 100 CAMELOT DRIVE S FOND DU LAC,Wi 54935 PROJECT "rp P PLATE- E�\ E L FAX:(920 92 )96 9 00 26-9801 GO(1eG I. 49r CapttC if FAX: )Lf ARC IRTECTS•ENGINEERS•SURVEYORS Jos# TEX PLMM cafe- I I_ I I ! I ! ? 1 1 1 ! 1 I �_ . i - ,. -FA- -5 w-m..pt ton Sri fD.1 1 1 zd-e�;_D-T .i I -1->a-1- [- -ii- L.-2-5--i -1 c s-pro=18'1 i-I • f-_I_1 1-1 I 1 ! 1 1 i-I I I -( L�-. 1 , ;� f i_ r i az,i I 1 I ! I ! i T- , L ! i iIII_!_:_,a.P ` l._CII=_�: a.!-�-'__ 21- - 1 �Z_ ___-1 !- '_'-_-L- - ---i- i ! 1 ..[__)_ -I--- .L. l I__LI_ - __--±-1 -,-c -A,_: _i._...-�I gg, " 4-_� . E--�_ ;. ,_a_L _r I_t_ 1 I 1 -� I1 1 �©��' � � ___.�.-, q;.��I_j�`1. - ��'! zC- '-�1ailli-J-(2/-44X)-01:ille... btr 1- �- ! �- I � -JL 'I I i I -, , -!Vie---e - 5ten _y _- , ii-e . : $ !0_._L 1 --1 L.i_- _ i I'-I ---1 ' \ A pa'µ I ; ►_ 1II1ali IJ I I 1 1 1_I. i.--�. .-iJ___ I -7 I I r-,1--T-I __CI J ft 0t. �F_ 1..y� i ! , 1 I- I J I 11 1 1 1 1 L I 1 _ __1 -' ! 1 I _1 ._ .__ 1 1 J"_ 1 --- l_'_�11_1° �._ , 1- I _ JJI...l 1_ _LI__(_�l i I__ I L__LI I �- I i T-I 1 . _1__T.1.._:_ _. .' 1 -�- I ! _ f _ I I ! 1]-I_!. _ I _I I 1--1 1-1 1 _.]-.�r 1 L __I_i��__�_L-1�- L - I ! I 1 1 ! ` . . f 1. 4 i 1 I I r-I I i; ---C R �; I i L1 *111!. , © 1 .1 : 2.X6 ; -I?(-I -p P4;_. _i -f--F[ 1i_r !J_ , r-7— r-;-r-. r '.`- —, "-;—�!—! : I—-1-1---1,- 1—i' ' '---t--?----1,---; 1--:^-I`-','t""�-i I 1 TI!I f . I I I I i I I I 1 I I i I I I I I � I I � � � I I I I I I I i i . � • ' � 1 I I ! l l I L I I !_L _II L-I I i_1_L ! i LI i ! I i f I �_1- 1 = i j _ I I ' 1 1 l--r ! ! 1 1 t-- r -i-: r _.1-1 lip i r L 1 1 r�Li a I I I 1-"-- r i -1 I ! i -±_i 5 u � r o*i-rth�e�� e n!':'sue _.r I i J5;_f �T__ �z ..ITolp1 _ mo o - �_1.1 Tc -Pi C- J 2TIT ► - 1-r__1 _C 1 L -i_I r- ram- --L- -- I 1 I r �1 r .� , I I I 1--� 1• T i f �� ,_ of ie ! en I ,1 . n ab' . � a _ f-`r L i foa I ! I i_l T `" I II !rt f FT! 1 1T_j_.1 I� 1 �! 1 I- 1 IA_1 I I_'� I I_ ! 1 I i I iLL+_ 1_ 1 1 I_I ,- j i I T H I 1 E I 1 1 F I �l Imo[ 1 i__ I [ _ '_ 1_!�-!__I-I _1 1 -1-1 I 1 ! 1_ ! ! • _I I I I I i i ► 1 1 ^i 1 1 ! 1--1-I f Ti 1 I _ [ I 1 �-1 "i 1- 11 ! 1 1 1 1 1 ! 1 I !_!_l_ r_!-0 b_!_IJ_I I�pvt!_efil___,L .1-_ � -I a - - __,_. I. I 11_1 1 l 1 ! I I_.1_.II is f?g_._,_ _ f ! , .1 . r- Vic._(s!v?P _T FI _--�-- I _I�._.1-r _I_ -_1._�L__I..---!_ff.i-= -r-._ r _j_i_ -- __ -I ' i- i f): 1 ._I-r-I._I _ II_I_f L[r-[ i 1 : l i -I 1- 1 -1-- --!- -" r' 1 • -i _iI- I_i I1 .- �.�I_�_L� .�_R. � �- , r-I 1 >- � --_-F� r-.0� ;r--6���• �--����-��-; -1-- , 1 ,-, I .1. I 1 ' IT 1 _.1-- I -I-i _I-1r' 4-5 -bol.c [ I r-i 1 ! _L i -n. 1_; - _ I i1 Ii ! , 1- �-1 ! T i l I F r Id, I i i I -PH i I_J_T _ _C _�� I I I I I 1-I ! i I ; I--L1-: 1 1 _ i Li- 1 1 I ! ! I 1 L 1 _ 1 i 1• , L_L _l_ I I 1_ ! I I_II i J_I ' I j I L ri__LC � l_ X�f _ _I •I ' it 1_' I _t I i 1 _ I T_L _1^I_I I-1L_,L I I i JJ-I- __ 11 f 1 1 _ i , u_i��1_ 1 j I I I I, I11i I .1-i ��-� _ 1 I _LL� I 1 ,-1` hi I l L! i� -_ 1 lL !_ I_I_1 I ! 1 L1_I I I I__L 1 I 11I��_ 1 I -�_1 f I I y( �I I 111I 1_ ! II L, f lei ! I �� 1 ! 1 ! � i r I1=�_ i i _I I - 11 L: 1 I ,-�__ _.1.,_1�._!`__ I_l I I _ _L rl r� rI 1FT- -1 1-1 1 1 1-__�1'_ _I ! 1 1 _ i 1 _1. 1_1 I I I [ i 1,.1_- I 0-4._11 I ! I_I i , _`_ LI 11_Th- b � 1 I 1 j_ _.l --I-!z- ,$� r F-I-_ -t zi. z ! i1� i-;�i-_ _C��LI ! ! i 1 I _ _�.1_I I- ' _i !,_i_ 1 i 1 I _ I ' I I i ,! 1- j''//yy/fyy.! I _-T _ I 1 i-I L._ ! _ I . - - I_ I_ 1 1_1 1 .L`_'YL i I rar ,. -c,_A. P ,I itI±i - 1 ,-1 !-- - - _i �; _!_1L_I I I _ f 1 I ! _C GL�.c r - G _I-I l- -1_-i !_i i !-1 I -- f-f I i�-! i r_r._"1I_L; 1--I I I I I • I ; i J '1 _ -i" I-1 j i 1 I , 1 ! i ii I I- I_t I ; • 1 -i� I p .,� 1 -�.^1" r- i I. 1 I 1 I I ! _ i^"! 1 ! 1 I -1--1 i �i Li 1 1 r 1- 1 [ f-M1 ! IrHt!4T 1.L-I r- 1 i iI_1 1, E -I -1 1... 1 I -l.._ i _! !_ . I1_-_[_-.! ! 1_i- 1_I. _*-~ ! !_ 1 I {!�-r-� f1� �T _LTD ._ _ I�_.. 1 _ !_ I_ ___I is`! !`_5 .I I r i I 11 _I_f I i I I 11 L I - 1 1 I i t I r__�i-___i__i- i1 !11 r_14_<_T_ Lir11 I r...1_77-__I - ItE.- 111__1i I ! . i11J :t11tfft 11_._ I_1 1 , ! i I i �_Li_ . 1 Z'._ _-,_ .--1-- .- -�__- f I____ 1 _ I� 1.--- 7 I _t__' _ _rT _.. ; - r__ -r 1 - I-_! _ i_•,_[_ _, l_.... I...... 1_ i _ - I - -1 rI - Jr, I-� -1 r : 1 : 1 • 1 : I ,._Ir � 1 1 I ; r1 i i^ l � , ! ' ..I. 1 I:. I I � - 1 I I 4.1. . •_.• : __. '.. 1 • 1 I[ I. : � 1 l f I ! 11 I f ! I ! ! i I I I ! I r.. . 1 1 I l ...1 1 46/110 WOOD SHEARWALL SCHEDULE SHEATHING SHEATHING BOUNDARY CHORD STUD HOLDOWN THREADED ANCHOR ROD AT HOLDOWN SHEAR WALL ANCHOR MARK TYPE JOINTS NAILING No. SIZE No. TYPE DIA. EMBED LENGTH TYPE 1 DIA. LENGTH SPACING TYPE 2 WSW-A 7/16 OSB ONE SIDE BLOCKED 8d @ 6"O.C. 2 2x6#1/#2 SPF 1 HDU4-SDS2.5 5/8° 10" A36 THREADED ROD W/SIMPSON SET EPDXY TIE 1/2' 5' 48'O.C. SIMPSON TITEN HD WSW-B 7/16 OSB ONE SIDE BLOCKED Bd @ 6"O.C. 2 2x6#1/#2 SPF 1 HDU4-SDS2.5 5/8" 10" A36 THREADED ROD W/SIMPSON SET EPDXY TIE 1/2' 5' 48'O.C. SIMPSON TITEN HD WSW-C 7/16 OSB ONE SIDE BLOCKED 8d @ 6"O.C. 2 2x6#1/#2 SPF 1 HDU4-SDS2.5 5/8" 10' A36 THREADED ROD W/SIMPSON SET EPDXY TIE 1/2" 5" 32"O.C. SIMPSON TITEN HD WSW-D 7/16 OSB ONE SIDE BLOCKED 8d @ 6"O.C. 2 2x6#1/#2 SPF 1 HDU4-SDS2.5 5/8" 10" A36 THREADED ROD W/SIMPSON SET EPDXY TIE 1/2' 5' 32"O.C. SIMPSON TITEN HD SSW-E PREFABRICATED'SIMPSON'STRONG WALL WSWH24x12-SEE DETAILS ON S2.0 FOR ANCHORAGE INTO CONCRETE WOOD SHEAR WALL SCHEDULE NOTES: 1.USE"SIMPSON AT ACRYLIC TIE"IN LIEU OF SET EPDXY TIE WHEN TEMPERATURE<50 DEG.F DURING CURE TIME.. SEE MANUFACTURERS SPEC.'S FOR CURE TIMES. 2.FOR REQUIRED FASTENER FINISH IN TREATED LUMBER,SEE SECTION XXIV,LUMBER OF THE GENERAL SPECIFICATION ON SO SHEETS. 3.PLATE WASHERS ARE REQ'D AT ALL SHEARWALL ANCHORS PLATE WASHERS TO BE'SIMPSON'BP5/8-3 • Excel Engineering,Inc. 10/27/2022 47410 Building Standard Shear Wall Design: WSW-A :Shear panel width= 10.00 ft (b) :Panel height= 12.00 ft (h) :Wind shear panel load= 1742.0 lb (spl) :Seismic shear panel load= 1330.0 lb (E) :Panel weight= 12.00 psf (wt) :Root tributary width= 20.88 ft (bys) :Stud spacing= 16.00 in (ss) •:Design roof snow load= 35.00 psf (dsl) :Design roof dead load= 20.00 psf (ddl) • ' :Roof/ceiling actual dead load= 13.00 psf (rdl) :Side wall design pressure= 13.00 psf (P3) :Aspect ratio=(h/b)= 1.20 < 3.5 IBC 2305.3.3 :Tributary roof snow load=(dsl)(bys)(ss)= 974.2 lb (sl) :Tributary roof dead load=(ddl)(bys)(ss)= 556.7 lb (dI) :Wall weight resisting uplift=(b/2)(h)(wt)= 720.0 lb (wwt) :Roof weight resisting uplift=(b/2)(bys)(rdl)= 1,356.9 lb (rwt) Plywood Design I seismic wind :Average unit shear=(.7E/b),(spl/b)_ - 93.1 174.2 1 plf (v) :Uplift transferrred from above= 0.00 0.00 lb (U) :Gross uplift=U+((h)(v))= 1596.0 2,090.4 lb (gu) Panel type: 1 15/32 Plywood (np) Fastening: 6 °o.c.(s) 260.00 pif (vp) IBC 2306.4.1 Nail type: 8d Framing S.G.: 0.42 (G) Min.penetration: 1.375 inches :Specific gravity adjustment factor=1-(0.5-G)= 0.92 (SGAF) IBC 2306.4.1a :Seismic aspect ratio factor/Wind adjustment factor= 1.00 1.40 (WAF) IBC 2306.4.1 :Adjusted unit shear=(n)(vp)(SGAF)(WAF)= O.K. 239.2 334.9 , plf (v') Chord Design I DL+ DL+ Chord Member. 2 2x6#1/#2 SPF Each Holdown Location .75SL+,75WL .755L+.7E .6DL+.7E .6DL+WL IBC 1605.3.1 :w=((P3)(ss/12))= 13.00 0.00 0.00 17.33 plf (w) :M ._((w)(h)2/8)= 2808.00 0.00 0.00 3744.00 in-lb (M,,,,,) :Actual bending stress=(M,,,,,,)/(Sx)= 185.65 0.00 0.00 247.54 psi (fb) :Allowable bending stress=(Fb)(Co)(CM)(CJ(Cu)(CF)(Cu)(C,)(C,)(Cr)= 2457.00 2457.00 2457.00 2457.00 psi (Fe) :Net tension= L 0.0 0:0- ..mo,'- 844?3: 1 lb (PT) :Net compression= 2,855.1 2,404.5 1673.9 2,647.1 lb (Pc) :Actual compressive stress=(Pc/A)= 173.04 145.73 101.45 160.43 psi (f.) :Allowable E=(E)(CM)(C,)(C,)= 1400000 1400000 1400000 1400000 psi (E') NDS 2.3.1 :Euler buckling stress=(K,.,:)(E')/((14,=1)(h)/(d))°= 612.70 612.70 612.70 612.70 psi (F•e) NDS 3.7.1 :F.'=(FL)(Cs)(CM)(Cj)(CF)(C,)= 1840.00 1840.00 1840.00 1840.00 psi (F0) NDS 3.7.1 :Column stability factor=((1+(F,JF,*))/(2c))-(((1+(F,F/F,*))/(2c))2-(F,F/F,/c))$= 0.31 0.31 0.31 0.31 (Cr) NDS 3.7-1 :Allowable compressive stress=(F.)(Co)(CM)(CJ(CF)(C,)(CF)= 563.05 563.05 563.05 563.05 psi _ (Fc') NDS 2.3.1 :CSI=(f,/F,')"^+(f,J(F,;(1-(f,1F,r=))))= O.K. 0.20 0.07 0.03 0.22 < 1.00 NDS 3.9-3 :Actual tensile stress=(PT/A)= 0.00 0.00 0.00 51.17 psi (f,) :Allowable tensile stress=(F,)(Co)(CM)(C,)(CF)(C,)= 936.00 936.00 936.00 936.00 psi (Fi) NDS 2.3.1 :CSI=max(((f/F/)+(fcFs)),((fb-f')/F5'))= O.K. 0.08 0.00 0.00 0.16 < 1.00 NDS 3.9-1,2 Deflection Calculation f seismic wind :Fastener load=(v)(s/12)= 46.55 87.10 lb (vnail) :Nail deformation=(1.2)(vnaitl857)^1.869= 0.0052 0.0167 in (e„) APA TA-2 :Deflection=((8(v)(h)3y((E)(A)(b)))+(((v)(h))/((C,)(G,)))+(.75(h)(e,))+((tW)(d°))= 0.2166 0.3494 in A IBC E23-2 •0=((wwt+rwt)(A)ll((El(h)(Cd=4))= NO Pdelta 0.007 <= 0.1 IBC 1617.4.6.2 Tension Connection Holdown: 1 HDU4-SDS2.5 :Allowable tension=(nh)(ZH)= O.K. `3,2851] lb (nh) Anchor Bolt: 1 5/8°x 10°Embed Set-XP (Ili) Edge Dist: 3°&5" :Allowable tension= ESR O.K. 11115Wallill lb Shear Connection :Actual in-plane shear per fastener=(v)(s/12)= 696.80 lb (V,) :Actual out-of-plane shear per fastener=(P3)(h/2)(s/12)= 312.00 lb (V,) :Resultant shear per fastener=((V,)2+(V0)21'5= WIN lb (V) Using: 1 1/2"x 3-1/2"Embed Titen HD Edge Dist: 3°&3' (s) Spacing= 48 inches o.c. :Allowable shear per fastener= O.K. ;m'f @ o j lb (V,) Using: 1 2x6#2 SYP Bottom Plate :Bearing angle to grain factor=(((F.,)(F„))/(((F,,,)(sin(atan(V„N,))°)+((F°,)(cos(atan(V,JV,))z)))/(F,,,)= 0.895 (CO NDS 8.2-7 :Allowable lateral design value=(Zr)(Cn)(C,)= O.K. Mr971.61.1 lb (Z) NDS 7.3.1 Design Values I (Fa) (F,u) (E) (F,) (F.) (Fv) (Fb) :Stud column tabulated design values= 1400000 450 1150 135 875 psi NDS T4A :Bottom plate tabulated design values= 3626 6160 1400 175 psi NDS T4B :Load duration factor= 1.60 1.60 1.60 1.60 (Co) NDS 2.3.2 :Wet service factor= 1.00 1.00 1.00 1.00 1.00 (Cu) 'NDS T4B :Temperature factor= 1.00 1.00 1.00 1.00 1.00 (C,) NDS 2.3.4 :Beam stability factor= 1.00 (CO NDS 3.3.3 :Shear stress factor= 1.00 (CH) NDS T4B :Size factor= 1.30 1.00 1.30 (CF) NDS T4B :Incising factor= 1.00 1.00 1.00 1.00 1.00 (C,) NDS 2.3.11 :Repetitive member factor= 1.35 (Cr) IBC 2306.2.1 :Form factor= 1.00 (Cr) NDS 2.3.8 :Euler buckling coefficient= 0.300 (K,e) NDS 3.7.1 :c= 0.800 (c) NDS 3.7.1 :Exponent for axial term of Equation NDS 3.9-3= 2.000 (exp) (Ix)in° (Si)In3 (A)inz (d)in (b)In :Stud column section properties= 41.59 15.13 16.50 5.50 3.00 NDS T1B :Bottom plate section properties= 20.80 7.56 8.25 5.50 1.50 NDS T1B :Panel rigidity through the thickness= 27000 pH (G,) APA TA-3 :Panel grade adjustment factor= 1.50 (C,) APA TA-4 :Simpson holdown maximum deflection= 0.114 in (d,) ICC-ESR 2330 :Simpson holdown allowable tension= 3285 lb (ZH) ICC-ESR 2330 (4) (Rs) (Pa) (BA) (Z...°) geed) :Holdown anchor allowable tension= 1.00 #REFI #N/A #N/A #N/A #N/A :Spike allowable shear= 660 #N/A #N/A #N/A #WA #N/A #N/A F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury N112260805 Structural\structural schedules\WOOD SHEARWALL SCHEDULE.xls Excel Engineering,Inc. 10/27/2022 48410 Building Standard Shear Wall Design: WSW-B :Shear panel width= 17.75 ft (b) :Panel height= 12.00 ft (h) • :Wind shear panel load= 3850.0 lb (spl) :Seismic shear panel load= 2500.0 lb (E) :Panel weight= 12.00 psf (wt) :Roof tributary width= 20.88 ft (bys) :Stud spacing= 16.00 in (ss) u :Design root snow load= 35.00 psf (dsl) :Design root dead load= 20.00 psf (ddl) :Roof/ceiling actual dead load= 13.00 psf (rdl) :Side wall design pressure= 13.00 psf (P3) , :Aspect ratio=(h/b)= 0.68 < 3.5 MC 2305.3.3 :Tributary roof snow load=(dsl)(bys)(ss)= 974.2 lb (s1) :Tributary roof dead load=(ddl)(bys)(ss)= 556.7 lb (dl) :Wall weight resisting uplift=(b/2)(h)(wt)= 1,278.0 lb (wwt) :Roof weight resisting uplift=(b/2)(bys)(rdl)= 2,408.5 lb (rwt) Plywood Design _ I seismic wind :Average unit shear=(.7E/b),(spllb)= 98.6 205.6 ' plf (v) :Uplift transferrred from above= 0.00 0.00 lb (U) :Gross uplift=U+((h)(v))= 1690.1 2,467.6 lb (gu) Panel type: 1 15/32 Plywood (np) Fastening: 6 °o.c.(s) 260.00 plf (vp) IBC 2306.4.1 Nail type: 8d Framing S.G.: 0.42 (G) Min.penetration: 1.375 inches :Specific gravity adjustment factor=1-(0.5-G)= 0.92 (SGAF) IBC 2306.4.1a :Seismic aspect ratio factor/Wind adjustment factor= 1.00 1.40 (WAF) IBC 2306.4.1 :Adjusted unit shear=(n)(vp)(SGAF)(WAF)= O.K. 239.2 334.9 1 plf (v') , Chord Design I DL+ DL+ Chord Member: 2 2x6#1/#2 SPF Each Holdown Location .75SL+,75WL .75SL+.7E .6DL+.7E .6DL+WL IBC 1605.3.1 :w=((P3)(ss/12))= 13.00 0.00 0.00 17.33 plf (w) :M,,,,=((w)(h)2/8)= 2808.00 0.00 0.00 3744.00 in-lb (M,,,,) :Actual bending stress=(M,,,,,)/(Sx)= 185.65 0.00 0.00 247.54 psi (fb) :Allowable bending stress=(Fb)(C❑)(CM)(CJ(CJ(CF)(C„)(C,)(C,)(C,)= 2457.00 2457.00 2457.00 2457.00 psi (F,') :Net tension= L_ 0.0 0.0 - _ 0:0 _ 255.7 1 lb (PT) :Net compression= - 3,138.0 2,470.4 1739.8 3,024.3 lb (P❑) :Actual compressive stress=(PdA)= 190.18 149.72 105.44 183.29 psi (f,) :Allowable E=(E)(CM)(C,)(C1)= 1400000 1400000 1400000 1400000 psi (E') NDS 2.3.1 :Euler buckling stress=(K,.F)(E')/((K,=1)(h)/(d))2= 612.70 612.70 612.70 612.70 psi (Fm) NDS 3.7.1 :Fn._(F0)(C❑)(CM)(C1)(CF)(CI)= 1840.00 1840.00 1840.00 1840.00 psi (F,) NDS 3.7.1 :Column stability factor=01+(F,.F/F,))/(2c))-(((1+(Fn,/F,))/(2cp2-(F,.JF,../ciy5= 0.31 0.31 0.31 0.31 (Cp) NDS 3.7-1 :Allowable compressive stress=(F,)(C❑)(CM)(CJ(CF)(CJ(CF)= 563.05 563.05 563.05 563.05 psi (Fn.) NDS 2.3.1 :CSI=(f,JF;(om+(f,J(Fc(1-(f,JFm))))= O.K. 0.22 0.07 0.04 0.25 < 1.00 NDS 3.9-3 :Actual tensile stress=(PT/A)= 0.00 0.00 0.00 15.50 psi (f) :Allowable tensile stress=(FJ(C❑)(CM)(CJ(CF)(CJ= 936.00 936.00 936.00 936.00 psi (F() NDS 2.3.1 :CSI=max(((f/F/)+(fb/Fa)),((fb-f,)/Fa))= O.K. 0.08 0.00 0.00 0.12 < 1.00 NDS 3.9-1,2 Deflection Calculation r seismic wind :Fastener load=(v)(s/12)= 49.30 102.82 lb (vnail) :Nail deformation=(1.2)(vnail/857)^1.869= 0.0058 0.0228 in (en) APA TA-2 :Deflection=((8(v)(h)3)/((E)(A)(b)))+(((v)(h))/((C,)(G,)))+(,75(h)(e°))+((h/b)(d,))= 0.1616 0.3502 in A IBC E23-2 :0=(twwt+rwt)(A))/(1E)(h)(Cd=41)= NO Pdelta 0.005 <= 0.1 IBC 1617.4.6.2 Tension Connection Holdown: 1 HDU4-SDS2.5 :Allowable tension=(nh)(ZH)= O.K. `3,28 lb (nh) Anchor Bolt: 1 5/8°x 10°Embed Set-XP (n,) Edge Dist: 3°&54 :Allowable tension= ESR O.K. ElWro.1 lb Shear Connection I :Actual in-plane shear per fastener=(v)(s/12)= 822.54 lb (VJ :Actual out-of-plane shear per fastener=(P3)(h/2)(s112)= 312.00 lb (V,) :Resultant shear per fastener=(IVJ2+(V,)2)5= CCO _. lb (V) Using: 1 1/2°x 3-1/2°Embed Tlten HD Edge Dist: 3°&3° (s) Spacing= 48 Inches o.c. :Allowable shear per fastener= O.K. 1,000 _1 lb (V,) Using: 1 2x6#2 SYP Bottom Plate :Bearing angle to grain factor=(((F„J(F„))/(((F„,)(sin(atan(V,IV,))2)+((F„)(cos(atan(V,IV,))2)))/(F,,,)= 0.919 (Co) NDS 8.2-7 :Allowable lateral design value=(Z„)(C❑)(C,)= O.K. NINIOAMil lb (Z) NOS 7.3.1 'Design Values I (F,,) (F,iJ (E) (FJ (F,) (Fv) (Fs) :Stud column tabulated design values= 1400000 450 1150 135 875 psi NDS T4A :Bottom plate tabulated design values= 3626 6160 1400 175 psi NDS T4B :Load duration factor= 1.60 1.60 1.60 1.60 (C❑) NDS 2.3.2 :Wet service factor= 1.00 1.00 1.00 1.00 1.00 (CM) NDS T4B :Temperature factor= 1.00 1.00 1.00 1.00 1.00 (CJ NDS 2.3.4 :Beam stability factor= 1.00 (C,) NDS 3.3.3 :Shear stress factor= 1.00 (CH) NDS T4B :Size factor= 1.30 1.00 1.30 (CF) NDS T4B :Incising factor= 1.00 1.00 1.00 1.00 1.00 (CJ NDS 2.3.11 :Repetitive member factor= 1.35 (C,) IBC 2306.2.1 :Form factor= 1.00 (C,) NDS 2.3.8 :Euler buckling coefficient= 0.300 (Ice) NDS 3.7.1 :c= 0.800 (c) NDS 3.7.1 :Exponent for axial term of Equation NDS 3.9-3= 2.000 (exp) (Ix)in4 (SO In3 (A)in2 (d)In (b)in :Stud column section properties= 41.59 15.13 16.50 5.50 3.00 NDS T1B :Bottom plate section properties= 20.80 7.56 8.25 5.50 1.50 NDS T1B :Panel rigidity through the thickness= 27000 pli (G,) APA TA-3 :Panel grade adjustment factor= 1.50 (C,) APA TA-4 :Simpson holdown maximum deflection= 0.114 in (d,) ICC-ESR 2330 :Simpson holdown allowable tension= 3285 lb (ZH) ICC-ESR 2330 go) (Rs) (Res) (Rw) (Zmn,) (Z:va) :Holdown anchor allowable tension= 1.00 #REF! #WA #WA #N/A #N/A :Spike allowable shear= 660 #WA #N/A #N/A #WA #N/A #N/A F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY12260805 Structurallstructural schedules\WOOD SHEARWALL SCHEDULE.xis Excel Engineering,Inc. 10/27/2022 49410 Building Standard Shear Wall Design: WSW-C :Shear panel width= 5.50 ft (b) :Panel height= 12.00 ft (h) i:Wind shear panel load= 1387.0 lb (spi) :Seismic shear panel load= 880.0 lb (E) :Panel weight= 12.00 psf (wt) :Roof tributary width= 20.88 ft (bys) :Stud spacing= 16.00 in (ss) •:Design roof snow load= 35.00 psf (dot) :Design roof dead load= 20.00 psf . (ddl) :Roof/ceiling actual dead load= 13.00 psf (rdl) :Side wall design pressure= 13.00 psf (P3) :Aspect ratio=(h/b)= 2.18 < 3.5 IBC 2305.3.3 :Tributary roof snow load=(dsl)(bys)(ss)= 974.2 ib (sI) :Tributary roof dead load=(ddl)(bys)(ss)= 556.7 lb (dl) :Wall weight resisting uplift=(b/2)(h)(wt)= 396.0 ib (wwt) :Roof weight resisting uplift=(b/2)(bys)(rdi)= 746.3 lb (rwt) Plywood Design I seismic wind :Average unit shear=(.7FJb),(spl/b)= , 112.0 252.2 j pif (v) :Uplift transferrred from above= 0-.00 0.00 lb (U) :Gross uplift=U+((h)(v))= 1920.0 3,026.2 lb (gu) Panel type: 1 15/32 Plywood (np) Fastening: 6 °o.c.(s) 260.00 pit (vp) IBC 2306.4.1 Nail type: 8d Framing S.G.: 0.42 (G) Min.penetration: 1.375 inches :Specific gravity adjustment factor=1-(0.5-G)= 0.92 (SGAF) IBC 2306.4.1a :Seismic aspect ratio factor/Wind adjustment factor= 0.92 1.40 (WAF) IBC 2306.4.1 :Adjusted unit shear=(n)(vp)(SGAF)(WAF)= O.K. 219.3 334.9 . pit (v') Chord Design I DL+ DL+ Chord Member: 2 2x6#1/#2 SPF Each Holdown Location .75SL+.75WL .75SL+.7E .6DL+,7E .6DL+WL IBC 1605.3.1 :w=((P3)(ss/12))= 13.00 0.00 0.00 17.33 pif (w) :M„,,,=((w)(h)2/8)= 2808.00 0.00 0.00 3744.00 in-lb (M,,,,,) :Actual bending stress=(M,,,m,)/(Sx)= 185.65 0.00 0.00 247.54 psi (fb) :Allowable bending stress=(Fb)(Ce)(CM)(C,)(C:)(CF)(Cu)(C,)(C,)(C,)= 2457.00 2457.00 2457.00 2457.00 psi (Fy') :Net tension= [ 7,127.4 201�77�_658:6 2;_340:8] lb (Pr) :Net compression= 3,556.9 2,631.3 1900.7 3,582.8 lb (Pc) :Actual compressive stress=(Pc/A)= 215.57 159.47 115.19 217.14 psi (f,) :Allowable E=(E)(CM)(C,)(C,)= 1400000 1400000 1400000 1400000 psi (E') NDS 2.3.1 :Euler buckling stress=(K,)(E')/((K,=1)(h)/(d))2= 612.70 612.70 612.70 612.70 psi (FA NDS 3.7.1 :F,'_(F,)(Co)(CM)(C,)(CF)(C,)= 1840.00 1840.00 1840.00 1840.00 psi (F•*) NDS 3.7.1 :Column stability factor=((1+(F,/F,'))/(2c))-(((1+(F,.s1F,.'))/(2c))2-(F,.F/F,.'/c))'S= 0.31 0.31 0.31 0.31 (Cp) NDS 3.7-1 :Allowable compressive stress=(F,)(CD)(CM)(C,)(CF)(C,)(CF)= 563.05 _ 563.05 563.05 563.05 psi (F•.) NDS 2.3.1 :CSI=(f,/F,.'r"m+(f,/(F,;(1-(f,1F,.F))))= O.K. 0.26 0.08 _ 0.04 0.30 < 1.00 NDS 3.9-3 :Actual tensile stress=(Pr/A)= 68.32 12.23 39.92 141.87 psi (f,) :Allowable tensile stress=(F,)(CD)(CM)(C,)(CF)(Ci)= 936.00 936.00 936.00 936.00 psi (F,') NDS 2.3.1 :CSI=max(((f,/F/)+(fe/Fti)),((fe-f)/Fb'))= O.K. 0.15 0.01 0.04 0.25 < 1.00 NDS 3.9-1,2 Deflection Calculation seismic wind :Fastener load=(v)(s/12)= 56.00 126.09 lb (vnail) :Nail deformation=(1.2)(vnail/857)"1.869= 0.0073 0.0334 in (e,) APA TA-2 :Deflection=((8(v)(h)al/((EHA)(b)))+(((v)(h))/((C,)(G,)))+(,75(h)(e,))+((hlb)(d,))= 0.3600 0.6514 , in A IBC E23-2 :B=(fwwt+rwt)(A))/((E)(h)(Cd=4)1= NO Pdelta 0.010 <= 0.1 IBC 1617.4.6.2 Tension Connection I Holdown: 1 HDU4-SDS2.5 :Allowable tension=(nh)(Z„)= O.K. L 3,285__] lb (nh) Anchor Bolt: 1 5/8°x 1 0°Embed Set-XP (n,) Edge Dist: 3°&5° :Allowable tension= ESR O.K. Ergg.71701111 lb Shear Connection I :Actual in-plane shear per fastener=(v)(s/12)= 672.48 lb (V,) :Actual out-of-plane shear per fastener=(P3)(hl2)(s/12)= 208.00 lb (V,) :Resultant shear per fastener=((V,)2+(V°)2)s= VD3.- lb (V) Using: 1 1/2"x 3-1/2"Embed Titen HD Edge Dist: 3°&3° (s) Spacing= 32 inches o.c. :Allowable shear per fastener= O.K. [ 1,0001 lb (V.) Using: 1 2x6#2 SYP Bottom Plate :Bearing angle to grain factor=(((F,,,)(F„))/(((F,,,)(sin(atan(V,N,))2)+((F„)(cos(atan(V„N,))2)))/(F,,,)= 0.942 (Ce) NDS 8.2-7 :Allowable lateral design value=(4)(C0)(C0)= O.K. Iliirgig1111111 lb (Z) NDS 7.3.1 !Design Values I (F,,.) (Fa„) (E) (F,) (F,) (Fv) (Fb) :Stud column tabulated design values= 1400000 450 1150 135 875 psi NDS T4A :Bottom plate tabulated design values= 3626 6160 1400 175 psi NDS T4B :Load duration factor= 1.60 1.60 1.60 1.60 (CD) NDS 2.3.2 :Wet service factor= 1.00 1.00 1.00 1.00 1.00 (CM) NDS T4B :Temperature factor= 1.00 1.00 1.00 1.00 1.00 (C,) NDS 2.3.4 :Beam stability factor= 1.00 (CO NDS 3.3.3 :Shear stress factor= 1.00 (C„) NDS T4B :Size factor= 1.30 1.00 1.30 (CF) NDS T46 :Incising factor 1.00 1.00 1.00 1.00 1.00 (C,) NDS 2.3.11 :Repetitive member factor= 1.35 (Cr) IBC 2306.2.1 :Form factor= 1.00 (C,) NDS 2.3.8 :Euler buckling coefficient= 0.300 (K,e) NDS 3.7.1 :c= 0.800 (c) NDS 3.7.1 :Exponent for axial term of Equation NDS 3.9-3= 2.000 (exp) (Ix)in4 (Sx)In3 (A)in' (d)in (b)in :Stud column section properties= 41.59 15.13 16.50 5.50 3.00 NDS T1B :Bottom plate section properties= 20.80 7.56 8.25 5.50 1.50 NDS T1B :Panel rigidity through the thickness= 27000 pH (G,) APA TA-3 :Panel grade adjustment factor= 1.50 (Ca) APA TA-4 :Simpson holdown maximum deflection= 0.114 in (d,) ICC-ESR 2330 :Simpson holdown allowable tension= 3285 lb (Ze) ICC-ESR 2330 (Za) (Rs) (Rae) (Ran) (Z..) (Za,aa,) :Holdown anchor allowable tension= 1.00 #REF! #N/A #N/A #N/A #N/A :Spike allowable shear= 660 #N/A #N/A #N/A #N/A #N/A #N/A F:\Job Files12260800 Queensbury Realty-weIINOW Shell-Queensbury NY\2260805 Structural\structural schedules\WOOD SHEARWALL SCHEDULE.xls Excel Engineering,Inc. 10/27/2022 5Wli4O Building Standard Shear Wall Design: WSW-D Shear panel width= 7.25 ft (b) Panel height_ 12.00 ft (h) i :Wind shear panel load= 2010.0 lb (spl) :Seismic shear panel load= 1505.0 lb (E) :Panel weight= 12.00 psf (wt) Roof tributary width= 20.88 ft (bys) :Stud spacing= 16.00 in (ss) • :Design roof snow load= 35.00 psf (dsl) :Design root dead load= 20.00 psf (ddl) :Roof/ceiling actual dead load= 13.00 psf' (rdl) :Side wall design pressure= 13.00 psf (P3) :Aspect ratio=(h/b)= 1.66 < 3.5 IBC 2305.3.3 :Tributary roof snow load=(dsl)(bys)(ss)= 974.2 lb (sl) :Tributary roof dead load=(ddl)(bys)(ss)= 556.7 lb (dl) :Wall weight resisting uplift=(b/2)(h)(wt)= 522.0 lb (wwt) :Roof weight resisting uplift=(b/2)(bys)(rdl)= 983.7 lb (rwt) Plywood Design ' seismic wind :Average unit shear=(.7FJb),(spl/b)= _ 145.3 277.2 ; pit (v) :Uplift transferrred from above= 0.00 0.00 lb (U) :Gross uplift=U+((h)(v))= 2491.0 3,326.9 lb (gu) Panel type: 1 15/32 Plywood (np) Fastening: 6 °o.c.(s) 260.00 elf (vp) IBC 2306.4.1 Nail type: 8d Framing S.G.: 0.42 (G) Min.penetration: 1.375 inches :Specific gravity adjustment factor=1-(0.5-G)= 0.92 (SGAF) IBC 2306.4.1a :Seismic aspect ratio factor/Wind adjustment factor 1.00 1.40 (WAF) IBC 2306.4.1 :Adjusted unit shear=(n)(vp)(SGAF)(WAF)= O.K. 239.2 334.9 pif (v') Chord Design I DL+ DL+ Chord Member. 2 2x6#1/#2 SPF Each Hoidown Location .75SL+.75WL .75SL+.7E .6DL+.7E .6DL+WL IBC 1605.3.1 :w=((P3)(ss/12))= 13.00 0.00 0.00 17.33 pif (w) :M,,,,°=((w)(h)2/8)= 2808.00 0.00 0.00 3744.00 in-lb (M,,,,,,) :Actual bending stress=(M,,,,,)/(S,J= 185.65 0.00 0.00 247.54 psi (fb) :Allowable bending stress=(Fb)(Co)(CM)(CJ(Cr)(CF)(C•,)(CJ(C,)(C,)= 2457.00 2457.00 2457.00 2457.00 psi (PO :Net tension= E 989.4 _ 238:0 _840.3_ 2,423_5 J lb (Pr) :Net compression= 3,782.5 3,031.0 2300.4 3,883.6 lb (Pc) :Actual compressive stress=(Pc/A)= 229.24 183.70 139.42 235.37 psi (fc) :Allowable E_(E)(CM)(C,)(C,)= 1400000 1400000 1400000 1400000 psi (E') NDS 2.3.1 :Euler buckling stress=(K,F)(E')/((K,=1)(h)/(d))2= 612.70 612.70 612.70 612.70 psi (Fa) NDS 3.7.1 :F„'=(F,)(C0)(CM)(CJ(CF)(C,)= 1840.00 1840.00 1840.00 1840.00 psi (Pc.) NDS 3.7.1 :Column stability factor=((1+(F°F/F,'))/(2c))-(((1+(F,FIF,'))/(2c))2-(F,./F,./c)15= 0.31 0.31 0.31 0.31 (CO NDS 3.7-1 :Allowable compressive stress=(F,)(Cn)(CM)(CJ(CF)(CJ(Cr)= 563.05 563.05 563.05 563.05 psi (F„') NDS 2.3.1 :CSI=(f,JF,.'r+(f,/(F,;(1-(f,/F r))))= O.K. . 0.29 0.11 0.06 0.34 < 1.00 NDS 3.9-3 :Actual tensile stress=(PT/A)= 59.97 14.42 50.93 146.88 psi (f,) :Allowable tensile stress=(F,)(C,)(CM)(CJ(CF)(C,)= 936.00 936.00 936.00 936.00 psi (F/) NDS 2.3.1 :CSI=max(((f/F,')+(fdFti)),((fb-f,)/Fs))= O.K. 0.14 0.02 0.05 0.26 < 1.00 NDS 3.9-1,2 Deflection Calculation ( seismic wind :Fastener load=(v)(s/12)= 72.66 138.62 lb (vnail) :Nail deformation=(1.2)(vnail/857)^1.869= 0.0119 0.0399 in (e„) APA TA-2 :Deflection=((8(v)(h)'1/((E)(A)(b)))+(((v)(h))/((C,)(G,)))+(.75(h)(e,))+((h/b)(d,))= 0.3510 0.6524 in A IBC E23-2 :0=((wwt+rwt)(A))/((E)(h)(Cd=4))= NO Pdelta 0.007 <= 0.1 IBC 1617.4.6.2 Tension Connection Holdown: 1 HDU4-SDS2.5 :Allowable tension=(nh)(ZH)= O.K. r 3,285] lb (nh) Anchor Bolt: 1 5/8°x 10°Embed Set-XP (n,) Edge Dlst: 3°&5° :Allowable tension= ESR O.K. in-ar.47-17all lb Shear Connection :Actual in-plane shear per fastener=(v)(s/12)= 739.31 lb (VJ :Actual out-of-plane shear per fastener=(P3)(h/2)(s/12)= 208.00 lb (V,) :Resultant shear per fastener=((V,)2+(V,)2)5= © lb (V) Using: 1 1/2°x 3-1/2°Embed Then HD Edge Dlst: 3°&3' (s) Spacing= 32 Inches o.c. :Allowable shear per fastener O.K. r 1,00J lb (V,) Using: 1 2x6#2 SYP Bottom Plate :Bearing angle to grain factor=(((F,,,)(F„))/(((F,,,)(sin(atan(V,/V,))2)+((F„)(cos(atan(V,V,))2)))/(F,,,)= 0.951 (C„) NDS 8.2-7 :Allowable lateral design value=(Z,)(C.)(C„)= O.K. OW,00-4 lb (Z') NDS 7.3.1 'Design Values I (F„,) (Fib) (E) (F,) (F,) (Fv) (Fb) :Stud column tabulated design values= 1400000 450 1150 135 875 psi NDS T4A :Bottom plate tabulated design values= 3626 6160 1400 175 psi NDS T4B :Load duration factor= 1.60 1.60 1.60 1.60 (Ce) NDS 2.3.2 :Wet service factor= 1.00 1.00 1.00 1.00 1.00 (Cu) NDS T4B :Temperature factor= 1.00 1.00 1.00 1.00 1.00 (C,) NDS 2.3.4 :Beam stability factor= 1.00 (CL) NDS 3.3.3 :Shear stress factor= 1.00 (CH) NDS T4B :Size factor= 1.30 1.00 1.30 (CO NDS T4B :Incising factor 1.00 1.00 1.00 1.00 1.00 (C,) NDS 2.3.11 :Repetitive member factor= 1.35 (C,) IBC 2306.2.1 :Form factor= 1.00 (C,) NDS 2.3.8 :Euler buckling coefficient= 0.300 (K,) NDS 3.7.1 :c= 0.800 (c) NDS 3.7.1 :Exponent for axial term of Equation NDS 3.9-3= 2.000 (exp) (Ix)ina (Sx)in' (A)in2 (d)in (b)in :Stud column section properties= 41.59 15.13 16.50 5.50 3.00 NDS TIB :Bottom plate section properties= 20.80 7.56 8.25 5.50 1.50 NDS TIB :Panel rigidity through the thickness= 27000 pli (GJ APA TA-3 :Panel grade adjustment factor= - 1.50 (C,) APA TA-4 :Simpson holdown maximum deflection= 0.114 in (d,) ICC-ESR 2330 :Simpson holdown allowable tension= 3285 lb (ZH) ICC-ESR 2330 (Z,) (Rs) (Rea) (Rea) (fie) (Zmd) :Holdown anchor allowable tension= 1.00 #REF) #WA #N/A #N/A #N/A :Spike allowable shear= 660 #N/A #N/A #N/A #N/A #N/A #N/A F:\Job Files\2260800 Queensbury Realty-we)INOW Shell-Queensbury N112260805 Structural\structural schedules\WOOD SHEARWALL SCHEDULE.xls Anchoring Solutions for Simpson Strong-Tie°Connectors -•__. ________�_- __ __ I__�i SIMPSUN STEMWALL FOUNDATION StrongTie • SET arid AT Adhesives: Tension Loads in Concrete, Stemwall Foundation Midwall Anchor Embed. Min.Edge Allowable Tension Load(lbs.) `/ Anchor Rod Depth, Distance, Midwall � vCor a M„°;' End-CH-Wall caner Diam. le C Anchor • (in.) (in.) (in.) SET AT : o- ATS;A• SET AT Millignkolik 21/4 1175 660 1175 660 1175 660 > 1.6 4'% '13/4 2875 2020 2590 1715 2590 1715 • 6 2315 2710 1780 2195 1780 2195 • • ' 2'/z 815 1065 815 t065.1,, 815 1065 ` ' . , 5 2975 263022902145 2290 2145 . 93/e 1� 4100 3625 i 953, 2575-� - - • •i- ' ' _10 - - 341Q .32317 13410 3230 12 4945 4050 41;ib 35402 - - • ° 18 68703 6170 6105 j 53Q5 - - ; 12 23' 6065 5405 r50'551 4290 , - - _ . 18 70653 70653 0653 r6695';r - Perspective View 3% 1855 1625 1835 1610 1835 1610 Midwall'and Corner Applications 3/ 6% 1M 3835 3595 2610 2480 2580 2455 . • 11'/a 4735 _ 4080 3125 2650 3125 2650 37/s 2295 1740 2050" •'=1560 2050 1560 i-End-hoot-Wan a �� ��' "__ / Anchor 7/ 4335 3790 12815 2500u: 2565 2300 12 1% 5550 4310 14fi4,0 3815' - - 7s . 15 5665 5460 a5665 'T5d6n 5665 5460 18 • 7710 6835 47.09516260 - I .- • 12 23' 6240 5665 5625 ` 4730` - - 18 • 8515 7615 $047,5R k37550,fi- - • - 41/2 .2280 2165 1860 1745 1860 1745 9 3 5010 4340 3130 2585 2660 2145miall k 1 12 1/ 5670 4460 4860 3960 - - 18 7930 7140 7515 6525 - - . 12 3 6270 '5645 5810 4940 - - • 18 ' 2/< 8725 7800 8815 7900 - - 1.Allowable loads listed are based on installations into normal-weight concrete with a minimum compressive strength of 2500 psi. Perspective View 2.Values are for a single anchor;multiple anchors'spaced less than 4 x le may have reduced capacity. End-Of-.Wall Application ' 3.Where noted,tabulated value exceeds the allowable tension for ASTM F 1554 Grade 36 threaded rod. • B° See table a Midwall Anchor , Coiner Anchor • Min. tar rod diameter r1 i 1�--24'Min.—►1 ;�—i 5'Min. Midwall • � I I 1 �l I�il:, l l iEtE Anchor n n Ina •.ii I=111 From Table ' > , —� Corner ri%, - �J' —Ti— II ;I -il I le=° —I� � • i I From TableAnchor • 111=111 ' . `- lIIF24° 1: I1E4'Min. li il• ••h I� Ill=11�8" Mn. mt • o • II•IE' 14'Min. p Minai-1 I_== -] 24°��� 24° If- -►I lf— 24°-.• . 5° 1 n-•. •. TI • > 'il=ul z L Min. Min. Min. 2 Min. 1t n= - • `it = -I e11_ .._.. _ II-nl IIEIIC-III�IEIIL=III_III=ll iE N C u=m o Plan View Section View Elevation View 't Midwall and Corner Applications Midwall and Corner Applications Midwall and Corner Applications s N See table for f e { O rod diameter l I 5 w a 11, m 5'-►{�—t 0'min.—►I x • b° 1111111111 '•—�- 1 I _ Ii-WIE From Tabte le - Min. I U End-Of-Wall Min. -,.,-1,1 • 11 1111 E1 y 1,' �-17f •- Anchor EU • I I I 81I r ' t �_ • .. 11-1= i 1 1 �7 11 1 cg I Min. > fi, • L ITdf�t i 1=II II_Ilf' �_i t Min. 5' 1U• S • ° '- . I > • i t1n Min.•—•�. _ —: i li V, • Mina_-: 1 i�Ln ., II > . ° •. I —p-ii Ij - • ,. u=ill C;'i .:.: d 1=III-111=11-Ill-l-III-hill > • `Plan;Vim .:- „.,;': =: - '. - Section View. 8 End-Of-Wall Application `` _ _ ``:- ,End;Of-,WallA lication Elevation View pp End-Of-Wall Application 52/110 SIMPSON STRONG-TIE COMPANY INC. SIMPSON (800)999-5099 5956 W.Las Positas Blvd., Pleasanton,CA 94588. StrongTie www.strongtie.com Job Name: weIINOW-Queensbury, NY Wall Name: SSW-E Application: Standard Wall on Concrete Design Criteria: *2018 International Bldg Code *Wind *3000 psi concrete *ASD Design Shear= 8964 lbs * Nominal wall height= 12 ft Selected Strong-Wall® Panel Solution: End Total Axial Actual Model Type W H T Sill Anchor Load Uplift (in) (in) (in) Anchor Bolts (Ibs) (lbs) WSWH24x12 Wood 24 144 3.5 N/A 2-1" 0 18440 lb WSWH24x12 Wood 24 144 3.5 N/A 2- 1" 0 18440 lb WSWH24x12 Wood 24 144 3.5 N/A 2- 1" 0 18440 lb WSWH24x12 Wood 24 144 3.5 N/A 2- 1" 0 18440 lb Actual Shear & Drift Distribution: RR Actual Allowable Actual/ Actual Drift Model Relative Shear Shear Allow Drift Limit Rigidity (Ibs) (Ibs) Shear (in) (in) WSWH24x12 0.25 2241 .< 4305 OK 0.52 0.39 0.80 WSWH24x12 0.25 2241 .< 4305 OK 0.52 0.39 0.80 WSWH24x12 0.25 2241 < 4305 OK 0.52 0.39 0.80 WSWH24x12 0.25 2241 •<- 4305 OK 0.52 0.39 0.80 Notes: 1. Strong-Wall High-Strength Wood Shearwalls have been evaluated to the 2021 IBC/IRC. See www.strongtie.com for additional design and installation information. 2.Anchor templates are recommended for proper anchor bolt placement, and are required in some jurisdictions. 3.The applied vertical load shall be a concentric point load or a uniformly distributed load not exceeding the allowable vertical load. Alternatively, the load may be applied anywhere along the width of the panel if imposed by a continuous bearing vertical load transfer element such as a rimboard or beam. For eccentric axial loads.applied directly to the panel,the allowable vertical load shall be divided by two. 4. Panels may be trimmed to a minimum height of 741/2'. Disclaimer: It is the Designer's responsibility to verify product suitability under applicable building codes.In order to verify code listed applications please refer to the appropriate product code reports at www.strongtie.com or contact Simpson Strong-Tie Company Inc.at 1-800-999-5099. Page 1 of 53/110 SIMPSON STRONG-TIE COMPANY INC. SIMPSON (800)999-5099 5956 W.Las Positas Blvd., Pleasanton,CA 94588. Strong-Tie www.strongtie.com • Job Name: weIINOW-Queensbury, NY Wall Name: SSW-E Application: Standard Wall on Concrete Design Criteria: *Stemwall - Perimeter *2018 International Bldg Code *Wind *3000 psi concrete Anchor Solution Details: Stemwall Extension Installation 6'Minimum stemwall, F4—/—* WSWH-HSR Stemwall Installation 6W Shear reinforcemer WSWH-AB 6'Minimum curb/stemwall ♦ m per detail when 61/2 required Shear inforenment III L per detail when required Stemwall H i height= I W Ar i (WSWH-ABIe+ t ,r • t t WSWH HSRIe+ de l YzW I 6W—de) I 410 e• I=IC . ''-I4-1 1w I I o •.IL 6'min. S4W�._SzW—► de n WSWH-AB • Stemwall Section View Perspective View Footing Plan III 1 T 11 (Slab not shown for clarity) t I EN I I It 6'min. 1 W min.1/2 W min. W Section at Stemwall WSWH-AB and WSWH-HSR Extension Application Anchor Solution Assuming Cracked Concrete Design: Anchor Solution Assuming Uncracked Concrete Design: Model W de B Anchor Bolt Strength Model W de B Anchor Bolt Strength WSWH24x12 33 11 20 WSWH-AB Strength WSWH24x12 30 10 20 WSWH-AB St eingth Notes: 1.Anchorage designs conform to ACI 318-19, ACI 318-14 and 318-11 Appendix D with no supplementary reinforcement for cracked and uncracked concrete as noted. 2.Anchorage strength indicates required grade of anchor bolt. Standard (ASTM F1554 grade 36) or High Strength (HS)(ASTM A193 Grade B7). 3.Wind includes Seismic Design Category A and B and detached 1 and 2 family dwellings in SDC C. 4. Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) by others. The registered design professional may specify alternate embedment,footing size or anchor bolt. Page 2 of 54/110 SIMPSON STRONG-TIE COMPANY INC. SIMPSON (800)999-5099 5956 W.Las Positas Blvd., Pleasanton,CA 94588. Strong-Tie www.strongtie.com c I Li,min. 1 Lt 4'min.—► t7 F .. pu emow s oio',en iw',',,wm iu e'en v.ai ., /irezowmwm2 iuiiviiiiiiiii2o I3' \ 3' i \-axNm x n ff., 'a mu./Z//A,z Z.1/ia s/,:4Vmsouou// + "•iaiiuiiuuiuuuuiiiuimaa/ZZ/4:aauu/' WSWH-AB 93 hairpin Held tie and secure during WSWH-AB 73 tie Field tie and secure grade 60 rebar concrete placement.Overlap grade 60 during concrete (min.) varies with bait spacing. rebar(min.) placement. Hairpin Shear Reinforcement Tie Shear Reinforcement • WSWH-AB #3 hairpin(#3 tie similar), see table for required quantity. 114'CLR 1' " 1W spacing . LAB; IJIIIII=IIIII _ . - IIIII. . 1111= �• Bill IIIII 1111 ' . '. IIIII. ii.i_ ' . '.nil= 'EMIL _• .. :..ill- III=II1111-11111=1E1=IIIIfl=11 MIIIII-1111II^111T=Illl MIII111- Hairpin Installation (Garage curb shown,other footing types similar) Shear Anchorage Solutions Seismic' Wind' 1 Strong-Wall I High-Strength L,or L. Minimum Curb/ Minimum Curb/ ASS Allowable Shear Load,V(Ih.)' Wood Shearwail (In.) Shear Shear Model No. Reinforcement Stemv211 Width Reinforcement (IWidth PI Om) Unr eked Cracked WSWH12 101/e (1)#3 lie 6 See Note 7 6 I 1,080 I 770 WSWH18 15 L(2)#3 hairpins'' 6 (1)#3 hairpin 6 _I Hairpin reinforcement achieves maximum allowable shear load of the WSWH24 19 , (2)#3 hairpins' 6 (2)83 hairpins' 6 I Strong-Walt'WSWH 1.Shear anchorage designs conform to ACI 318-14 Chapter 17 and ACI 318-11 and assume minimum 2,500 psi concrete. 2.Shear reinforcement Is not required for Interior foundation applcatons(panel Installed away from edge of concrete),or braced wall panel applications. 3.Seismic indcetes seismic design category C through F.Detached one-and two-fannly dwellings In SDC C may use wind anchorage solutions.Seismic shear reinforcement designs conform to ACI 318-14,section 17.2.3.5.3 and ACI 318-11 section D.3.3.5. 4.Wed includes seismic design category A and B and detached one-and two-famgy dWelrugs in SDC C. 5.Additional ties may be required at garage curb or stemwaa installations below anchor reinforcement per designer. 6.Use(1)#3 hairpin for WSWH18 when standard strength anchor is used. 7.Use(1)#3 tie for WSWH12 when panel design shear force exceeds tabulated anchorage allowable shear load. 8.No.4 grade 40 shear reinforcement may be substituted for WSWH shear anchorage solutions. 9.Concrete edge distance for anchors must comply with ACI 318-14 section 17.7.2 and AG 318-11 section D.8.2. 10.The designer may specify alienate shear anchorage. STRONG-WALL® WSWH SHEAR ANCHORAGE SCHEDULE AND DETAILS Page 3 of 55/110 Project Name: welINOW Shell-Queensbury,NY . Designer: AJH 'Date:10/27/2022 _ _ __ ___ _ BEARING 8 OVERTURNING CHECKS - _- -� _- --a--__ NOTES: '=Moment at Base of Masonry Wall(Top of Foundallon Wall) _ Effective Length of Footing Beyond Wall at Both Ends(Assumes Length on Both Ends) ALLOWABLE SOIL BEARING PRESSURE = 3.0 KBF 1.ASD Load Comdbinations are calculated. SLIDING F.S=I1.5 I p(fill)='a. 2.Input W=Wind Load at ASCE 7-10 Strength Level 3.Input E=Seismic Load at ASCE 7-10 Strength Level OVERTURNING MOMENT F.S.I7:5 -I Soil Density=l--0,120Ikcf 4.DL=Dead Load is comprised of applied DL in column D and soil weight 5.Self-Wt.=Self-Weight is comprised of footing and wall concrete weight. WALL AND LOAD DATA FOOTING SOIL FOUNDATION WALL WALL Length Width DL LL W Shear' W Moment' E Shear E Moment' DL LL Width Depth Weight A S Height Weight Height Width Weight Effective Length (ft) (In) (elf) (p11) (kips) (kip-ft) (kips) (kip-ft) (kips) (kips) (ft) (ft) (kips) (fel (ftrt (ft) (kips) (ft) (In) (kips) Beyond(ft)" EAST WALL 55.83 13.00 985.00 900.00 9.00 108.00 3.80 45.60 54.99 50.25 2.00 1.00 16.75 115.66 1114.77 4.00 25.45 4.00 13.00 36.29 1.0D NORTH WALL 40.33 13.00 280.00 150.00 15.00 180.00 3.80 45.60 11.29 6.05 3.00 1.50 27.22 126.99 895.91 4.00 38.94 4.00 13.00 26.21 1.00 WEST WALL 55.83 13.00 985.00 900.00 9.00 108.00 3.80 45.60 54.99 50.25 2.00 1.00 16.75 115.66 1114.77 4.00 25.45 4.00 13.00 36.29 1.00 SOUTH WALL 40.33 13.00 280.00 150.00 11.40 136.80 3.80 45.60 11.29 6.05 3.00 1.50 27.22 126.99 895.91 4.00 38.94 4.00 13.00 26.21 1.00 1.00 Dead+1.00 Self-Wt.+1.00 Live - BEARING OVERTURNING SLIDING WALL Total Load Total Moment ECC. B/6 P/A M/S gmaxgross Ogress Mn M e F.S. F F p F.S. (kips) (kip-ft) (ft) (ft) (ksf) (ksf) (ksf) (ksf) (kip-ft) (kip-ft) (kips) (kips) BEARING EAST WALL 183.7 0.00 0.00 9.64 1.59 0.00 1.59 3.60 0.00 5312.36 N/A 0.00 64.30 N/A OK NORTH WALL 109.7 0.00 0.00 7.06 0.86 0.00 0.86 3.66 0.00 2322.28 N/A 0.00 38.40 N/A OK WEST WALL 183.7 0.00 0.00 9.64 1.59 0.00 1.59 3.60 0.00 5312.36 NIA 0.00 64.30 N/A OK SOUTH WALL 109.7 0.00 0.00 7.06 0.86 0.00 0.86 3.66 0.00 2322.28 NIA 0.00 38.40 N/A OK 1.00 Dead+1.00 Self-Wt.+0.75 Live+0.75(0.6)Wind BEARING OVERTURNING SLIDING WALL Total Load Total Moment ECC. 8/6 P/A M/S ernes gross Ogress M 0 M R F.S. F F R F.S. (kips) (kip-ft) (ft) (ft) (ksf) (ksf) (ksf) (ksf) (kip-ft) (kip-ft) _ (kips) (kips) BEARING OVERTURNING SLIDING EAST WALL 171.2' 68.85 0.40 9.64 1.48 0.06 1.54 3.60 68.85 4949.13 71.88 4.05 59.91 14.79 OK OK OK NORTH WALL 108.2 118.13 1.09 7.06 0.85 0.13 0.98 3.66 118.13 2290.27 19.39 ' 6.75 37.87 5.61 OK OK OK WEST WALL 171.2 68.85 0.40 9.64 1.48 0.06 1.54 3.60 68.85 4949.13 71.88 4.05 59.91 14.79 OK OK OK SOUTH WALL 108.2 89.78 0.83 7.06 0.85 0.10 0.95 3.66 89.78 2290.27 25.51 5.13 37.87 7.38 OK OK OK 0.90 Dead+1.00 Self-Wt.+0.6 Wind BEARING OVERTURNING SLIDING WALL Total Load Total Moment ECC. B/6 P/A M/S gmaxgross Ogress M n M R F.S. F F R F.S. (kips) (kip-ft) (ft) (ft) (ksf) (ksf) (ksf) (ksf) (kip-ft) (kip-ft) (kips) , (kips) BEARING OVERTURNING SLIDING EAST WALL 125.4 91.80 0.73 9.64 1.08 0.08 1.17 3.60 91.80 3626.88 39.51 5.40 43.90 8.13 OK OK OK NORTH WALL 98.6 157.50 1.60 7.06 0.78 0.18 0.95 3.66 157.50 2087.92 13.26 9.00 34.53 3.84 OK OK OK WEST WALL 125.4 91.80 0.73 9.64 1.08 0.08 1.17 3.60 91.80 3626.88 39.51 5.40 43.90 8.13 OK OK OK SOUTH WALL 98.6 119.70 1.21 7.06 0.78 0.13 0.91 3.66 119.70 2087.92 17.44 6.84 34.53 5.05 OK OK OK 1.00 Dead+1.00 Self-Wt.+0.75 Live+0.7 Seismic BEARING OVERTURNING SLIDING - WALL Total Load Total Moment ECC. B/6 P/A M/S gmax gross °gross M s M R F.S. F F R F.S. (kips) (kip-ft) (ft) (ft) (ksf) (ksf) (ksf) (ksf) (kip-ft) (kip-ft) (kips) (kips) BEARING OVERTURNING SLIDING EAST WALL 171.2 45.22 0.26 9.64 1.48 0.04 1.52 3.60 45.22 4949.13 109.45 2.66 59.91 22.52 OK OK OK NORTH WALL 108.2 46.55 0.43 7.06 0.85 0.05 0.90 3.66 46.55 2290.27 49.20 2.66 37.87 14.24 OK OK OK WEST WALL 171.2 . 45.22 0.26 9.64 1.48 0.04 1.52 3.60 45.22 4949.13 .109.45 2.66 59.91 22.52 OK OK OK SOUTH WALL 108.2 46.55 0.43 7.06 0.85 0.05 0.90 3.66 46.55 2290.27 49.20 2.66 37.87 14.24 OK OK OK 0.9 Dead+1.00 Self-Wt.+0.7 Seismic BEARING OVERTURNING SLIDING WALL Total Load Total Moment ECC. B/6 P/A MIS gmaxgross °gross M s M R F.S. F F R F.S. (kips) (kip-ft) (ft) (ft) (ksf) (ksf) (ksf) (ksf) (kip-ft) (kip-ft) (kips) (kips) BEARING OVERTURNING SLIDING EAST WALL 125.4 45.22 0.36 9.64 1.08 0.04 1.13 3.60 45.22 3626.88 80.21 2.66 43.90 16.50 OK OK OK NORTH WALL 98.6 46.55 0.47 7.06 0.78 0.05 0.83 3.66 46.55 2087.92 44.85 2.66 34.53 12.98 OK OK OK WEST WALL 125.4 45.22 0.36 9.64 1.08 0.04 1.13 3.60 45.22 3626.88 80.21 2.66 43.90 16.50 OK OK OK SOUTH WALL 98.6 46.55 0.47 7.06 0.78 0.05 0.83 3.66 46.55 2087.92 44.85 2.66 34.53 12.98 OK OK OK e • F:Uob Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY12260805 Stmctura5structural caics\Sheanvall Foundations.xls Excel Engineering, Inc. 10/27/2022 0§61140 Building Gable Design: : Gable width = 41.75 ft (b) : Overall gable height = 4.00 ft (h) : Gable vertical spacing = 24.00 in (ss) : Wind shear panel load = 8964.0 lb (spl) : Seismic shear panel load = 3830.0 lb (E) : Roof tributary width = 2.00 ft (bys) : Roof/ceiling actual dead load = 13.00 psf (rdl) : Panel weight = 9.00 psf (wt) :Wall weight resisting uplift=(b/2)(h/2)(wt)= 375.8 lb (wwt) : Roof weight resisting uplift=(b/2)(bys)(rdl)= 542.8 lb (rwt) Plywood Design seismic wind :Average unit shear=(.7E/b),(spl/b)= 64.2 _ 214.7 plf (v) :Gross uplift=(h/2)(v)= 128.4 429.4 lb (gu) Panel type: 1 7/16 OSB 240.00 plf (vp) IBC 2306.4.1 Fastening: 6 "o.c. (s) Framing S.G.: 0.42 (G) Blockng: yes Nail type: 8d :Specific gravity adjustment factor= 1-(0.5-G)= 0.92 0.92 (SGAF) IBC 2306.4.1a :Wind adjustment factor= 1.00 1.40 (WAF) IBC 2306.4.1 :Blocking adjustment factor= 1.00 1.00 (BAF) APA RR154 :Adjusted unit shear=(n)(vp)(SGAF)(WAF)(BAF)= O.K. 220.8 309.1 plf (v') Tension Connection :Actual tension=(gu)-(.6(wwt+rwt))_ L O J lb (T) Holdown: 1 LTS12 (n) :Allowable tension=(n)(ZH)= O.K. ; _620 lb (Ta) ICC-ES 5275 F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\2260805 StructuraRstructural schedules\WOOD SHEARWALL SCHEDULE.xls Project Number 2260800 Page 57/110 A LIO ISO Project Name wELLNOW URGENT CARE 441.0. 4,♦® 100 Camelot Drive AJH 11/8/2022 i. ExIcEL Fond du Lac;WI 54935 Calculations By Date Phone:(920)926=9800 Reviewed By JRG Date Fax:(920)926-9801 ARCHITECTS•ENGINEERS•SURVEYORS www.excelengineer.com Subject _i `_I I i _ I I — _ II_ I I I I I ■ ■: :11111_1 I 1 vU ■ INE I 7 -- 1 — — I — _,_(_ j i I _ I 1 —r 1 —_ 1 -- — I I I . L_ _ I I 1 L ■■■■ I H .L 11111111111 ■ II _l____ _ l— I I i I —.�.—._ I i I _ I I I I Imi — l _ _ ■ _■ _II I 1 I L I_ I ■■ ■ I I I I I I 1 l 1 1 I 1 I 1 1 — I I 1 I I —� I I I (— 11 I I I — , 1 I I I I I_ ( I —1 I —L—I —_ ( - I__ 1 = L I-- I I I_I I I I 1 I I � I _L - ffI I I 1—I T —+ LI 1 4.: -1 L I I - _1 -I ___ t : I I I l I-- I-� Ii > l l I 1 r —I - 1 - , , . , I 1 IG► ® .VI1 �YDESIGN-1 4 _ i - -I _ _ ' 1 _ _ 1 f i 1 i^"1 4 :_ I 1 1- I I I I I — I IH 1-1 I I 1— —.1-4_-i t_-_.--, a,-... t_. —� — 1 I _ _ I I — — . ttl t• ! i 1H__ 1 I 4 —' V_._i_L i i 1 L. W _ t 1 1 _I_ T Y r I..._--1--- --i_—_ 1 �_+++. I Ejr-71 1— I I I I (�I—f f - I I 1 I I . ,. . __'T- I fi l l — — I 1 I i t 1 —1....- i ; !. i 1 s -RI :z, I I I I _ i �., ill -I— I i 1 I I I I I I r I I i I f . 1 -ill s i', 1 I I 1 11 I i. f -1't--'-r-4 I-i- _I 1 I. 1 , I pi_ 1 _--- -.°,._ t_-- i...1 -i.._.i...- j^-�{ -1-j__ 4•--1--1-.1 _... _ I � l1 1__I. i L T ` ' I� I 1 1 —i_ I 1• 8 1 L1 t_t4- r 1 I- I 11 I 1 1 I I 1 - - 1 1 1 1 I 1 58/110 , t______F=.1__I q„ i -I II IIDEAD LOAD SUMMARY (w/ RTU): WALL: 12 (PSF) x 6.33 (FT) = 76 PLF ROOF + RTU: 731 PLF --> FROM RISA TOTAL DL = 76 + 731 = 807 (PLF) II 11II, T '' ff 11������'' u 1 y ® ® J ® 7,,,,, Y. A 59/110 it 1111=, O DL = 20 PSF + O RTU ZONE LOAD - o, ,,,,.fFiv ar /F ;.'•F}F co v+r+;, ?ri:i:;;:•.' ,} _}' ' ff f.� ..f:'•':—• ,%.. y F .f: •rf'�•:.. '�,,_'�,',•••:•:;+}:f' f} f yi — S%%. .•r' F•r' t�f� F. . •'i}, .••r::.i' :;*.< .r.!`• F•;F;.:F}. ••?•FF•:24 •{:•F' �•� •{•�'fy;, - .f. r.f �. }F% '�' .� / f :FFy. 5�. ;�,/.•. ; F f+'. •f. •. :`�' '` :.f:F •r•F. �f.4 •}{ •y • r. •1 ; �� '���'���}' •F1: Fft. +'FFF ?; '''+?•<•/ :y ff� ; " "'• - " ±: — S�3 .�;: .,+,.,� ;,,{,;; :tiff%{k :��i ik,} `tit>, �' ..u}t � .y. ''„c'•'2-i.';k} :.. .�,, — ::4 'S.+ '•ftF :44.:.. ''`y�'e•''x..+..t . st} } v:r•,f��•�.Y., 1 ?�+ }ti ,..1>•5•i:} :'•:•f}'.i•:ir;:,"•f'•}•::F�•:+:,:.:` r<?':••'. v''�•'• r.��.'.•..;, :,i+'/;,;r '• 'T',,' • s. •`• lti t 4' t}' •f r.%:. :ti:,f:F'',{"• :'F: F I y}.{? {k :?ikf. • •y''•:-• • `g•:,: ,'.•\ 4- 4{.. - k ',}.,v, ;.:' :. ,�y F.':F•'' „b. ! n k y ':: ,4+ :.4:. '.Sd9' ::' _ . _,,.�.._,,i kj C - O - 0 O' 0 Load.:DL PoatCamp-Po,tC,waab Deed Load Excel Engineering, Inc. Roof SK- 1 AJH weIINOW Roof Model Oct 27, 2022 at 3:35 PM 2260800 weIINOW Roof Model.rfl 60/110 I I= Ez 0 DL . 35 PSF FLAT SNOW 0 + DRIFTED SNOW LOADS 0 pc ,.4`.__..—`{fly__.__/,t_.y/_.__{/ .._•` gip/if ..//�/ �.. / f . { '.:F.,;fYkxy'¢'%yk;:f<t:::,-.': A /r, r};:I.f' ::.v `.`:r fr%+.% r'f r''rrI'iviiir% ligi•//'J`f7..., r� F' / / / t, ry,.`r,,,,, f, ��, ?:r,'.,fr:/?{;r�;�:�'��,:>+ �'> •f3:• . {�:::j:' % !/;?r+.,ik! � Yi'.•r✓ /% 1 {fJ j�' •%•' ��.•f'�rr: • ''}r. Wi,''t}::' ,�f,.:..'4c i . :,: ., •••• ' r•••- '4;• •Si P.f fir'•4: 4: „ 0.7„70, '� .r?rj';/;Apo a {r.: ;s:<& v• x. ...'.•'''3:•'.rJ`.i•',3 5'.r{'•'''AM '4+":::::r';r %r'`'<k'{''rnr1%: <''�*:ki i. f. %r. "�..4..;f' x.; `;N.fi<.,��'.':`:' { `i,:;>:.'✓ri.✓:r• 'rr : } r' •fr'r, �/ fir.$ 'Ak �.•s`<:. ;H -: iti;} ,,,,.-; • ,,,Y4'. �r n rgM /: r l {.; 't`f j 5i: t ::: ti . •{ �• r0 r{:F, Fi�iC F` �M •'�:•:i::;;::` ihf-45::.:::. 1} ,r:r,; +4r;:,`:r.; %4\ i-\\v:t t' Kam�••..(•'•,Y„'' ii�, �:;i :%::`' iiiii :iA P :t p :kkk•. rr'v Y:, :::: :kk yr}{r, 'y''T {',=}r,. •k ▪ k. ,• :•%::1:::::::.'‘,,:„:\.'::..\• ,:::▪ .::.:•....".-k'v \t. '✓r✓ i�:..+,:.4'i'• i .fi:::} :•yr';:; },',,•; '4y ,'d•., !3r✓'3+..�,.,''S:�� :fi ••, '{;'i "4a 4 v t \ {{.,':•k ,,•J.•:•fi: ,, • ..,{•, fir . '^cw , . rt $}}:k kk:}3r r:§k R:•. .}. ra••. •:•: .•"rtJr:• :•}*, ..�k� S'•:; }'.x{'•.r•$'+. tk., '}�' :<,:5r. }}::+!. � ', :• . .�ti .,. •+ i:: g. •{yQ y+r, :1? :: r°,r•:i 1: .y '' k' .�\ `\`ti_ ,;:j\;i i }: 0 :. •fi{^S.>:�'• ri''2„r:vr!'....':•.>: ••.:?a •. k:• .fi; • ',•x ',.''• — - \\,``tt k N ::\,. . .,._';:i_,,:i 0271.1 e • Leads:SL-snow load Excel Engineering, Inc. Roof SK-2 AJH welINOW Roof Model Oct 27, 2022 at 3:35 PM 2260800 weIINOW Roof Model.rfl A 61/110 • 0 0 • 0 ! - - _ 1_ - a a e e_ e_ • O O Mombor Camherand Reecuone Excel Engineering, Inc. Roof SK- 3 AJH weIINOW Roof Model Oct 27, 2022 at 3:35 PM 2260800 weIINOW Roof Model.rfl a a WORST CASE TYPICAL TRUSS 62/110 Beam: PUR55 Shape Group: Rectangular Double Code: AWC NDS-18: ASD . Floor: Roof Span: Single Size: 2-6X16 Fixity: Pinned-Pinned Material: DF Bending: Strong Axis • Function: Gravity Geometry: Length =40.83ft Points (Start to End): N113 to N114 (27.25,-40.83,0)to (27.25,0,0) Angle: 90 degrees Diagrams for Load Combination 1 : DL+SL Load Diagram (Live Load Reduction not shown): Distributed Loads (lb/ft), Point Loads (lb) 192 172 192 4:........wn»;�?:•?:v.. vnwx.. .x;.,:ii?...•Kvk•:•:•X4•.•\•.•::.n\ .vv tiK•::••:.v., 0 ""�.'.. .................... • t.� \v. .•.."., .\,•\'>v.••.•.t•.•:.. •v:\•.'iti:�iiii'r.'•iii:•:v-:nw::.-.-::.tti•: •.Kv:�:•}:;};i;•isL{�::ij:>.�iiiiiii:•:•'i:•i:•:�:•:�i:•:� :..::.... .. +t .........t::.•:.•.........,..\. t\+..... .....t.t t,'"t\\t.\.:,....... \\+ ...,»•,.t.?yt,.. \?:;;`;.:•.tt.?.�:•?:•?::::::::::::•::.??•::::x`t:::::::::... .:ti........ .. ... ......•:.,• .....nnw::::••.•:::....... �v..�v .. ...•.,.,v:•::\\:v.\.•nt\:.•,..,•"•.,...t..Y.•:;;:;tiii':iiii'rii:i::ii:i....\..... ....... v•?:•?:::vvtt:::::•:. ..\:.;••v..,•::\w::n•:n• :•:\.•.•.•\.t..•.••\v.•::v 1.:v::... .w\ ,». .h.....,t...,...t.w:.K•}:v:;w::::::?..::::::.•.•:' .};??,;::•'s,,$.};•?::•:.::i::::r?:;ti•:\;; , \......v..........�.»n.n......t..\t.t•.. , ..• ny{.v.,. ..t.... ..',.�\,,:•\.w:x:.tt....v.. ...:,t.. .\\.. \v.•,:. .,».v.\..\\.. :.t»•:v:•:;�O:::iv: ,..\ ,,,':,.\.. .\. ..».. ••.?t�\•:K•'.•:»;»•\.,••.,t•:.t•ttt•::`.••:??:::::::::' .t.\........... ...w:::..:ix::3::::::::::v.:ii •,.:;•,..•;.,.::.•:.,v.....•.»v.•.•x:..t.•.:, \•.:.:..:::::::\n}.:?::vv:::::::n....\ .t. v.,..•t:.v::.•n» 4.;\"t .n:..tt.......\:v\'i•?.•. .........:...aw......t,.....:.vv..:...:::::.,:....v..........•...•.•x....t.n...v........... "t.: 4 \ •yt\v\,•�ii:::?;?•'•:.•.•..P.•.•.•.•M•::•.•...y?::L?:•t..v:•?:-0?:.vrytY.K?;:r.:.:.?..... :;n�,:ii$?•.:nisi:'vii:>.:::tiiii\'^:•?:•?:•:.v:. •.t\•s{K{•:•.v?t\. } •..•:•.•..:.::::::•?i'rijY�•v ,»...,.. .t.•:vtt. ..............................\ ,,,m..........v.vvv............. t » \ t4. ..,,•',... ..v..�\,•::::}\v:•\v,...\v,..•.•.•.v...........t.....w\...w:::.....t.v:::..•:.•::..)).•....•.•::::..:..•':,•:xA?:::::::::. ::x..:..x.•:N.•.•...........•?.•.•.•::.:..., ,. ...........vv�.,.............•...•.\... •\•.::n:, u•. t ,t'•.;,...:•v:,..,v:?..,.,.::••.vy:x:.•::.•:•.•....•.••.t,t:.:x:n:v.:t•w::w:::::::::::.vv?::.•..................::.•....:.•:::::w. 3219.38 at Oft V lb -3219.38 at 40.83 ft 33.617 at 20.415 ft M k-ft D in 1.83 at 20.415 ft RISAFloor Version 16.0.2.8 [F:\...\...\2260805 Structural\structural calcs\weIINOW Roof Model.rfl] Page 1 63/110 A lb *Live Load diagram displays controlling LL, LLS, RLL, SL, RL Envelope and Category Shear Reactions: (lb) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End: 1462.33 0 , 0 1757.05(a) 0 J-End: 1462.33 0 0 1757.05 0 Maximum Total I-End Reaction: 3219.381b for LC 1 (DL+ SL) Maximum Total J-End Reaction: 3219.381b for LC 1 (DL +SL) All Category Member Loads Distributed Loads (lb/ft) Dist(ft) DLPre LLConst DLConst DL LL Start 0 0 40 0 0 0 End 40.83 0 . 40 0 0 0 Start 0 0 0 0 40 0 End 10 0 0 0 40 0 Start 10 0 0 0 102 0 End 30.83 0 0 0 102 0 Start 30.83. 0 0 0 40 0 End 40.83 0 0 0 40 0 Dist(ft) LLS RLL SL SLN RL Start 0 0 0 152 0 0 End 8 0 0 70 0 0 Start 8 . 0 0 70 0 0 End 32.83 0 0 70 0 0 Start 32.83 0 0 70 0 0 End 40.83 0 0 152 0 0 Live Load Reduction FLL Code: IBC RLL Code: IBC Span Reducible Area ft^2 KLL LL Factor LLS Factor RLL Factor 1 0 2 1 1 1 Design Rules: Typical Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear None None None None 1 1 DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio None 240 None 360 None 240 RISAFloor Version 16.0.2.8 [F:\...\...\2260805 Structural\structural calcs\welINOW Roof Model.rfl] Page 2 64/110 Shear: 14.5% Capacity at 40.83ft for LC 1 (DL+ SL) V=3219.381b at 40.83ft fv= 0.028ksi Fv'=0.1955ksi Wood Shear Factors Fv= 0.17ksi CD = 1.15 Cm = 1 Ct= 1 Ci = 1 Bending: 60.9% Capacity at 20.41ft for LC 1 (DL+SL) M = 33.617k-ft RB = 1.23983 le-bend Top = 1ft le-bend Bot=40.83ft fb = 0.916ksi Fb' = 1.50341 ksi Wood Bending Factors Fb = 1.35ksi CD = 1.15 Cm = 1 Ct= 1 Cfu = 1 CL=0.999835 CF = 0.968541 Cr= 1 Ci = 1 Deflections: 89.6% Capacity at 20.41ft. (Camber=0in) PreDL DL LL* DL+LL* None None Deflection (in): 0 0.972 0.858 1.83 0 0 Span Ratio 10000 504 571 268 10000 10000 LL*: Live Load on beam can contain LL, LLS, RLL, SL, RL RISAFloor Version 16.0.2.8 [F:\...\...\2260805 Structural\structural calcs\welINOW Roof Model.rfl] Page 3 WORST CASE GIRDER TRUSS 65/110 Beam: M1 Shape Group: Rectangular Double Code: AWC NDS-18:ASD • Floor: Roof Span: Single Size: 2-10X16 Fixity: Pinned-Pinned Material: DF Bending: Strong Axis ▪ Function: Gravity Geometry: Length =40.83ft Points (Start to End): N6 to N5 (4,-40.83,0)to (4,0,0) Angle: 90 degrees Diagrams for Load Combination 1 : DL+ SL Load Diagram (Live Load Reduction not shown): Distributed Loads (lb/ft), Point Loads (lb) 386.9 19.63i89.6333i9.63399.63339.6 9.63R9.039.63R9.6309.63'39.63189.Eaf 9.6399.e i9.6339: 6.944 60319.488 4,4 2 5 .381 ,53 48860 i2�-... :.:.:.::.:.::.:.:v:•:`:.::n:,..:it- i\.»>:.:•:^P:•:•;.:v J::,a:•}};»;nq i. t:•L+,Y:::+.'•:•:§+'• :::::::.'r,'::���':5�:.•.p:.tv.••. i ::v:\. ,::•:ti4:4:•,v::•:'•:n...,..., ...h•-.........., 'i•\}ti�$:•$::$:S:$:i'i,`:$$$::::.rv;`•:i'.•: ::x:::,N}:•:•:Li}:n::,:?,:::R:$:::•:+::}:r,}::.:S..iv..:..,.,,....,»i..,..�\..� .::...:,?. ,...\........\......;.;.:.•......:}..... v..:..;.....x........•.......•.•: :.$}`,:L:::i•,.iL::v$$ t::::x:'vw:;:?rY:?2r$::ii:$$::i:i $:93:.i•.t,'.A ..:..... q..••.•...• +.•i:•:•::::•::•:,:•::•}:{.}:.}:.:'i v:+i is i$:•:i$. t .'v\M.•.•.•::Y:i::r::+ .:.1.tryt:G:4::t` :•.A•....NnM1.. $i}$::} i:9.\1d'n4:iiiir•:•:.+x\:w:n,::•:ti•:i4:r$:•:?$:?:::::.Av:.,•rn..w:�4:'r$'r$$:•$$:::'.`:•.::is$:?:$i�`.•: .�:::.:� vvt...:....v t......... .........�?::.v:::.xv::•:.,vvn.:i::.v:,.. ,tt:.v.};:::.,,vx.•:::.:�:::i .. .�:::.�:tv::::::.}4 vy:::;•:::n w.�::::..,.�::::::::,:i:.i}v::,::..::•::i:::::.tt::.:.::n n:::::n':,4::n.::::.,'•v:p•:.'••:...i•: ::$:1$$if;:;l::::'i': in\'':: tt 4•. :•:\:sii:.',i•:$:tv;,\., n.�v$$�;ti;.•} ::::$$$:•:S:$:CL .t\•••:•.:,��tai:::ttt::}nai�J:•:✓•%"I,'::::::ti�:::::::�$�.::::%::i:M1.:•::•::i•$:S�: .•.•#�;':':::i•:::::::�: .�:::: ...:n4'•.ii:•:i:?•.}iu.,i:n}::n vi:2`::•:i::.:::.:•::,, .:n:i'•: :.:.•.v:.. •v.,y::.:.W:..t:.:..:.�:n .:+.G:n..•. { :x.... •:1, •:,�^:n tv`vt••.:Y:+:, i•:\•:,,....,.}t:$;:'v:}i:}i: .•.•3.x ...\. }}L..n\....:\.,.t�n .n`tt 4}t. �;::�i t;,...::.t>ti:�i:'$... :y4:$.'•]�$t:}`.:$:::::•�:::}.:A' #:Si�'•±:i.:•::•3::.A::,•:::,r.,•::,••+i.,• ::$c't.$;::,•'....... , a•,�..»\,:•.,..::.\,,R at•,.\t .t•+r:,::::+..,•,•:v::x,'.•:!a i•: ...}.:•`} •......:+,,'!i:::::::::v.'.••yJ T$::::�i•.• .? .4 r:•:•:•:•:.:,\t,+::;:Q:::$n•.1 4::}:•k,::$�•:?4•:v-.•,,,... '}{$$$$$}n.,::..:?•}:::1.:i2::::;:+: :}:�`. • :ti:$.�i i•2}:•::•y �:: iti.$?:)�'}: �}:•i:•}}+}•.fit ::4i Tii� .,��i �• {>.-fi:.:y$$$:},Y�') .i{.�{ry::,� 3 : :.}.... ro..: :::��� ,....... .:.:.;.. :.', .\.. ,,:n;.,i,.. C}:;:��{},:•T,•v..v::$:::�:�.' ...,. ....•. ,.... ,.. .. ...t..... ..., i•Si::•i:•ii'..$$$$$$:+ 4951.86 at 0 ft V lb -4951.86 at 40.83 ft 51.995 at 20.415 ft k-ft D in 1.658 at 20.415 ft RISAFloor Version 16.0.2.8 [F:\...\...\2260805 Structural\structural calcs\welINOW Roof Model.rfl] Page 1 66/110 A lb *Live Load diagram displays controlling LL, LLS, RLL, SL, RL Envelope and Category Shear Reactions: (Ib) Non Reducible (Unreduced) Non Reducible (Unreduced) DL LL+LLS LL+LLS Roof LL Total Roof LL Total I-End: 1043.488 0 0 3908.372(a) 0 J-End: 1043.488 0 0 3908.372 0 Maximum Total I-End Reaction: 4951.861b for LC 1 (DL+ SL) Maximum Total J-End Reaction:4951.861b for LC 1 (DL+SL) All Category Member Loads Distributed Loads (lb/ft) Dist(ft) DLPre LLConst DLConst DL LL Start 0 0 12.5 0 12.5 0 End 40.83 0 12.5 0 12.5 0 Dist(ft) LLS RLL SL SLN RL Start 0 0 0 47.5 0 0 End 2.909 0 0 38.182 0 0 Start 2.909 0 0 38.182 0 0 End 3.415 0 0 41.881 0 0 Start 3.415 0 0 41.881 0 0 End 3.818 0 0 42.822 0 0 Start 3.818 0 0 42.822 0 0 End 37.012 0 0 42.822 0 0 Start 37.012 0 0 42.822 0 0 End 37.415 0 0 41.881 0 0 Start 37.415 0 0 41.881 0 0 End 37.921 0 0 38.182 0 0 Start 37.921 0 0 38.182 0 0 End 40.83 0 0 47.5 0 0 Point Loads (Ib) Dist(ft) DLPre LLConst DLConst DL LL 1.415 0 68.3 0 68.3 0 3.415 0 80 0 80 0 5.415 0 80 0 80 0 7.415 0 80 0 80 0 9.415 0 80 0 80 0 11.415 . 0 80 0 80 0 13.415 0 80 0 80 0 15.415 0 80 0 80 0 RISAFloor Version 16.0.2.8 [F:\...\...\2260805 Structural\structural calcs\welINOW Roof Model.rfl] Page 2 67/110 17.415 0 80 0 80 0 19.415 0 80 0 80 0 21.415 - 0 80 0 80 0 23.415 0 80 0 80 0 25.415 0 80 0 80 0 ' 27.415 0 80 0 80 0 29.415 0 80 0 80 0 31.415 0 80 0 80 0 33.415 0 80 0 80 0 35.415 0 80 0 80 0 37.415 0 80 0 80 0 39.415 0 68.3 0 68.3 0 Dist(ft) LLS RLL SL SLN RL 1.415 0 0 251.188 0 0 3.415 0 0 306.944 0 0 5.415 0 0 309.697 0 0 7.415 0 0 309.697 0 0 9.415 0 0 309.697 0 0 11.415 0 0 309.697 0 0 13.415 0 0 309.697 0 0 15.415 0 0 309.697 0 0 17.415 0 0 309.697 0 0 19.415 0 0 309.697 0 0 21.415 0 0 309.697 0 0 23.415 0 0 309.697 0 0 25.415 0 0 309.697 0 0 27.415 0 0 309.697 0 0 29.415 0 0 309.697 0 0 31.415 0 0 309.697 0 0 33.415 0 0 309.697 0 0 35.415 0 0 309.697 0 0 37.415 0 0 306.944 0 0 39.415 0 0 251.188 0 0 Live Load Reduction FLL Code: IBC RLL Code: IBC Span Reducible Area ft"2 KLL LL Factor LLS Factor RLL Factor 1 0 2 1 1 1 Design Rules: Typical Max Depth (in) Min Depth (in) Max Width (in) Min Width (in) Max Bending Max Shear None None None None 1 1 DL Defl (in) DL Ratio LL Defl (in) LL Ratio DL+LL Defl (in) DL+LL Ratio None 240 None 360 None 240 RISAFloor Version 16.0.2.8 [F:\...\...\2260805 Structural\structural calcs\weIINOW Roof Model.rfl] Page 3 68/110 Shear: 12.9% Capacity at 40.83ft for LC 1 (DL+SL) V=4951.86Ib at 40.83ft fv= 0.025ksi Fv' = 0.1955ksi Wood Shear Factors Fv= 0.17ksi CD = 1.15 Cm = 1 Ct= 1Ci = 1 Bending: 54.5% Capacity at 20.41ft for LC 1 (DL+SL) M = 51.995k-ft RB =0.717799 le-bend Top = 1ft le-bend Bot=40.83ft fb= 0.82ksi Fb' = 1.50358ksi Wood Bending Factors Fb = 1.35ksi CD = 1.15 Cm = 1 Ct= 1 Cfu = 1 CL=0.999945 CF =0.968541 Cr= 1 Ci = 1 Deflections: 96.3% Capacity at 20.41ft. (Camber=Oin) PreDL DL LL* DL+LL* None None Deflection (in): 0 0.348 1.31 1.658 0 0 Span Ratio 10000 1407 374 295 10000 10000 LL*: Live Load on beam can contain LL, LLS, RLL, SL, RL RISAFloor Version 16.0.2.8 [F:\...\...\2260805 Structural\structural calcs\welINOW Roof Model.rfl] Page 4 BEARING CHECK: 69/110 TYPICAL TRUSS: -Using 2X6 SPF #1/#2 Top Plates - fc,perp. = 425 psi - Cm = 1.0 - Ct = 1.0 - Ci = 1.0 - Cb = (5.5" + 0.375) / 5.5" = 1.068 - Fc,perp. = (425)(1.068) = 454 psi Dead Load = 1614 # Snow Load = 1757 # Bearing Area = (5.5")(1.5") = 8.25 in"2 (1614 + 1757) / (8.25) = 409 psi < 454 psi --> GOOD!! WORST CASE GIRDER TRUSS: - Using 2X6 SPF #1/#2 Top Plates - fc,perp. = 425 psi - Cm = 1.0 - Ct = 1.0 - Ci = 1.0 - Cb = (5.5" + 0.375) / 5.5" = 1.068 - Fc,perp. = (425)(1.068) = 454 psi Dead Load = 1244# Snow Load = 3910# Bearing Area = (5.5")(1.5" x 2 Ply) = 16.5 in"2 (1244 + 3910) / (16.5) = 312 psi < 454 psi --> (2) Ply Girder Truss GOOD!! 70/110 Excel Engineering, Inc. 10/27/2022 Page# Top&Bottom Plate Component Design: : Roof tributary width = 1.00 ft (tw) :Studwall height= 12.00 ft (hs) :Stud spacing = 16.00 in (sp) :Truss spacing = 2.00 ft (ts) : Roof snow load = 879.00 psf (rsl) : Roof dead load = 807.00 psf (rdl) :Effective area=max[((hs)(sp)),((hs)(hs/3))]= 48.00 sf (A) ASCE 6.2 :Velocity pressure @ h(case 1)= 11.07 psf (qht) :Internal pressure coefficient= 0.18 (GCpi) ASCE T6-7 :External pressure coefficients: Zone 4,5 pressure= 0.88 (GCP) ASCE F6-5a Zone 5 suction= -1.16 (GCP) ASCE F6-5a -GC„,; +GCp; :Zone 4,5 pressure=(gbf)(GCp-GCp;)= 11.73 7.74 psf (p) ASCE E6-18 :Zone 5 suction=(ght)(GCP-GCp;)= 10.84 14.82 psf (p) ASCE E6-18 Top Plate Design Using: 3 2x6#1/#2 SPF DL+SL (nt) IBC 1605.3.1 :Pdl=(rdl)(ts)(tw)= 1614.00 lb (Pdl) :Psi=(rsl)(ts)(tw)= 1758.00 lb (Psi) :VI=(2/3)(Pdl+Psl)= 2248.00 lb (Vt) :Mt=(.174)((Pdl+Psl)(sp)= 9387.65 in-lb (MO :Section modulus of top plate=(S„)(nt)= _ 6.19 - - in3 (Sy') :Actual bending stress=(Mt)/(nt)(S,)= 1517.2 psi (fb) NDS 3.3-1 :Allowable bending stress=(Fb)(Co)(CM)(Ct)(CL)(CF)(Cf)(C;)(C,)(Cf)= O.K. 1730.0 psi (Fb) NDS 2.3.1 :Actual shear stress=(3)(Vf)/((2nt)(A))= 136.24 psi (fv) :Allowable shear stress=(Fv)(CD)(CM)(Ct)(CH)= O.K. 155.25 j psi (Fv) Truss Bearing Check=(Pdl+Psi)/[(#of plates)(1.5"x 5.5")_. O.K. 408.73 . psi Allowable Bearing Stress=Fc,perp:=(Fc,perp.)(Cm)(Ct)(Ci)(Cb)= 453.90'�•:. psi Bottom Plate Design Using: 1 2x6#2 SYP .6DL+WL (nb) IBC 1605.3.1 :w=(max(p))(hs/2)= 88.93 lb/ft (w) :V2=(w)(s)/(2)= 177.86 lb (V2) :M2=(w)(s)2/(8)= 2134.38 in-lb (M2) :Section modulus of bottom plate=(Sx)(nb)= 7.56 inA3 (S,) :Actual bending stress=(M2)/(S,)= 282.2 psi (fb) NDS 3.3-1 :Allowable bending stress=(Fb)(Cp)(CM)(Ct)(Ct_)(CF)(Cfp)(C;)(Cr)(Cf)= O.K. 1840.0 psi (Fb') NDS 2.3.1 :Actual shear stress=(3V2)/((2nb)(A))= 32.34 psi (fv) NDS 3.4-2 :Allowable shear stress=(Fv)(Co)(CM)(Ct)(CH)= O.K. 280.00 psi (Fv) NDS 2.3.1 Concrete Anchor Using: 1 1/2"x 2 3/4"embed.Titen HD Edge distance A: 2.75 inches Edge distance B: 9.25 inches Spacing: 48 inches o.c. (s) :VA=(max(p))(s)(hs/2)= pIp 355.7 lbs (VA) :V allow(spike) =(Zs)(ReA)(ReB)(Rs)= O.K. l 875.3 lbs (Vas) :V allow(wood)=(Z;;)(CD)= O.K. 1 1056.0 lbs (Vaw) 'Design Values I Fc,perp. (Fv)Bottom (Fb)Bottom (Fv)Top (Fb)Top :Tabulated design value= 425 175 1000 135 875 psi NDS T4A :Load duration factor(wind)= 1.60 1.60 1.60 1.60 (CD) NDS 2.3.2 :Load duration factor(snow)= 1.15 1.15 1.15 • 1.15 (CD) NDS 2.3.2 :Wet service factor= 1.00 1.00 1.00 1.00 1.00 (CM) NDS T4A :Temperature factor= 1.00 1.00 1.00 1.00 1.00 (Ct) NDS 2.3.4 :Beam stability factor= 1.00 1.00 (CL) NDS 3.3.3 :Size factor= 1.00 1.30 (CF) NDS T4A :Flat use factor= 1.15 1.15 (Cf) NDS T4A :Incising factor= 1.00 1.00 1.00 (C;) NDS 2.3.11 :Shear stress factor= 1.00 1.00 (CH) NDS T4A :Repetitive member factor= 1.00 1.15 (Cr) NDS T4A :Form factor= 1.00 1.00 (Cr) NDS 2.3.8 Bearing Factor= 1.07 (Cb) NDS T3.10.4 (S„)in3 (Sx)in3 (A)in2 :Top plate section properties= 2.06 7.56 8.25 NDS T1 B :Bottom plate section properties= 2.06 7.56 8.25 NDS T1 B (Rs) (Res) (ReA) (Zs) :Spike allowable shear= 1.00 1.00 0.43 2053 0 :Anchor allowable shear into wood= 660.00 lbs (4) NDS T8.2E F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\2260805 Structural\structural calcs\Top&Bottom Plate Check.xls 71/110 • Excel Engineering, Inc. 10/27/2022 Page# Studwall Component Design: Typical Stud Roof tributary width = 1.00 ft (tw) : Studwall height = 12.00 ft (hs) _: Stud spacing = 16.00 in (sp) :Truss spacing = 2.00 ft (ts) : Roof snow load = 879.00 psf (rsl) : Roof dead load = 807.00 psf (rdl) :Effective area=max[((hs)(sp)),((hs)(hs/3))1= 48.00 sf (A) ASCE 6.2 :Velocity pressure @ h(case 1)= 11.07 psf (qht) :Internal pressure coefficient= 0.18 (GCP;) ASCE T6-7 :External pressure coefficients: Zone 4,5 pressure= 0.88 (GCP) ASCE F6-5a Zone 5 suction= -1.16 (GCP) ASCE F6-5a Zone 4 suction= -0.98 (GCP) ASCE F6-5a +GCpi -GCpi :Zone 4,5 pressure=(ght)(GCP-GCP;)= 11.73 7.74 psf (p) ASCE E6-18 :Zone 4 suction=(ght)(GCP-GCP;)= 8.85 12.83 psf (p) ASCE E6-18 :Zone 5 suction=(ght)(GCP-GCP;)= 10.84 14.82 psf (p) ASCE E6-18 Using: 1 2x6#1/#2 SPF (n) MWFRS :w=((max p)(sp))= 19.76 plf (w) 9.07 :VwL=((w)(hs)/2)= 118.58 lb (VwL) :MwL=(w)(hs)2/(8)= 4268.75 in-lb (MwL) 1958.40 :PDL=(rdl)(ts)(tw)= 1614.00 lbs (PDL) :Fa=(rsl)(ts)(tw)= 1758.00 lbs (PsL) DL+.75SL+.75WL DL+SL DL+WL IBC 1605.3.1 :Actual bending stress=(M)/((Sx)(n))= 194.22 0.00 564.46 psi (fb) NDS 3.3-1 :Allowable bending stress=(Fb)(CD)(CM)(Ct)(CL)(CF)(Cfu)(C;)(Cr)(Cf)= 2457.00 1765.97 2457.00 psi (Fb) NDS 2.3.1 :Actual compressive stress=(P)/((A)(n))= 355.45 408.73 195.64 psi (fb) :Allowable E=(E)(CM)(Ct)(C;)= 1400000 1400000 1400000 psi (E') NDS 2.3.1 :Euler buckling stress=(KCE)(E)/((Ke)(hs)/(d))2= 612.70 612.70 612.70 psi (FPE) NDS 3.7.1 :Fc*=(FP)(CD)(CM)(Ct)(CF)(Cj)= 2024.00 1454.75 2024.00 psi (Fe*) NDS 3.7.1 :Column stability factor=(1+FPE/FP*)/(2c)-(((1+FPE/FC*)/(2c))2-(FCE/Fe*/c)).5= 0.28 0.38 0.28 (CP) NDS 3.7-1 :Allowable compressive stress=(FP)(CD)(CM)(Ct)(CF)(C,)(CP)= 568.33_ _546.83 568.33 psi (F�) NDS 2.3.1 :CSI=(fe/Fe)exP+(fb/(Fe(1-(fb/FbE))))= , 0.58 0.75 0.23 < ; 1.00 1 NDS 3.9-3 -- O.K. :Actual shear stress=(3V)/(2(A)(n))= 16.17 0.00 21.56 psi (fv) NDS 3.4-2 :Allowable shear stress=(Fv)(CD)(CM)(Ct)(C;)(CH)= 216.00 155.25 216.00 psi (Fv) NDS 2.3.1 O.K. NDS 3.4.1.1 :Actual wind load deflection=(5)(.7w)(hs)4/((384)(E')(Ix))= 0.2221 in (SwL) IBC T1604.3f :Allowable wind load deflection= = U 240 = ____ 0.6001 in (NIL') IBC T1604.3 Design Values (E) (Fv) (Fc) (Fb) :Tabulated design value= 1400000 135 1150 875 psi NDS T4A :Load duration factor(wind)= 1.60 1.60 1.60 (CD) NDS 2.3.2 :Load duration factor(snow)= 1.15 1.15 1.15 (CD) NDS 2.3.2 :Wet service factor= 1.00 1.00 1.00 1.00 (CM) NDS T4A :Temperature factor= 1.00 1.00 1.00 1.00 (Ct) NDS 2.3.4 :Beam stability factor= 1.00 (CL) NDS 3.3.3 :Size factor= 1.10 1.30 (CF) NDS T4A :Flat use factor= 1.00 (CO NDS T4A :Incising factor= 1.00 1.00 1.00 1.00 (CI) NDS 2.3.11 :Shear stress factor= 1.00 (CH) NDS T4A :Repetitive member factor= 1.35 (Cr) IBC 2306.2.1 :Form factor= 1.00 (CO NDS 2.3.8 :Euler buckling coefficient= 0.300 (KCE) NDS 3.7.1 :c= 0.80 (c) NDS 3.7.1 :Buckling length coefficient= 1.00 (Ke) NDS TG1 :Exponent for axial term of Equation NDS 3.9-3= 2.00 (exp) (Ix)in4 (Sx)in3 (A)in2 (d)in (b)in :Section properties= 20.80 7.563 8.25 5.50 1.50 NDS T1B F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\2260805 Structural\structural calcs\Top&Bottom Plate Check.xls 72/110 Excel Engineering, Inc. 10/27/2022 Page# Studwall Component Design: Girder Stud Column : Roof tributary width = 1.00 ft (tw) : Studwall height = 12.00 ft (hs) _: Stud spacing = 16.00 in (sp) :Truss spacing = 1.00 ft (ts) : Roof snow load = 3910.00 psf (rsl) : Roof dead load = 1244.00 psf (rdl) :Effective area=max[((hs)(sp)),((hs)(hs/3))]= 48.00 sf (A) ASCE 6.2 :Velocity pressure @ h(case 1)= 11.07 psf (qh1) :Internal pressure coefficient= 0.18 (GC,;) ASCE T6-7 :External pressure coefficients: Zone 4,5 pressure= 0.88 (GCP) ASCE F6-5a Zone 5 suction= -1.16 (GCP) ASCE F6-5a Zone 4 suction= -0.98 (GCP) ASCE F6-5a +GCpi -GCpi :Zone 4,5 pressure=(ght)(GCP-GCP;)= 11.73 7.74 psf (p) ASCE E6-18 :Zone 4 suction=(gh1)(GCP-GC0)= 8.85 12.83 psf (p) ASCE E6-18 :Zone 5 suction=(ghl)(GCP-GCP;)= 10.84 14.82 psf (p) ASCE E6-18 Using: 3 2x6#1/#2 SPF (n) MWFRS :w=((max p)(sp))= 19.76 plf (w) 9.07 :VwL=((w)(hs)/2)= 118.58 lb (Vwt_) MwL=(w)(hs)2/(8)= 4268.75 in-lb (MwL) 1958.40 :PDt_=(rdl)(ts)(tw)= 1244.00 lbs (PoL) :Pa=(rsl)(ts)(tw)= 3910.00 lbs (Pa) DL+.75SL+.75WL DL+SL DL+WL IBC 1605.3.1 :Actual bending stress=(M)/((Sx)(n))= 64.74 0.00 188.15 psi (fb) NDS 3.3-1 :Allowable bending stress=(Fb)(CD)(CM)(Ct)(CL)(CF)(Cr)(Ci)(Cr)(Cr)= 2457.00 1765.97 2457.00 psi (Fb') NDS 2.3.1 :Actual compressive stress=(P)/((A)(n))= 168.75 208.24 50.26 psi (fe) :Allowable E=(E)(CM)(Ct)(C;)= 1400000 1400000 1400000 psi (E') NDS 2.3.1 :Euler buckling stress=(KeE)(E')/((Ke)(hs)/(d))2= 612.70 612.70 612.70 psi (FCE) NDS 3.7.1 :Fe*=(Fe)(CD)(CM)(Ct)(CF)(Ci)= 2024.00 1454.75 2024.00 psi (Fe*) NDS 3.7.1 :Column stability factor=(1+FeE/Fe*)/(2c)-(((1+FeE/Fe*)/(2c))24FeE/Fe*/c)).5= 0.28 0.38 0.28 (Cs) NDS 3.7-1 :Allowable compressive stress=(Fe)(CD)(CM)(Ct)(CF)(Ci)(CP)= _ 568.33 546.83 _ 568.33_ psi (Fe')__ NDS 2.3.1 :CSI=(fc/Fc)exP+(fb/(Fc(1-(fc/FCE))))= --_0.12_---- 0.38 --0.04� < �L1.00 J NDS 3.9-3 -- - - O.K. -- -- :Actual shear stress=(3V)/(2(A)(n))= 5.39 0.00 7.19 psi (fv) NDS 3.4-2 Allowable shear stress=(Fv)(Co)(CM)(Ct)(C;)(CH)= 216.00 155.25 216.00 psi (Fv') NDS 2.3.1 O.K. NDS 3.4.1.1 :Actual wind load deflection=(5)(.7w)(hs)4/((384)(E')(Ix))= 0.0741 in (6wL) IBC T1604.3f :Allowable wind load deflection= = U 240 = __ _0.600i in (SwL) IBC T1604.3 Design Values (E) (Fv) (Fc) (Fb) :Tabulated design value= 1400000 135 1150 875 psi NDS T4A :Load duration factor(wind)= 1.60 1.60 1.60 (CD) NDS 2.3.2 :Load duration factor(snow)= 1.15 1.15 1.15 (CD) NDS 2.3.2 :Wet service factor= 1.00 1.00 1.00 1.00 (CM) NDS T4A :Temperature factor= 1.00 1.00 1.00 1.00 (Cr) NDS 2.3.4 :Beam stability factor= 1.00 (CL) NDS 3.3.3 :Size factor= 1.10 1.30 (CF) NDS T4A :Flat use factor= 1.00 (CO NDS T4A :Incising factor= 1.00 1.00 1.00 1.00 (C;) NDS 2.3.11 :Shear stress factor= 1.00 (CH) NDS T4A :Repetitive member factor= 1.35 (Cr) IBC 2306.2.1 :Form factor= 1.00 (Cr) NDS 2.3.8 :Euler buckling coefficient= 0.300 (KeE) NDS 3.7.1 :c= 0.80 (c) NDS 3.7.1 :Buckling length coefficient= 1.00 (Ke) NDS TG1 :Exponent for axial term of Equation NDS 3.9-3= 2.00 (exp) (Ix)in4 (Sr)in3 (A)in2 (d)in (b)in :Section properties= 20.80 7.563 8.25 5.50 1.50 NDS T1B F:\Job Files\2260800 Queensbury Realty-weIINOW Shell-Queensbury NY\2260805 Structural\structural calcs\Top&Bottom Plate Check.xls 73/110 Excel Engineering,Inc. 10/27/2022 Page# Truss to Top Plate Component Connection Design: Design roof snow load= 879.00 psf (rsl) :Design roof dead load= 807.00 psf (rdl) :Actual roof dead load= 13.00 psf (adl) -:Truss spacing= 2.00 ft (ts) :Truss span= 1.00 ft (tw) : Roof pitch= 0.25 /12 (r) :Eave overhang dimension = 0.00 ft (oh) :Roof pitch=(atan(r/12))= 1.19 deg (0) :Mean roof height= 17.00 ft (h) :Eave to inference point= 11.00 ft (x) :Roof slope length=(tw/2)/(cos(atan(r/12)))= 0.50 ft (rs) :Overhang slope length=(oh)/(cos(atan(r/12)))= 0.00 ft (ohs) :Edge zone dimension(eave)= 5.73 ft (a.) ASCE F6-5b :Edge zone dimension(ridge)= 0.00 ft (a,) ASCE F6-5b :Truss effective area=max[((tw)(ts)),((tw)(tw/3))]= 2.00 sf (A,) ASCE 6.2 :Overhang effective area=max[((oh)(ts)),((oh)(oh/3))]= 0.00 sf (A,) ASCE 6.2 :Velocity pressure @ h(case 1)= 11.07 psf (ghi) :Internal pressure coefficient= 0.18 (GC,,) ASCE T6-7 overhang roof :External pressure coefficients: Zone 1,2,3 pressure= 0.30 0.30 (+GCP) ASCE F6-5b Zone 1 suction= -1.00 -1.00 (-GCP) ASCE F6-5b Zone 2 suction= -1.70 -1.80 (-GCP) ASCE F6-5b Zone 3 suction= -2.80 -2.80 (-GCP) ASCE F6-5b +GC., -GC., :Component pressure=(ghl)(GCP-GC,,)= 5.31 1.33 psf (pa) ASCE E6-18 :Component zone 1 suction(roof)=(gh,)(GCP-GC.,)= 9.07 13.06 psf (pbr) ASCE E6-18 :Component zone 2 suction(roof)=(gh,)(GCP-GC,,)= 17.93 21.91 psf (per) ASCE E6-18 :Component zone 3 suction(roof)=(gh1)(GCp-GC,,)= 28.99 32.98 psf (pdr) ASCE E6-18 :Component zone 1 suction(overhang)=(gh,)(GCP-GC,,)= 9.07 13.06 psf (pbo) ASCE E6-18 :Component zone 2 suction(overhang)=(gh,)(GCP-GC,,)= 16.82 20.80 psf (pco) ASCE E6-18 :Component zone 3 suction(overhang)=(gh1)(GCP-GC,,)= 28.99 32.98 psf (pdo) ASCE E6-18 :vert.component of roof pressure=(cos(atan(r/12)))(max(pa,10))(ts):(10 psf min.)= 20.00 plf (Av) :vert.component of zone 1 suction(roof)=(cos(atan(r/12)))(pbr)(ts)= 26.11 plf (Bvr) :vert.component of zone 1 suction(overhang)_(cos(atan(r/12)))(pbo)(ts)= 26.11 plf (Bvo) :vert.component of zone 2 suction(roof)=(cos(atan(r/12)))(per)(ts)= 43.81 plf (Cvr) :vert.component of zone 2 suction(overhang)=(cos(atan(r/12)))(pco)(ts)= 41.60 plf (Cvo) Vertical Component Pressure :Tributary roof dead load=(rdl)((tw/2)+oh)(ts)= 807.0 lb (Pdl) :Tributary roof snow load=(rsl)((tw/2)+oh)(ts)= 879.0 lb (Psi) :Tributary roof wind pressure load=(Av)(rs+ohs)= 10.0 lb (Pwi) DL+.75SL+.75WL _DL+SL Actual compressive stress=(P/((bw)(ww))_ _ 17__8_.64 204.36_ j psi (fba) truss width= 1.5 in Top plate= 2x6#1/#2 SPF (bw) plate width= 5.50 in _ (ww) :Allowable compressive stress=(F,,D(CM)(C,)(Cb)= O.K. r 425.00 1 psi (FG,') Vertical Component Suction I :Tributary actual dead load=(adl)(tw/2)(ts)= 13.0 lb (Pad,) :Tributary roof wind suction load=((ohs)(Cvo))+((ae-ohs)(Cvr))+((ar)(Cvr))+(((rs+ohs)-(ae+ar))(Bvr))= 114.4 _ lb (P,,,b) :Net uplift=(P,0,-(.6(P,d,))= _ _ 106.6_ j lb (P,) Using: 1 Simpson H10A each truss end :Allowable uplift=(Z)(gty)= O.K. i110:1I5!0. lb (P,) MWFRS Loading I -GC„ +GC,, :Windward wall design pressure= 8.09 4.70 psf (P1) ASCE E6-15 :Leeward wall design pressure= -2.27 -5.66 psf (P2) ASCE E6-15 :Windward roof design pressure(-)= -4.17 -7.55 psf (P3-) ASCE E6-15 :Leeward roof design pressure= -0.97 -4.36 psf (P4) ASCE E6-15 :Vertical component of P3-=(cos(atan(r/12)))(P3-)= -4.17 -7.55 psf (P3-v) :Vertical component of P4=(cos(atan(r/12)))(P4)= -0.97 -4.35 psf (P4v) :Resultant horizontal load=(P1-P2)(x)(ts)/2= 114.00 114.00 lb (PH) :Resultant vertical load=min(0,(.6(ad1)(ts)(tw/2))+((P3-v+P4v)(ts)(rs/2)))= I 0.00 1.85 1 lb (Pv) Using: 1 Simpson H10A each truss end Allowable horizontal load=(F2)(gty)= O.K. 285.0 lb (PH') Allowable vertical load=(Z)(qty)= O.K. 90O la0 (PO ) Combined stress check=(PH/PH)+(Pv/PV)= O.K. 0.40 0.40 < 1.00 LDesign Values I :Compression design value perpendicular to grain= 425 psi (F, ) NDS T4A :Wet service factor= 1.00 (CM) NDS T4A :Temperature factor= 1.00 (CO NDS 2.3.4 :Bearing area factor= 1.00 (Cb) NDS 2.3.10 :F2 of Simpson truss anchor= 285 lb (F2) ICC-NER 499 :Z of Simpson truss anchor= ESRJ lb (Z) ICC-NER 499 F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\2260805 Structural\structural calcs\Top&Bottom Plate Check.xls 74/110 WOOD HEADER SCHEDULE HEADER SHOULDER STUDS KING STUDS TOP/BOTTOM SILL MARK No. SIZE&GRADE No. SIZE&GRADE No. SIZE&GRADE No. SIZE&GRADE HEADER LOCATION H-1 3 1-3/4"X 11-1/4"GENERIC LVL 3 2x6#1/#2 SPF 1 2x6#1/#2 SPF 1 2x6#1/#2 SPF DIRECTLY BELOW TOP PLATES H-2 3 1-3/4"X 11-1/4"GENERIC LVL 3 2x6#1/#2 SPF 1 2x6#1/#2 SPF 1 2x6#1/#2 SPF DIRECTLY BELOW TOP PLATES H-3 3 2x10#1/#2 DF-L(N) 1 2x6#1/#2 SPF 2 2x6#1/#2 SPF 1 2x6#1/#2 SPF DIRECTLY BELOW TOP PLATES H-4 3 2x12#1/#2 DF-L(N) 1 2x6#1/#2 SPF 2 2x6#1/#2 SPF 2 2x6#1/#2 SPF DIRECTLY BELOW TOP PLATES WOOD HEADER SCHEDULE NOTES: -NAIL ALL HEADERS,BEAMS AND LINTELS UP TO 11 7/8"DEPTH w/10d NAILS @ 12"O.C.TOP AND BOTTOM(MIN.). -NAIL ALL HEADERS,BEAMS AND LINTELS GREATER THAN 11 7/8"IN DEPTH w/10d NAILS @ 12"O.C.TOP,MIDDLE AND BOTTOM(MIN.) -(3)PLY&GREATER HEADER,BEAM AND LINTEL MEMBERS REQUIRE NAILING FROM EACH SIDE. -ALL HEADERS TO BE PLACED DIRECTLY BELOW WALL TOP PLATES. -NAIL ALL 2x4 STUD COLUMNS w/10d NAILS @ 8"O.C.STAGGERED,ADJACENT FASTENERS FROM OPPOSITE SIDES. -NAIL ALL 2x6 AND GREATER STUD COLUMNS w/(2)10d NAILS @ 8"O.C.STAGGERED,ADJACENT FASTENERS FROM OPPOSITE SIDES. -LUMBER SPEC.LISTED IN GENERAL BUILDING SPECIFICATIONS,SEE SO SHEETS. 75/110 SINGLE-SPAN HEADER ANALYSIS For Simple Span Headers with Various Distributed Loads and Point Loads Using NDS-2012 Project Name: weIINOW Shell-Queensbury,NY Header Title H1 Project No.: 2260800 Prep.By: Date: 10/27/2022 Input Data: Header Data: Span,L= 8.00 ft. Design L= 8.375 ft #of Shoulder Studs 3 e #of Plys 3 b Header Size 1-3/4"X 11-1/4"GENERIC LVL a Deflection Limit TL U 240 +We Deflection Limit LL U 360 + Truss Spacing/Brace Points 2.00 ft. +wb +w Header Loadings: L Full Uniform: Trib Width(ft) w(psi) Type RL x RR #1: _ Nomenclature #2: • #3: #4: #5: Start End Distributed:(PLF) b(ft.) Wb(Lbs/ft.) e(ft.) We(Lbs/ft.) Type #1: #2: #3: #4: #5: #6: Point Loads: a(ft.) P dead(Lbs) P live(Lbs) P snow(Lbs) #1: 1.25 1244 3910 #2: 2.50 788 2110 #3: 4.50 987 2301 CONSIDER POINT LOAD ADJUSTMENT FOR #4: 6.50 1095 1998 SHEAR&MOMENT? No #5: FVx= 1.00 #8: FMx= 1.00 MODE: Actual Allowable Unity PASS/FAIL Shear: 191 285 0.67 PASS Bending: 1759 2976 0.59 PASS Bearing: 365 700 0.52 PASS • L/ L/ in. TLA(ratio): 548 240 0.18 PASS LLA(ratio): 772 360 0.13 PASS 76/110 JAMB ANALYSIS For Simple Span Headers with Various Distributed Loads and Point Loads Using NDS-2012 Project Name: welINOW Shell-Queensbury,NY Header Title H1 Project No.: 2260800 Prep.By: Date: 10/27/2022 Input Data: Jamb Data: Header Type High Wall Height 12 ft Service Wind Pressure 13.10 psf #of King Studs 1 Wall Stud Spacing 16 in Stud Size 2x6#1/#2 SPF Deflection Limit U 240 King Stud Shoulder Stud MODE: Unity Pass/Fail Unity Pass/Fail Axial&Bending 20.9% PASS 54.5% PASS Shear 7.7% PASS 7.7% PASS Deflection L/840 PASS SILL ANALYSIS For Simple Span Headers with Various Distributed Loads and Point Loads Using NDS-2012 Project Name: welINOW Shell-Queensbury,NY Header Title H1 Project No.: 2260800 Prep.By: Date: 10/27/2022 Input Data: Sill Data: Service Wind Pressure 13.1 psf Trib Width 6 ft #of Plys 1 Sill Size 2x6#1/#2 SPF Deflection Limit L/360 Actual Allowable Unity Pass/Fail Bending: 998 1820 54.8% PASS Deflection: 0.17 inches L/ 551 360 65.3% PASS End Reaction: 314.4 Lbs Sill to Jamb Connection: 'Simpson'A35 Clip 600 Lbs PASS Number of Connections: 1 77/110 SINGLE-SPAN HEADER ANALYSIS For Simple Span Headers with Various Distributed Loads and Point Loads Using NDS-2012 Project Name: welINOW Shell-Queensbury,NY Header Title H2 Project No.: 2260800 Prep.By: Date: 10/27/2022 Input Data: Header Data: Span,L= . 8.00 ft. Design L= 8.375 ft #of Shoulder Studs 3 e #of Plys 3 b Header Size 1-3/4"X 11-1/4"GENERIC LVL a Deflection Limit TL L/240 +We Deflection Limit LL L/360 +. +wb fONO11 11111 Truss Spacing/Brace Points, 2.00 ft. +w Header Loadings: L Full Uniform: Trib Width(ft) W(psf) Type RL x RR #1: 1.0000 807 Dead Nomenclature #2: 1.0000 879 Snow #3: #4: #5: Start End Distributed:(PLF) b(ft.) Wb(Lbs/ft.) e(ft.) We(Lbs/ft.) Type #1: #2: #3: #4: • #5: #6: Point Loads: a(ft.) P dead(Lbs) P live(Lbs) P snow(Lbs) #1: #2: #3: _ CONSIDER POINT LOAD ADJUSTMENT FOR #4: SHEAR&MOMENT? Yes • #5: _ FVx= 1.24 #s: FMx= 1.01 MODE: Actual Allowable Unity PASS/FAIL Shear: 194 285 0.68 PASS Bending: 1624 2976 0.55 PASS Bearing: 372 700 . 0.53 PASS L/ L/ in. TLA(ratio): 604 240 0.17 PASS LLA(ratio): 1158 360 0.09 PASS 78/110 JAMB ANALYSIS For Simple Span Headers with Various Distributed Loads and Point Loads Using NDS-2012 Project Name: _wellNOW Shell-Queensbury,NY Header Title H2 Project No.: 2260800 Prep.By: Date: 10/27/2022 Input Data: Jamb Data: Header Type High Wall Height 12, ft Service Wind Pressure 13.10 psf #of King Studs 1 Wall Stud Spacing 16 in Stud Size 2x6#1/#2 SPF Deflection Limit U 240 King Stud Shoulder Stud MODE: Unity Pass/Fail Unity Pass/Fail Axial&Bending 76.6% PASS 61.2% PASS Shear 7.7% PASS 7.7% PASS Deflection L/840 PASS SILL ANALYSIS For Simple Span Headers with Various Distributed Loads and Point Loads Using NDS-2012 Project Name: weIINOW Shell-Queensbury,NY Header Title H2 Project No.: 2260800 Prep.By: Date: 10/27/2022 Input Data: Sill Data: Service Wind Pressure 13.1 psf Trib Width 6 ft #of Plys 1 Sill Size 2x6#1/#2 SPF Deflection Limit L/360 • Actual Allowable Unity Pass/Fail Bending: 998 1820 54.8% PASS Deflection: 0.17 inches L/ 551 360 65.3% PASS End Reaction: 314.4 Lbs Sill to Jamb Connection: 'Simpson'A35 Clip 600 Lbs PASS Number of Connections: 1 79/110 SINGLE-SPAN HEADER ANALYSIS For Simple Span Headers with Various Distributed Loads and Point Loads Using NDS-2012 Project Name: weIINOW Shell-Queensbury,NY Header Title H3 Project No.: 2260800 Prep.By: Date: 10/27/2022 Input Data: Header Data: Span,L= 8.00 ft. Design L= 8.125 ft #of Shoulder Studs 1 e #of Plys 3 b Header Size 2x10#1/#2 DF-L(N) a Deflection LimitTL U 240 +We Deflection Limit LL U 360 + Truss Spacing/Brace Points 2.00 ft. +wb +w Header Loadings: L Full Uniform: Trib Width(ft) W(psf) Type RL x RR #1: 1.0000 150 Dead Nomenclature #2: 1.0000 200 Snow #3: #4: #5: Start End Distributed:(PLF) b(ft.) Wb(Lbs/ft.) e(ft.) We(Lbs/ft.) Type #1: #2: #3: #4: #5: #6: Point Loads: a(ft.) P dead(Lbs) P live(Lbs) _ P snow(Lbs) #1: #2: #3: CONSIDER POINT LOAD ADJUSTMENT FOR #4: SHEAR&MOMENT? Yes #5:, FVx= 1.25 #6: FMx= 1.00 MODE: Actual Allowable Unity PASS/FAIL Shear: 56 180 0.31 PASS Bending: 543 1204 0.45 PASS Bearing: 263 625 0.42 PASS L/ L/ in. TLA(ratio): 1349 240 0.07 PASS LLA(ratio): 2361 360 0.04 PASS 80/110 JAMB ANALYSIS For Simple Span Headers with Various Distributed Loads and Point Loads Using NDS-2012 Project Name: welINOW Shell-Queensbury,NY Header Title H3 Project No.: 2260800 Prep.By: Date: 10/27/2022 Input Data: Jamb Data: Header Type High Wall Height 12 ft Service Wind Pressure 13.10 psf #of King Studs 2 Wall Stud Spacing 16 in Stud Size 2x6#1/#2 SPF Deflection Limit U 240 King Stud Shoulder Stud MODE: Unity Pass/Fail Unity Pass/Fail Axial&Bending 28.8% PASS 40.4% PASS Shear 10.3% PASS 10.3% PASS Deflection L/ 630 PASS SILL ANALYSIS For Simple Span Headers with Various Distributed Loads and Point Loads Using NDS-2012 Project Name: welINOW Shell-Queensbury,NY Header Title H3 Project No.: 2260800 Prep.By: Date: 10/27/2022 Input Data: Sill Data: Service Wind Pressure 13.1 psf Trib Width 6 ft #of Plys 1 Sill Size 2x6#1/#2 SPF Deflection Limit L/360 Actual Allowable Unity Pass/Fail Bending: 998 1820 54.8% PASS Deflection: 0.17 inches L/ 551 360 65.3% PASS End Reaction: 314.4 Lbs Sill to Jamb Connection: 'Simpson'A35 Clip 600 Lbs PASS Number of Connections: 1 81/110 SINGLE-SPAN HEADER ANALYSIS For Simple Span Headers with Various Distributed Loads and Point Loads Using NDS-2012 Project Name: welINOW Shell-Queensbury,NY Header Title H4 Project No.: 2260800 Prep.By: Date: 10/27/2022 • Input Data: Header Data: Span,L= 11.33 ft. Design L= 11.455 ft #of Shoulder Studs 1 e #of Plys 3 b Header Size 2x12#1/#2 DF-L(N) a Deflection Limit TL LI 240 +We Deflection Limit LL L/360 Truss Spacing/Brace Points 2.00 ft. +wb +w Header Loadings: L Full Uniform: Trib Width(ft) w(pst) Type RL X RR #1: 1.0000 150 Dead Nomenclature #2: 1.0000 200 Snow #3: _ #4: #5: Start End Distributed:(PLF) b(ft.) Wb(Lbs/ft.) e(ft.) We(Lbs/ft.) Type #1: #2: #3: #4: • #5: • #6: Point Loads: a(ft.) P dead(Lbs) P live(Lbs) P snow(Lbs) #1: #2: #3: CONSIDER POINT LOAD ADJUSTMENT FOR #a: SHEAR&MOMENT? Yes #5: FVx= 1.18 #5: FMx= 1.01 MODE: Actual Allowable Unity PASS/FAIL Shear: 61 180 0.34 PASS Bending: 735 1090 0.67 PASS Bearing: 350 625 0.56 PASS L/ L/ in. TLA(ratio): 866 240 0.16 PASS LLA(ratio): 1516 360 0.09 PASS 82/110 JAMB ANALYSIS For Simple Span Headers with Various Distributed Loads and Point Loads Using NDS-2012 Project Name: welINOW Shell-Queensbury;NY Header Title H4 Project No.: 2260800 Prep.By: Date: 10/27/2022 Input Data: Jamb Data: Header Type High Wall Height 12 ft Service Wind Pressure 13.10 psf #of King Studs 2 Wall Stud Spacing 16 in Stud Size 2x6#1/#2 SPF Deflection Limit L/240 King Stud Shoulder Stud MODE: Unity Pass/Fail Unity Pass/Fail Axial&Bending 39.0% PASS 66.1% PASS Shear 14.0% PASS 14.0% PASS Deflection L/464 PASS SILL ANALYSIS For Simple Span Headers with Various Distributed Loads and Point Loads Using NDS-2012 Project Name: welINOW Shell-Queensbury,NY Header Title H4 Project No.: 2260800 Prep.By: Date: 10/27/2022 Input Data: Sill Data: Service Wind Pressure 13.1 psf Trib Width 6 ft #of Plys 2 Sill Size 2x6#1/#2 SPF Deflection Limit L/360 Actual Allowable Unity Pass/Fail Bending: 1001 1820 55.0% PASS Deflection: 0.35 inches L/ 388 360 92.8% PASS End Reaction: 445.269 Lbs Sill to Jamb Connection: 'Simpson'A35 Clip 600 Lbs PASS Number of Connections: 1 83/110 • Page Date 10/27/2022 E )( I I L Project# 2260800 ARCHITECTS-ENGINEERS-SURVEYORS Girder Truss Uplift Design Input iCalculation Answer Parapet on 1 or 2 sides of girder truss 2 Edge Zone Roof Uplift = 28.1 psf Wall Pressure = 16 psf Actual Roof Dead Load = 13 psf Jack Truss Back Span = 4 ft Truss Heel Height= 4 ft Parapet Height Above Diaphragm = 6.33 ft Girder Truss Span = 41.75 ft Parapet Pressure = y 44.1i psf Roof Uplift = !�u _— 15.1]psf Jack Truss Uplift = .6DL+.6WL 131.41 Per Foot Typical Truss Uplift = .6DL+.6WL 210.8]Per Foot Uplift @ Ea End of Girder Truss 2954.8J LBS MSTC66B3Z 4490 MSTC40 2655 LGT2 2125 LGT3 2505 Combined Connection (Over Header) 6615 GOOD Combined Connection (Stud Column) 4780 GOOD 84/110 Y Z1 I -x -2955 lb Loads:BLC 1, Excel Engineering, Inc. Girder Truss Uplift Reactions SK-1 AJH - Oct 27,2022 2260800 Girder Truss Uplift Reactions.r3d 85/110 I X I fi 461.7 2493.3 Results for LC 1, Y-direction Reaction Units are lbs and kip-ft Excel Engineering, Inc. Girder Truss Uplift Reactions SK-2 AJH Oct 27,2022 2260800 Girder Truss Uplift Reactions.r3d 86/110 Excel Engineering, Inc. 10/27/2022 Page# I Project: weIINOW Shell-Queensbury, NY LOOSE LINTEL DESIGN T^ Project No.: 2260800 By: AJH Date: 10/27/2022 I • Angle Size L4X4X1/4 Vertical Leg Horizontal Leg Thickness 4.00 4.00 0.250 I _ Y/N A=! 1.93 in4 Angle Weight(plf)= 4 6�58_ ;plf Uniform Load?_ Yes iX=c 3.00 in If Yes,w=1 86 'plf l,= 3.00 1 in4 Masonry(psf)= 43 -- ;psf SX= 1.03 !in..' Triangular Wt. Of Masonry=I 1399;Ibs Fy=i 36000.00 psi Masonry R.O. (ft)= i 8.000 i ft y=# 1.08 in x= 1.08 l in Design Span= 8.667 ;ft E= 2.90E+07 1 psi G=1 1.14E+07 'psi Moment= [ _ __0.87_ _ _ I kip-ft J= 0.04036 I in4 C= 0.04992 fbX= 10128 psi, OK,fbx<Fbx l =1 9.520 in4 fcr=1 48496 i psi Deflection = 0.135 in, OK, Less than U600 and 0.3 in f„=I 26265 !psi FBX=1 20204 psi Notes: a._- 1. Loose steel lintel angle carrying self-wt.and veneer, NO live loads! F:\Job Files\2260800 Queensbury Realty-weIINOW Shell-Queensbury NY\2260805 Structural\structural calcs\Steel Loose Lintel.xls 87/110 Excel Engineering, Inc. 10/27/2022 Page# Project: welINOW Shell-Queen'sbury, NY LOOSE LINTEL DESIGN —1 Project No.: 2260800 By: AJH I Date: 10/27/2022 Angle Size L6X4X3/8 _ Vertical Le_g Horizontal Leg Thickness 6.00 4.00 0.375 , _ Y/N A= 3.61 in2 Angle Weight(plf)= 1_12.30 _ _j plf Uniform Load?=i Yes I Ix=1 13.40 in4 If Yes,w=[ 86 ;plf ly=i 4.86 i in4 Masonry(psf)= I 43 i psf Sx=I 3.30 l in Triangular Wt. Of Masonry=[ 26801 Ibs Fy=1 36000.00 1 psi Masonry R.O. (ft)= [ 11.330 ;ft y=1 1.93 tin x= 0.93 in Design Span= [____11.997 __j ft E= 2.90E+07 psi G= 1.14E+07 psi Moment= L_ __ 1.77 kip-ft J=' 0.16919 I4 in C= 0.36884 fbx= 6431 psi, OK,fbx<Fbx 1,= 31.227 in4 fcr= 61948 ,psi Deflection= 0.118 in, OK, Less than U600 and 0.3 in f„= 27401 I psi FBx=L _ 21078_ f psi Notes: 1. Loose steel lintel angle carrying self-wt.and veneer, NO live loads! F:\Job Files\2260800 Queensbury Realty-welINOW Shell-Queensbury NY\2260805 Structural\structural calcs\Steel Loose Lintel.xls 401 Project Number 2260800 page 88/110 Project Name -WELLNOW URGENT CARE 44110. 0® 100 Camelot Drive AJH 11/8/2022 X C E Fond du Lac,WI 54935 Calculations By Date L Phone:(920)926-9800 Reviewed By JRG Date Fax:(920)926-9801 ' ARCHITECTS•ENGINEERS•SURVEYORS www.excelengineer.com Subject . Ti L I _L _ —_ I ( I I I I 1 I _L L1 _{ _ J I I ri--r _I 1 1 �_ I 1 - - -�- l— ___ —_ _ I 1—.- _ I 1- —I I I I 1 -- — 1 —� I r I I 11- --'-- __II-- 11_— I I I I 1 -- i _ I I I I 1 III — L 11 — - 1 __rLL I I I 11 I-- I _ I I 1 1 { I 11 . 1 1 — I { 1 __ I - 1I LHEh 1 ' ' -11 1f -� 1_-J T- LH-I —I 1iLriT41t1T` 1 I--f-I1. 1i "_I I =L_ �i I -L 1--}---- 7 -----i- II 1-1 I 1 i -1,- l i i-1 1-1— I I l i --i -- 1-1 t hi 1 .I 1 i z s- 3_ 1 I I I - 1 I — --- —1-1--- Jr_-1 � t t �� ._ i _ t_ -�-�- --- -- �I. , I _ I I 1 _I i I II _ _— _� ' J__1_ l_ _ _L. , { L i a I I I I I 11 1 1 1 i -1- _r._ I_i._,._ -. f t —II 1 I - r i i.t _F 1 1 i_ —1 I I I—�__� I—t r..i..-i 1_1 7-- --1--�- t-- -- -I 1 .. - ---;---i -r- _� _I 1 I i_ 1 , —; _t- t ,----,- - .-t-:�--t---�--- _ 1 ] L -t I i " .1 _1. !- ,; - ,- 1-1-1 ,- 1-4- Fr . I 1 I 1 1 r I r�_'.—--.. ._l_- _1_4._.it. _-...__M_!rl_-1• --- i 1_ .i1 - 1 i-- " ' ° I1iH T —i` I I i T I 1 , I ,, 1 , 1 I• 11 I 't I qI. Ts II:. i, 1 1 I I1 t.i,- L,--' •It}-.: .,,,,--1"t 1 '::iI -,+,14.,*'- -Tv ' 1 :-.:14: -.,- _ _ ,, Alt` i I i_j 1 1 I _ — 1 I I r I i _74- I_� I 1 1 1 1 1 -T-1 '12I I I I I t 1 1 I ( I I , I 1 ( 1 11 I 89/1 1 0 DANIEL G. LOUCKS PE GEOTECT-INICAL ENGINEERI• NG Geoteelmical Report • Po Proposed Urgent Care Building 920 10 9, Qiieerisbury, NY File iNo. 4199 Pre arecl For: Capital Realty Dame - P,tepar:cd,By: G Loucks PE NYSP-E-068389 14 Odt9ger 2022 14AMBER WAIF,.BALLSTON SPA,NY 12020 I 518-36949453 •E-MAIL:DG.Lq0ENG@Q11,141,1..cOM 90/110 INTRODUCTION: The subsurface investigation :for the. proposed Urgent Care Building, '920 Rt. 9., Queensbury, New York has been completed", Aztech 'Environmental Technologies Inc of Ballston Spa, New "Y.ork has -completed three (3.) soil borings at_ the "site The logs of these borings, along with, a location diagram, :have been included in the appendix of th `s report. It. :is my understanding that the proposed construction will include a fsingle-story building ,located approximately as indicated on, ;the" boring location diagram. The building will have :a wood/light metal frame design. The maximum column loadings ;will range from - 0 to 30 .ki"ps. Bearing wall, loads will range from 1 to. '3 kips pert-Oft .of wall. The: settlement '"tolerances are "normal: Settlement tolerances are considered.-to include up to 1 i ich Of total settlement and 3/4 inch-of differential settlement between column locations. The ;first .floor slab will .be established within approximately 1 foot :o:f the ;existing grade at the site. The purpose Of this report is to describe the i"nvest g;at on conducted. 'and. the .result;s 'obtained;" to .analyze and interpret. the data obtained, and to ,make 'recommendations for the design and construction of the feasible foundation types::and :earthworks:-for the- ;project:. 'The recommendations contained_ in this report :are based on the: information that was. "provided• ..up to the date the report was "complet.ed, Any changes in thedesi.gn '.of the -project or ;changes to the recommendations provided in this report should be ""brought to "my attention to determine_ if -there °needs to be ._any revision: of the ;geotechnical ;recottendations•. I `air not responsible 'for any changes made to the: recommendations provided in: `this, report unless. I :have provided written approval of the changes; The scope of 'my services has been limited to" .coordinating the -boring and laboratory investigation, analyzing the soils information, :"and providing a -geotechnical report with foundation recommendations and sei iris site classifications" as per, NYS Building Code Environmental aspects of the-project .as well as grading-"arid: site desin ;should be .performed by qualified others. 91/110 FIELD INVESTIGATION PROCEDURES: The bdringS we±e eXtended .by means of 8.,:7$ inch ID, hollow75tem augers, by using, various Patting bits using circulating drilling. fluid .to remove the cuttings from the casing anotby continuous SaMpling-with a SplitSPoon SAMple±. Representative Samples Were obtained froM, boringjnoles by means. of- the split-spoon saMpling proCedurePetfOrMed in abcOr-,, danOe with ASTN D 1586 The standard penetration values Obtained from this pfotedure have been indiCated On the soil 'bOring Logs Soil samples obtained from these procedures were examined in the field, sealed in containers, and shipped to the laboratory for further examinatioP.. classification, and testing, as applicable. During the investigation, water level readings Weretbtained at various times where water accumulated in the boring hole The Water level readings, along with an indication of the time of the reading relative to the tioring, procedure, have been inditated on 'the sOil bating loga. In addition to the field boring investigation, the soil engineer visited the: site to observe the surface ..cOnditions. LABORATORY INVESTIGATION: All samples were examined in the laboratory by the soil engineer and classified according to the Unified Soil :Classification System. In this system, the soils are visually classified according to texture and :plasticity. The appropriate (140iip symbol ia -indicatpd on the soil 'boring logs, formal. laboratory tests were performed on the ‘soil samples, SITE' CONDITIONS: The PrOPOSed building area is coved with an, existing Single story building and a paved -parking lot. The ground Surface slopes very gently down to the east outside the building-, NO significantHsignsOf cracking was observed On the ;eXterior of the existing 92/11 0 %.3 SUBSURFACE ,CONDITIONS The slpecific SubSOrfaCe aonditionS encountered at: each: boring location are 'indicated on the iftdiVidual soil boring- aogs-. However, to aiotin the evaluation of this data; I have prepared a generalized Idescription of the. soil conditions based on the b#in4 04:t4! The btj-ngS, encountered an upper layer of possible fill/fill that extends to between 1.'0 to 2.5 feet -below the existing ground -p.prface. This possible fill/fill is generally sand with a trace to some Skit and graVel, It is loose to medium dense: Beneath the possible fill/fill is sand with a trace to ,some gravel and a trace of silt. These soils ektehded .tO thebbttOt of the borings at between 12 and 5.2i feet below the: existing ground auttaoe and they are, 1668e to teditm dense. 040030MHdONDIt1000; Based on the groundwater levels observed during the jboring investigation, the 'moisture condition Of. the samples recovered from the bbring hOleb and COloratiOn of the Soil Samples, I judge that the groundwater level was located below depth of 50 feet- Perched :groundwater tablea :may occur at higher elevations in 'the soil profile due to groundwater being retained by layers or lenses Of silt Or Clay SOils. Perched or seasonal groundwater levels are sometimes Indicated by mottled brown/gray soils. These soil conditions were observed as shallow as 38 feet below theexisting.gT.ound -surface. Some fluctuation in hydrostatic groundwater levels and perched Water conditions should be anticipated with variations in: the. seasonal rainfall and surface runoff, _ It hod. .be :noted .that the gtoundwatet leVel8 l'ATte Obtained during the drilling procedure Actual water levels may vary at the time, of cOnstruttiOn. Softie groundwater Oduld be encountered MaYPs. labeld moist to wet on the boring logs. 93/1 1 0 4 0401$ 2110 RECOMMENDATIONS: The borings encountered an upper laytt of possible fill/fill that extends to between 14 to 2-5 feet below the existing ground surfaCe. Beneath. the possible fill/fill is sand with a trace to some gravel and a trace of silt. These soils extended to the bottom of the borings at between 12 and 52 feet below the existing ground surface arid. they are loose to media dense. Based on the boring results and my understanding the grading and building loads, it is my 0144±.91? that the proposed building can be adequately supported on properly designed spread footing foundations resting on firm undisturbed virgin soils or On properly placed and compacted controlled fill soils that rest on thtSe virgin soils. Site. Work: The proposed construction areas should be cleared and grubbed and all organic top-Soil and vegetation along with any uncon- trolled fill; debris and Any existing building structures-. The subgrade should be proof-rolled vt#11. a10--toh roller and the proof rolling should be observed by the soil engineer, This proof rolling will compact the subgrade and reveal the presence of soft spots.. Any-softispots should be ekCaVatedand backfilled with Oentr011ed fill Matetial.. The removal of any uncontrolled fill should extend to a minimum horizontal distance past the edge of the footings equal to half the depth that the fill extends under the fpoting. This is equal to .a (H:V) Slopt down from the Outer 'edge of the feeting te the Virgin Soil. All uncontrolled fill within the proposed btilding-area should. ,aiso be removed. A method for stabilizing spongy Areas of the subgrade would be to improve the drainage by use of properly doeigneddrain 'tiles Or by using properly designed sump pit and pump dewatering systpms. Using these methods, the local groundwater table maybe able to be lowered sufficiently to aid in stabilizing the subgrade surface. If large quantities of water are encountered Vabutth 'Well point dewatering maybe required-, The need of awell point or any :other type of dewatering pre-gram should be evaluated by the contractor before starting construction and be designed by a qualified dewatering tenttattor Or hydrelegiat 94/110 Controlled Fill :Before any controlled fill is placed the site should be inspected to verify that the site has :been prepared according to the recommendations contained in this report as required by the 'current NYS Building Code Controlled fill can consist of non-organic on-site or imported soils free of debris and expansive soil/rock and: having maximum particle size of 3 inches, A gradation and proctor Should be performed on the proposed soil and submitted to me for approval Approved, properly placed and compacted material can be used as controlled fill within the proposed building fobtprint. Free draining controlled fill material- should be placed as recommended in this report. 'Approved on-site or imported soils should not be .used in theSe: lOtatiOnS 'where free draining Contr011ed fill iS-reoOmmended unless approved byine. Controlled, relatively Cleat, ,granular: fill can be spread in lifts not exceeding 12 inches in loose thiCknesS, 'These materials should be compacted to a minimum of 95 percent Of the maximumASTH Spetifitation D 1557-91 den - AlPaaed proctor. If crushed stone is used as controlled fill, it should have a layer of geotextile with aminimum tensile strength of 2-00JbS should be placed between the stone and existing soils The stone should be Placed in lifts not exceeding 12 inches in thickness and should be compacted with a minimum. of 5' passes of a , vibratory roller rated at tons or larger Weathered shale or crushed shale should not be used as controlled fill within the prOPOsed :building area, Free Draining l Controlled Fill Material Naturally or artificially graded mixture of sand, natural or Crushed stone or gravel :conforming to NYS DOT 'Table 733704A,: Type 2 or 4 as follows and free of any organics, expansive material or asphalt products: U.S, Sieve NO, Percent Pasaing ,byVeight itch 100 - 1/4 inch *, 4.0 SHAD No. 200 95/11 0 6 NYS DOT Table 703-4, Size-2 Crushed stone, elan, durable; al-id anibrm quality throughout: tS Sieve No. Percent Passing by -Weight 100 1 inch 90-100 ] /'2 #101 0.-15 All controlled fill should be free of organic: and/or frozen Material. controlled fill should have less than 10 percent fines passing the #20.0 Sieve. I reoOmmendperfOrming one field density test fOr eVery square feet Of Controlled fill placed, within the overlaying building fObtprint, ,bbt in nO Case fewer than 3 tests per lift. recommend that for foundation wall and footing backfill that in each compacted backfill layer have at least One field in place density test for each -50 foot or ]e.s of ;'?0,11 or footing length, but not fewer than two teSts along a wall fate br footing be performed 'per lift. Walls should be bao4ilIed uniformly on each Side of 'the wall to prevent Aineven Ist-e-ta1 loading on the 1444; unless: the wall is designed as a retaining wall. Proper placement and compaction of backfill along exterior portions of foundation walls should be provided, especially in lOeationa- Wherethereart sidewalks or building entries Proper placement of backfill materials can reduce possible settlements and the use Of. properly de-Signed babkfill and dtaknage, :can reduce possible frost beave' movements. Results of the field compaction test results should be sent to my office for review Copies of the results of soil qt4440-011 tests_shouldaIso be provided to, me for review and -approval. Building FOUndatibn-8-: I recommend that thepropoSed Structure besuppOrted by Spread footing foundations X-eetingon-firm-virgin, inorganic, soils or On ,COntrolIed fill which, in turn, rests On. theSe Virgit:Mater ials. Footings: can be: designed for a maximum, net, allowable .&.(44 )5,e4#h4 :1Dte ,t)T 3000 96/110 7 The Soil engineer should observe the footing subgrade at the beginning of the project or if soil conditions Change to verify the, allowable bearing pressure of the soil encountered and any uncontrolled fill has been removed Loads from adjacent footings or structures should be assumed to distribute '_based on the elastic theory. Typical 13otsSineSO charts can be used to approximate loads at various depths and locations .due tO adjaCett StruttUreS. A minimum footing width of -2..() feet is recommended for load bearing strip fOotitgs, Isolated footings should be at least 2.5 feet wide. Exterior footings or footings in unheated areas should have a minimum of 4 . 0 feet of embedment for protection from frost action Interior footings should have a minimum embedment of 2.0 feet below finished grade to develop the- bearing value of theHaPila. To resist :overturning and sliding a static lateral passive pressure of 250-pSfyer foot Of embedment can be used, provided foundations are backtlil-ed with controlled fill This static, 1passive pressure resistance value has been reduced from the calculated full jpassive pressure because of stress/strain characteristics of the soil To develop the full, calculated resistance a certain amount of Movement or deflection it :the structure is T.equi,i-ed, The amount of movement required to generate this resistance ,generally greater that is acceptable for structures I therefore recommend that the -:41111 passive 'pressure not be used A coefficient of base Sliding on 0,45 Can be-Used to resist lateral loading. The passive resistance of the upper two feet of Soli, not in floor slab areas, Should be ignored due to surface effects of frost and moisture Any surcharge loading of existing .adjacent building foundations or other adjacent ::structures/utilities should be addressed by thestructutal ëtiineef using BOUSSinesg charts 97/110 a S2,abs; Concrete floor slabs can be designed to rest on controlled fills resting on virgin, inorganic Materials. 131 --,indh layer of well- graded, free-draining, granular material should be placed beneath the floor slab to provide drainage, act as a capillary break, and tipprOVide better and more .UnifOrmstppOrt. if VehipleHlbadings are to :be applied to the fflobt $10, the proposed slab and supporting soils should be analyzed as a pavement structure- I. Tedommend that a minimum of 17ina-es of free. draining -controlled granular fill be placed below any concrete pavements. A modulus of subgrade reaction of 150 psi per inch can be used to design :concrete slabs resting .on a minimum of 6 inches of free: draining controlled fill that in turn rests on virgin soils Apodulus of subgrade reaction of 125- gal per inch can be used to design exterior slabs or pavements resting on a minimum O.f .2 inches of free draining controlled fill. This reduced value is recommended due to seasonal variations that occur due to frost in the soils. Exterior concrete- 'pavements 'may &kpOrienbe, some, frost :heave movements during the winter and spring If these movements are not acceptable then a minimum Of 4. 0 feet of approved subbase Material and properly designed drains would bereqUired-beloW the concrete pavements or SideWalXS. The use or properly designed footing drains can also be used to reduce possible frOSt heave movementsadjacent t0 the proposed structure. If the ,tbiStUre level of floor slab areas are critical additional drainage materials and vapor barriers will be required beneath the floor slab. Also, the moisture content Of the. subbase soils should be carefully monitored to prevent excess water from saturating these subbase soil's before: the floor slab is pouted. -This aspect of the design 'should ce 164fC#11 ,1* .C41-141j-fie.0 901ers. Seismic Conditions The potential ,spismioccnditionsat the proposed Site have been investigated using the information provided in thej\TY$ Building Code, and the boring information obtained during my inVeStigation 'rat-1'rd IYast Operience with soils in the area. 98/110 9 10 bi the il bbring information and my experience it is my opinion that the Site Soil Classification (ASCE-7 Table 20-, -1) could be assumed to be D. Using data from: Reference Document -ASCE7-16, Risk Category I, I estimate that the MCE spectral acceleration (SIJs) At short periods is 38 2 and: theAdE spectral acceleration (SM1) at 1 s period is 16 4 I have included a copy olf the spectral_ accelerations for other Hazard Levels in the appendix. of this report TWI#04>3414Q qib,:und. 41Pti,P11- values are expressed in %g for rock site class 13'; Peak ground accelerations in the upper soil profile may vary, If specific peak ground accelerations or shear wave velocities are required for the upper soil profile add.itLonal. be required. If it is detertiPed by the structural engineer that the Seismic Design Category ox. :E; additional geotechniCal recommendations Can; lbe proVided. The SOil- bbring8 and -ray analysis do not-ihdicate.any Significant potential seismic hazards such as liquefaction, sensitive clays, weakly ceMehted Soil; OrSurfate rUpture, CONSTRUCTION PROCEDURES AND PROBLEMS.: aiheAvYS luilIdinCode Section 17 requires special inspections and follo reports These inspections 81101110 1;5PJ)Prf00i01, t.0 verify :cOmplianCe With the reCOMMendations Contained in thiS rPpo,rt All excavations of more than a few feet should be sheeted and b.tated- or laid batk to prevent sloughing in Of the ;Side :. EACaVatlenS ShOuld nOt extend belo.14 adjadent fbotingS br structures ,unless properly designed sheeting and bracing or aEoei'pitif0J-41a itiota40. Footing and floor slab quip4t00 should be : rolf)-0. to ompact any soil disturbed during the excavation proceSs. )\:. flat 'plate ShqUld_be .PlaOed on the end of the excavator or :baekhoe 'bUcket tb .tedute diSturbance of the footing sub de. _II :OVer extaVatiOn, ,OfHsUbgrades are reqUired. to remove portions of the existing bai Idiriqf then the :over -extavated- areas ShOuld be f- 1'pc21. yth \contrp11,.ect granUlar fill or lean concrete. 99/110 ZO . ulpgrades- Sholild :be kept: I-tot freezing during constr.uation, Water, -snow, and ite-*16141-1.6t be allowed to collect and stand in excavations areas of the -eutiqtade. • Some obstacles, including foundations and -utilities may be eritOttitted 26814.ft and construction procedures include measures to limit the potential fo'±-- 1-415 .41t1 and vapor trapsmssj:oh, The shrinkage :properties of concrete. Should be controlled and the curing of the concrete t6TItt0110-, Differential •shrinkage between the top Ancottem of the slabs otherwise result in curling of the -."01A4b; The control of -vapor ttatsMisbieft, through the slab should also be addressed T0:0$e ploot*04Apy :be only indirectly related to soil conditieris. The Atehitett/ structural engineer' should address this aspect of the design 'Current American Concrete Institute recommendations for the design and construction of floor slabS, and the control of shtinkage, Slab curll AhO_ APer- 'ttaTimieelen can be re'fetred 'te, 100/110 Urgent Cate 13-1.1F4d1n FiieHNo.. 4199 CONTENTS OF APPENDIX: 1. General 1Totes Z. Boring ,tocation. Dia-graft. 3. BoTinq Logs 4. '§e18tiic Unified o±i Claiffdation Sytern 6, Soil UseChatt 7. General Qudlifibatn .11111 I no 101/110 DRILLING a SAMPLING YMBOLS • SS : SpIit•SpOoti 134"LD.,-2"OLD.,eitelitWhere nOted .- - •S. : Shelby Tube—ZY.OD.,-except where noted PA Power Auger Sample DB Diamond Bit NX:-BX:AX: B : Oarboloy Bit H- BMAX: . • • :OS r: p*It erg Sampler—3"Shelby Tube • HS Housel Sampler Wa.sh SainPle RB. *ick Bit Wash Standard"N"Penetration:plows per foot of a.1.40 pound hammer foipg aorictie.$ • op a 2-inqhioD 1-.)14.spOori,eicept Where nOted. WATER LEVEL MtASUREMENTSYMBOLS • WL Water Level WC' :, Wet cayeIn DCI DiyCaveln WS While SaltiPiing • WD ;. While Drilling • BCR Before Casing Removal ACR After Casing Randval After$oring Water levels indicated on the boring logs are the levels measured in the boring at the tunes indicated In pervious soils,the indicated elevations are considered reliable ground water levels:In impervious soils the accurate determination of groundwater elevations is not possible in,even several days observation, arid:additional eVidefice ôi ground &ter elevatiOns Mt:1st:be sOUght. CLASSIFICATIQN COHESIONLESS SOILS COHESIVE SOILS "Trace" : 1.004 If clay Content is sufficient so that clay IYaCe to some'! 10%0.20% dominates soil properties,then clay becomes "Some" : 20°A to 35% the principle noun with the other major soil "And" .35%te•,-'50% constituent as modifiers:i;e„silty clay.Other ose 0 to- Blows rnincir s011 constitneritSinay be added according Lo : 9 • - . Dense 10 to Medium 9-13lowS to classification breakdown for:CohesiOrilest soils;: or i.e.,silty clay,trace to sotne sand,tracegravel. 'Dense 30 9:Blows - equivalent Very Densk ; >$0 Blows j Soft : 6.00=4.59 tonstft2 Medium t; Q.99 trinstft Stiff: • 1-.00—•199 tonS/ft2 • Very Stiff 2.00:-3.99 tonsift2 Hard .; >4.00;tondft2 /: - - _ —. =I • . r SWEET ROAD ., . --- , _ .__ . A''^i� ' - _ 7 7 7 77 . _ rt- 4 - u 11 MIX r Trl1 11 , rr p .•II i__-'- 6N423928"E , i. ! \\ .� IU? .f., . • • 1,S,ORY ILDINO'• 1 I jij _:..+ 351 ) ~`' y B-2 a r:PA' 1 G' ' � rYi-,~ o • xnrs• Ica r • n d . m / j a. s' r N I % / .. a • ' AS3 p. NOG270Y382 W t• }Y {/ �� I t '1 l ill .+ 1-o ^-4 . i RB1. � Lw ...Jr U; /1 I^I I• . irQ,-- %ill' if -�P • •N87•3630"W 2J4:86' - i ASP!1.117 - --• _ - } ASA'kIT .- • _ LANDS N/F.OF OUEENSBUR'I ,e - ',.45I MIT LODGING;LLC • i 'BK..'4302,PG:.45 SECTION 296.17 . irK BLOCK 1 LOT 46:2 .6 'F. i A.914L7 —L O scwiut) IV oaxSPAE 0 103/110 Project Number.4199 Boring No.:1 Urgent Care Building, Rt-0, Oueensbury, NY Drilling ContraCtor.l_aBella Drill Rig Type:ATV Daniel Q LoUbks FE 14 ArribarWay Hammer Type; Date: October 2.022 Ballston Spa, NY Automatic dulcieoenCaarhail.Corn Hammer Weight Hammer Drop '518-396-9453 140 lbs 80 inches Groundwater DePth:-None Observed WS; Blow Counts Lithology ^ 2 o E >, (blows/fOOt) g• Soil Group Name:modifier,color,Moisture,densitk/corisisten , (1) cs3 CI Z other descriptors a, E .0 a > nict E o c a E F rd Rock Description'.Moclifierm-coior,herdriessid_egree of conceritratibn,l2eciOng RI Cl)(I) ° and joint charapteri§tics;soloticps,void condifions: 1 SS 12-9-8-6 17 0,'S ASphalt PaVernent 2j) F-C Sand, trace-iGravei, it, Moist( A-SF3) PossibleFill 2 SS 7-8-748 15 Fine to Coarse-Sand,trace to some Silt Brown/Gray 4.0 Moist, Medium Dense (SM-SP)Possible Fill 3 SS Fine to Medium Sand,trace Qravel, Silt, Brpwn,Moist Medium Dense (SM-SP) 4 SS 8.0 5 SS 5+44 — Fine to coarse Sand,trace to some Gravel, trace 10 . SP '4-4-4-4 8 Brown, Moist, Loose:(SM-SE)' -12.0 End of Boring at 12.0 Feet 20 — • Daniel G Loucks PE GrOund Surface Elevation: N/A 104/110 PrOjeCt Number:'4199 Boring No. 2 Urgent Care Building, Rt 9, Queensbury, NY Drilling Contractoc'LaBelle Drill Rig TyPe:ATV Daniel G Loucks PE 14 Amber Way Herrin-ler Type! Date: bctOber c?2? Ballston'Spa, NY Automatic doloboendarnail.corri Hammer Weight: Hammer Drop: 518790t053 140 lbs :30 inches Groundwater DePth: None Obierved WS Blow Counts LithOlo6jr 4cr, E g-, (blows/foot) 03 0- = a) Soil Group Name:modifier,color,moisture,density/consistency,grain size, a 3 To Cl) cl other descriptorS. Z - o tn. E F ra • • • ' :E I 0:1 - 12.• ROCk Descnption:mocfifterm color,hardness/degree of concentration6edcing IA (1) <1 C-) and joint dtiaradterjstiaS;sOlutionS,void Conditiont. SS 20-5-6-7 p 1,0 :Asphalt Pavement&Subbase 'Fine to Coarse Sand,trace.Gravel, Silt,:Brown 2 SS 4-44-3 Moist, LbOae (SM-SP) 3 88 3-3-3-4 6 4 SS :3-343 5 SS 3-4-34 7 10 — 6 3-544 PA i3.0 Fine,to Coarse Sand, trace to some Gravel, trace Brown, MbiSt; Medium Dense (SM-SP) 7 SS 3-6-$-4 11 PA 18.0 Fine to Coarse Sand,trade Gravel, Silt, Brown Moist, LepSe to Medium Dense (SM-SP) '20 8 SS 3-2-3-4 5 PA 9 SS 6 PA Daniel G Loucks PE Ground Surface Elevation: N/A 105/110 Project NUmber:4199 Boring No. 2 Continued Urgeritci-9 Building, Rt 9, Queensbury, NY Drilling Contractor LaBella Drill Rig Type: ATV Daniel G Loucks PE 114.Arriber Way. Harnmer Type: Date: October:2022 Ballston Spa NY AUtematiC dolgeoencrnmail.com Hammer Weight:- Hammer Drop.'„ 6187390453 140 lbs, 30.ihOheS GroUridWater DePthNone'Observed WS. Blow Counts Lit°logy .cu . Q. (13101NS/f000 • E ll; son droup Name:nicdfier,color,moistire,densitykonsistency,grpin size, co z To' CD C3 other descriptors Z > 6- la E • E - 0.. Rock Descriptioiimodifierm color,hardnsklegree of abliceigiitiofi:bedcfing • a co < 0 and joipt dhar6OteEri§lici*Itiotp,Void conditigrp. .co 10 SS lb Fine to oarse Sand,trace gravel, Silt, Brown MOIst, MediOrn'Oense (SM-SP) PA 11 SS 7-878A 0 16 PS '38.0 Fine tO Medium Sarid,Arace.drevel-, Silt, BrOWn/Gray 40 — Moist Medium Dense (SM-SP) 12 SS 1012712-13 24 PA 13 SS 12-12-14-17 26 PA 48.0 Fine to Coafse Sand,trace:to'some Gravei,irate Silt 50 Gray, Moistbanse.(SM-SP) 14 SS 12-21722-23 43 52.0 End of Boring at 62.0 Feet aLoucks PE Ground Surface Elevatioh:.NIA 106/110 Project Nutribert 4199 Boring No. 3 Urgent Care Building, Rt 9, Queensbury; NY Drilling Contractor-, Leaella Drill Rig Type: ATI/ Daniel G LOuckS PE 14 Arnber Way Hammer Type: Date: OctOber 2022 Ballston:,Spa, NY Automatic doloecienbaarnail.torn Hammer Weight:: Hammer prop:, 518-396=9453 140 lbs ,30 inches GroundwaterDepth: NoneiObsenied -WS Blow Counts LithOlogy co _o (blows/foot) Soil Group Narrie:Mbdifier:Color.Moisture,densitificonsistenCy,grain size, (13 otherdescriptors S cb a m Rock Descriotion:modifierm color hardnesSidegree of concentratian,bedding a 0 and joint characteriitics,sclafions,void conditions, 1 SS '2-3-2-2 5 0:3 Asphalt Pavement 2.5 'F-C Sand,trace to some Silt,1.3k Ern i 114dist,Loose(SM)Possible Fill 2 SS 8 Fine to Coarse Sand, trace Gravel, Silt, Brown Mgist, Loose (SM-SP) 3 .SS 4-5-4-5 9 4 SS 3-44-4 8 5 SS !3-44-4 10 — 6 SS 4-4-44 8 12.0 End of Boring at 12.0 Feet 20' — Daniel G Loucks PE Ground Surface EIOVation: N/A __...__ 107/110 u I,:,:.1C Hood;to)Lr =n act-.,11c.•mit I,o,r:Ltcu lo:ardmt u•.-r:$:C,1:i1"!h. OTC Hazards by Location isearch Information Adere� 020 US.9.CR7y,NY 12804,USA , - K Da.;—..-. . Co mdinotos 433369940390S".89,-736737757 479" t ft u_<Y Eleiratiorc •479ft" - . GLLN 1,Alq Thno:tamp; .2022-10-1aT1403.41,403Z_ )fn ._f*.) ar: ,Hard Typo; 3i,., .S.CMnc FaOc f t. .'°` ' - South Saloon Fon:,. •Reference -ASGE7-10 �,)• -Gtrn:Fobs • Map doll 02022 Geopis 4e00 a,o Kr. Doctano0C -Rtlt Categvq. I Site Clr.,a: 0 MCER Horizontal Response Spectrum Design Horizontal Res"pon'se Spectrum "'.S1f9) Selo) • r\\ oss ) Oil, 0 20 0.20 :0.15 9.10 o so oos aoo •o.co 'POded(a) �0 3 - .` • 'Paned 41 00' �1.0. '2.0 3.0 eA S;0' BP 70, .0, ,t;0 20 0 "a0 DSO B.0 �7�11; .Basic Parameters Demo Votue Douvipdon So 0 230 :UCEn ground M.=(Pamde0201 Sr 0 060 MCEg poled motkoh(paiodhl.0c) Sinn 0382 Sito-rrcESoe spatial ace'srtionvahlo S,a1 0.10 5116-104YCd 0p6dtr4 0iaeleidbn vole Sec 0.255 Numare selaM4.60115nvo1ue of 02s SA 501, 0.100 Samaria col•..cdellgn v3C40t 1.00 SA '.Additional Information hero Vatuo Daucrlptlon SOC D: Sohn.4005nemegory. �, -'1.6 Sao rimprificririori(snip at 020 Fv '24 Sao amplraa0tien foolcr et 1.00 CR0 ,093P Cootf eat of rck[112o CR, '0.0221 CaefOat Ot r'..X(i•0:j PGA 0.t33 MCEG peak gro,md accder.aisa FpG4 1.533 Sto amhdx:0tsn faairrat PGA 'PGAt4 .0204 S.modillaal,peakgicuid ovcolaraocn TC. a id,g-paled lla(rube Porxm(a) Sc0T' '0230 ProbabDatia rloktargo)d gidurc m0iwn(0.2o) :SaUF1 '0255 Factrod umfam-hoiaid specvoi ccelerptdr,(234pc4iafnhty of 'exesedanae hl50 yioai0) .., . SCD' 1.5. Fneta130 d0teallunlaoC accelorat..wow(0.20) S1t,T .'0.068 Pmea:aawomk-tvgetadpwtfdocon(o0r( SSUH. '_0A74' Foolcied andarm-0a25rd:palral auuleraliai(2%p,ctabffyof alwedatce in5ayeara) ' SMD' '0 6, ctaod datcrinlr;tic acaoletair0,vofiw(1.00) FCA4 0.5 Fact�ad dateiino-ietr aeeo za:i:ci Vonoe(P'GA) ,'HaDvd1e4i O4pf0Vld06 tly Va U$.Gmbgical StYu4 ,-..'r.P Ian V41b 561cpc Urnlo Oro ecrrilat1.111 pio.an60 80 VII^.wO04013 tieli6v0010 de 001100t,'MO 050 66:a01GCi0 3n0 00ntr1WIti5 a::u 0 6 f0polGtaoty er lobby for it accuracy_Dm inatprcl paorit'od in the oapert should dot be rand a r0 0d upon for 10y ape0IBc app5.ti0n an0ut eon ioetaIt •oxaminatlp,i and vaifoatbn of its a,Slrcoy.aiWn1ty and opp6ob0y by angineara or other licensed prefe-.=uana';ATC does not Intend that the 1cd of[his inbrmailoa repbce trie 0004 4,Cgmain of siari 0ari100t&-d pofe ona0.haong oxpeivncaarra kciaccfnlge et the rwa or pruc6co, na to atcahne for ttio 0tcndar6 of exa i05Wred of each pmfo=i^^;M to inceipremig acid apc,tymg the re00100 of the repot Ixevid00 by 000 w0b00p,titian of the information from the to memo al lably arcing from such uo..a.U.of the output of Sus wn�.n dos not oni y aF(a9I or c0ae 0.04 n0 .Ida far bdml cov0 a and int .a[un rw rno hYaa rcrmed 'i°:!. �e.n,n3 GRv"4i . .:.."..'P°" ... "._"e3 .. Pl""'r _ 'rP" ...:,..... `In9 v.ea._ - ?Y eaada0enphdo loads,in tha rapon. I >• W • Table 3.5' tigieled Soil-Cbassificalaoifl' -Field identification Procedures Group (Excluding particles larger than 3 in.-and basing fraettons on Symbols Typical Names Information Required for Laboratory feria Classification • estimated weights) - a Describing Soils Criteria •a-o Wide range In grain.size and substantial Well graded gravels, gravel- Cu=Dao Greater,than 4. c a e amounts of all intermediate-particle MY sand mixtures, little or no' .o•. Dsa a., d o ',sizes fines• Give typical name; indicate g' '5 %EC ° (Dao)s . 5�• °,� .proximate pereentagea-of sand- •c. "'a 'C0=D )c,D Eelween 1 and.3 o,`h'o- `3 u.' - and Gravel; maximum size; C. ° , 10 as ,N ti m 6 g Predoniinsintiy onesize or a range of sizes' GP Poorly graded gravels,_gravel. 'angularity,- surface condition; p - - 1A.4•S; ,�' 'wit}t some Intermedinte.atzes missing_ sand mlxttsec,littleornoflnes 'and hardness of the:coarse' R'. tiv .NotmcetingalleradalionrcqulrcmcnlsforGW r :a - grains; local'or geologic name ° q'' ... 0 g o'�''•• •a '—n°y, Netnplaslic lines(for Identification pro• GM, Silty gravels,- poorly graded and-other pertinent descriptive v �' ,�U$ Atterbern_limits below Above "A" .line • 's,..Z ,Se 'fs p,o` cedures see MLbelow) gravel-sand-sllimixtures information; and symbols in- a0ybj "A" ihm; or PI Mess �°,a " "., ,h-n y; parentheses a o or with'an 4 d between7are • V.9.'S @ »'r �`aEt° Plastlefines_(foridentiilcat ion procedures, Clayey gravels, poorly graded ForundlsturbedsoilsaddInforms. o a A°V.7 ,, .Atterberg limits above borderine7cases e g x Z 8 gee CL below) GCg 7, & r uiring use'of gravcl- clay velclay mixtures lion on atralificetton,degree of .'g •oti Ci "A"line,with PI requiring ''t compactness, cementation. '�'^V O a symbols o g 9--F. moisture conditions and ,o ,�'$ o gren��elhan 7 6 o „ ,0 ,�o Wide range In 6ralrt slits and substantial drainage characteristics 0.-is V ai Crreater than 6 ti d c ; a G- amounts in all .slum and suparticle SW' , Well graded sands, gravelly '0 a, o e t7=Di. coo p,m t, r 8'6' a o Y! 'sizes sends;little or no lines Example: w g" D(Daa)a U ' " ` c o Slily sand,gravelly; about 20%- ks C0=.D10x Do Between I and 3 o., o�'�",3 8 hard,angular gravel particles 3 9 c9. a ',�,• U 3 Predominantly one size era range of sizes Sf, Poorly graded sands, gravelly 'b-tn,maximum size; runded 5 $,�'y 1 dA N 'a lc' with sortie intermediate sizes missing sands,little or no fines and subangufar sand,grains tt c oN Natmce[In¢all¢codationrequlrementsforSJl! "' to ",r..H o coarse to fine,ab out15%non= a P. O'age-" -a.3,'I•a' a c Nonplastic fines'(for Identification pro- stir Silty sands,poorly graded.sand- plastic lines .with low dry 'm 'a' ,a o't:o Atterberg limits 'below' 'Above."A"' lint m eedures see ML below) slit mixtures strength; well compacted and, .� . ' o 0 , o n UT,'0 ,a, •y' '^" t gg p N "A"'llneorPflessthan• with PI between moist in place; alluvial sand; u 5 0 `t'v 5 1 E c,2 w°r (SM): u 5 u,�y 4 and 7 ;arc ,; m a Plastic lines Clayey borderline' cases n :.v� y y 'ednde; poorly graded q >a Atterbcr¢ limits tselow see CL,below), SC sand-clay mixtures - "A" line with PI requiring uses of greater than'9 dual'syntbols , Identificalion•Proccdutcs on'Fracfion Smaller than No,40'Slave Size u a .6 Dry Strength, Toughness m gg (crushing ((reactioDamnn (consistency ac, 1 character- near plastic 60' i i I 1 i te o Istles) to ohakina)' limit) •q 50_Comps lag soffit at equal liqu'ddimil u�E'� None to. Inorganic silts-and very line Glvet - - K' •oe .$ Qulck,to sands rock flour, yplealnome;indicatedicity, '•s a a 'ro=� None' lift ' .silty or and character .of plasticity, P ,"�„. croa slight slow clayey line',sands.with slight Plasticity, �.QO_withIsdsarddryiicfly increase `g'n. z _'3 plasticity amount.and maximum size of .a _with Inaesdna'piastich isder, • coarse grains; colour in wet n 30 Ctl� '$�'� e J Inorganic clays of low to 'condition,odour if any,local or M- i c f; yin.. Medium •to None to medium plasticity., gravelly geologic name,and other ertl- " ' E og. high very slow .•Mcdlttm CL clays,sandy clays,silty s ays', neat descriptive information, :9 `m.'20 IIIIIIIIIgggl S i lean clays- and,symbol!a parentheses e a Oil a'cz Slight to Slow Slight, ,Of, Organic silts and oceanic.silt Cl -¢L UL Nil ,,,,-.4-, i, medium .clays of lowplaspdty .For'undisturbed sots add infer-- '10 a nation.on structurestratlgca- �' CL,-All.tl�r�w,-e•—or ny g. Slight to: ,Slaw to. Slight to 3nor¢onfo sills,: micaceous ar lion conslstenc in undisturbed 41L . —At: 11 7.grs'- medium, ,none. medium AfX' diatomaceous,flag sandy or, and remoulded states,moisture, 0 o. ro fi ,. _ silty soils,elastic silts and drainage conditions. 0 10 20 30 40 50 60 70 80 90 100 ro inorganic ways of high ins Liquid Iif1)it n,fl�r ighish None' High CH P errveryticlty,fat clays `pga¢}ple; Di u Medium to .None to -Slight to OH Organic clays uf medium to high Clayey stir, brown; '•slightly Plasticity chart high very slow . .medium - plasticity plastic; small percentage of for laboratory classification of fine grained soils_ Readily identified by colour, odour, fiat sand; numerous vertical - Highly Organic Soils spongy feel and•frequently by fibrous pl Peat and'other highly organic root holes;, firm and dry In texture -- soils place; loess; (AIL) From.Wagner,1957. - - a Pottndary classIftcatIons. Solis awning chameteklstics of two groups are'designated by combloalltins of group symbols, Per example GW--CC,Well graded"gravel-sand mixture with clay binder. b All sieve sizes on this-chart are U.S.standard, Field These procedures arc to be-performed on the mime No.40 aievesizepartlelea,eppr xlmntclylI din.F Procedure or fig d classssification purposes,screening is notIntended,,simply remove by hand the coarse particles that interfere with the tests, ,bllalancy(Reaction to ahaking)t. Dry Strength(Crushing characteristics): Toughness(Consistency near plastic limit): After removing particles larger than No.40 sieve size,prepare a pat of After removing particles larger than No.40 sieve size,Mould a pat of soil After removing particles larger than the'No,40 sieve size,a specimen of moist soil-with a volume of about one-half-cubic inch, Add enough to the consistency of putty,adding water If necessary. Allow the pat to• soil about'one-half inch cube In size,Is moulded to tile consistency of Water If necessary to make the soli soft but-not sticky, - .dry completely:by oven,-sun or air drying,and then test-Its strength by putty. Mimi dry,.Water must be added and if sticky;the specimen Place the pat in-the open palm of one hand,and shake horizontally;striking ,breaking and crumbling between the fingers, This strength is a measure- should be spread out inn thin layer.ttnd'allowed to lose some moisture vigorously-against the other hand several limes. A.positive reaction of the character and quantity of-the colloidal fraction contained in the by evaporation. Then the specimen Is rolled.aut by hand.on a smooth 'consists of the appearance of,water on the-surface of.the•pat whioh soil. The dry strength increases with Increasing plasticity, surface-or between the,papas Into a thread about one-eight Inch In .a. changes toe livery consistency and becomes glossy. When the sample High dry strength-Is characterlatie-for clays-of the CH group, A'typical diameter,'The thread is Then folded-and're-rolled repeatedly: During•. D is'squeezed between the Angers,the water and gloss disappear from the' inorganic'silt possesses only very-slight dry stran¢lh,,Silty line sands this'manipulation the'moisture content Is gradually reduced and the 03 surface,the patatitTens,and finally It cracks or crumbles. The rapidity and silts have about the same slight dry strengtlt,but can bedistinguished specimen stiffens,;finally loses-Its plasticity, and crumbles when the. 1 of.appearance of water during shaking and of Its disappearance during by the feel when powdering the dried specimen,.Fine sand feels gritty plasticllmlt Is reached. squeezing assist In Identifying the characterof the tines in a soll, whereas a typical silt has the smooth feel of flour, After Ilse thread crumbles,tlic pieces should be lumped together an 0 d a Very One clean Ganda give the quickest and most distinct reaction Whereas slight kneading action continued until the lump crumbles. a plastic_clay has no'reaction. Inorganic slits,ouch-as atypical,rock The tougher the thread near the plastic limit and the stiffer the lump when tiour,showa''modcrately quick reaction• it finally crumbles,the more potent is the colloidal clay fraction In the soil. ,Weakness-of the thread.ot.the.plastle'limlt and quick loss of coherence of the lump below the plastic limit indicate either Inorganic clay of low plasticity,or materials such as kaolin-typo clays and organic clays Witich occur below the A-line. Highly organic clays'hove a very weak and spongy feel at the plastic limit. • , Soil Cltoraclerlstles.Perlincntto Roods and Airfields Major,Divislmts ,Letter. ' Name Varies. iValoe.on 'Velueax .Potentlnt' ..Com tesslbllit" ....Drainage' Icolpester!Voices: ' P Y 6 Compdclinn'&qulpnfenf Ilne'ght C �SutigrndeSYhen Subba'selYhen 'poselVlren Frost :and: .Chafacicrlsties Weight. .CIIR 'Subgrade ,U)l , Not SubJcetlo' Not Subject to NotSubject-to Adieu ;Expansion' ' 'lb.per., Modulusk.. :9jrostActlon a Frost Anton 'Frost Action, - eu:i1.. (1 Ib,per'dmIn. • OW ; Well-graded gravels or gravel sand, Excellent :Excellent 0oed' ,.None to very ' Almost none` ,Excellent , Crawler=type.tractor;rubber tired 125.140` ,40.80.; 13D0:500 • mlxtures,Jihle:ar.no-Onas' "slight ' ' rollei;steel•wheeleii roller. - OP' .Poorly graded gravels orgiavel•sand Clood',toexcellent ,Good Fair to good' Norte to very• ';Almostnone Excellent Crawler-type tractor;rubber•tired • 110:140 •30•60' '300:500 mixtures,little or no fines' slight I ORAVrIL; - - 8 roller;slcei-vihccicd.roller ANu d'' Sally gravels;grovel=sand-silt Good to excellent Good . '•Pairto;good• Sllghttomedium Very.slight Rubber:tired roller,sheepsfoet_. • 125,145 `,40.60' ,'300.500 ' GRAVELLY 'mixtures" - - Falrtopoor' SOILS-. GM roller,close control of molstun: P„ Mood; Falr Poor to nor Slighttomedium 'Slight, 'Pour`topracllcally Rubber-tired roller,sheepsfooL 115-13'5 20-30 200:500 • - suitable ' impervious 'roller. OC' ' Cloyey,gravels;gravel•shnd:clay, Good .Fair :Poet to tot Slight to medium Slight - - Rubber tired roller,sheepsfoot, 130-145 20-40 '200:500: Pe mixtures. :s• uitable:- or to im rvipractically roller per COAPSE•' Pe GRAINED. SW' Well-graded sands or gravelly sands,:' Good .Falr.togond ;Poor; Nonetover Almost "Swt„s. ;little or'no fines - sli ht. Y Eaddlcut Crawler-typeiroetor,rubber•dmd I10.130 20-40 200.400 • roller• 8 _ SANK SP Poorly graded sands or gravelly •Patois good Falr" ;Poor to not None to very -Almost none, Excellent CinB'per-type tractor,rubber tired '"I05:135 10.40 150.400. .AND' 'sands.little-oroo'fttes" ;suitable; sllghe•: roller 'SANDY` d - Silly sands;smtd•silt mixtures Fairto good Fair to good Poor Slighi la high 'Very slight Fair to poor , Rubber tired roller;sheepsfoot '•120.135 15.40 150.400' SOILS SM u • roller;close control ofmoistuto: Fair Foot'Orate .Not suitable SlIght to high. ,Slighrtomedium pore to pructleully Rubber ilru4 roller hsepaloot ",I00.130 10-20 '100.300` ' 'lmpervtous; roller • SC ,'Cloyeyspods;send-Clay tniateres Poor to fair Poor Not suitable Slight tohlgh• :Slighttdmedluni ,poortopreaueoly .Rubbertired roller,slreepsfoot 100-135 ' 5-20 I007300• Impervious. roller 'ML :'luorganlouIlts and.very,Onesands; - Poor to fair 'Not suitable -Notsuhable Medlum,tovery Slight to medium •Fairtopoor Rtihber•tleedroller,shedpsfoot ' 90.130 15orless '100.200''-.reckfour,silty orclayey.fin osands• ;high. - ' roller;el Sitzs .orclayS''SIASwith:atightPlasticity, - osacontrolofmolsturo- ' AND - , ;CL'AYS- 'Cl. loorgunic clays oflowto medium 'Poor to fair Not suitable ;Notsidtablo ,Medium to high Medium -,Pracllcail -Rublicrn eed roller,stern sfeo4 LL plasticity,gravelly clays;sandyclays,. - '- Y ._ P, ;9i1=136' ISorpess 50.156 IS,Less; "silty clays;Iaenclays Impervious roller ' TItAN 50 • FtNe' -OL Organic siits'and organic silt;ela3lo 5 •Poor' Not suitable Not suitable Medium to'hl h Medium, high.OttvrNeo ,low plaitlelly - - ,6 ,Pool- roller dtlred roller,slLecpsfaof ,90.105 'Sor'Iess 50.100 Sous - - 'ratter , hill :tnurgantc silts,rnienceous'or Poor Not suitable Nol suitable 'Medium to very. .High Fair to or.: ".Sliee sfoorroller,rubber-tired, g0-IDS. " dlalontaccaus.Onesaadyois0ly-salls,' high; {e rollep 10orless "50100'. •SILTS' Claatic.titlo. ' .. - " AND ' -- _ • •CLAYS ,CH' lnorgonlcelayso:Medium tohigh., Poor tofelr Not suitable' • Net,suliable Medium_ Nigh ...Practically Sheepsfootrolle,rubbertired: • `ill115: 15or leis• 50.ISO IA.'ts, ',ptasticliy;organtcsllis ,_ • impervious roller- GIIEATEIi ''I HAN"50 ,OH: ,Organic spays of high,pioslicity,fat. Poor to very poor Not suilablc' Not satiable -'Mediumo ;'Nigh' ;clays, _g Precdcally roller ,foetralltr,rubbertlred': 80-I10 Sonless 25•lW • impervious roller • .H10HLY;OftcANICSOILS 'Pl.' `Peat and,other highly orpanlesoIis. 'Not suitable 'Not suitable' Not suitable' -Slight Very.hlgh Fair to poor• CompactIon oat practical — — - — .d Nola:,. (1).1114 Dry',Weights era for Oonmadted'soil aloplimum ntaistura eentam '(2)1he'maxlrnuio vale that can be useddn.deslgn-of." for modified AASE0cotitpoctlonefforl„Dlvisl000fGM and SM' ' byairfieldels,Insome'eeses,llmited groups into subdivlsignn.of land u aro'for'reeds ankh-fields only-, gradation and'"' 0 Y pinaticiryrcyu[ramems. Subdivision is bash of Atterberg liMlls„stiMx d(e.g.,OM411 Will be used when the liquid linrh(LL)is 25 Or less and the plastidlty index-4 G?: 'or less;the suffix u will be'used otherwise. 110/110 GENERAL QUALIFICATIONS This report has been prepared in order to aid in the eValuation of this property and to assist the architect and/or engineer in the design of this project The scope of the project and location described herein, and my description of the project represents my understanding of the significant aspects relevant to soil and foundation charatteristics. In the event that any changes in the design or location of the proposed facilities, as outlined in this report, are planned, I should be informed so the changes can be reviewed and the conclusions of this report modified or approved in writing by myself. It is recommended that all construction operations dealing with earthwork and foundations be inspected by an experienced soil engineer to assure that the design-requirements are fulfilled in the actual construction. If you wish, I would Welcome the opportunity to review the plans and specifications when they have been prepared so that I may have the opportunity of commenting on the effect of soil conditions on-the design and specifications. The analysis and recommendations submitted in this report are based upon the data obtained from the soil borings and/or test pits performed at the locations indicated on -the location diagram and from any other information discussed in the-report. This report does not reflect any variations which may occur between these boring and/or test pits.In the performance of subsurface investigations,specific information is obtained at specific locations at specific times However, it is a well-known fact that variations in soil and rock conditions exist on most Sites between boring _locations and also such situations as groundwater conditions vary from time to time.The nature and extent of variations may may not become evident until the course of construction.If variations then appear evident,it will be necessary for a reevalua- tion of the recommendations of this report after performing on-site Observations durin the construction period and noting the characteristics of any variatiOns. CONSTRUCTION TECHNOLOGY INSPECTION&TESTING DIVISION,P.D.&T.S.,INC. 4 William Street,Ballston Lake,New York 12019 Phone:(518)399-1848 Email:constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 1 :PAGE 1 509 STATE ROUTE 67 REPORT DATE: 7/6/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 FIELD INSPECTOR: DAVE CASAW ATTN: MR.JARED GEORGE PROJECT:WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK FIELD OBSERVATION REPORT:WOOD FRAMING As requested,CONSTRUCTION TECHNOLOGY visited the referenced project site. Purpose of the visit was to observe the installation of the structural wood framing. Upon completion,the following information is provided: Item# 1 Truss spacing,count and bracing as per plans and are properly installed. 2 Strong walls properly installed. 3 Simpson(HDU)Tie-Down fasteners installed. 4 Header straps properly installed. 5 Sill plate anchor properly installed. 6 Wood studs properly spaced and fastened at top&bottom. 7 Hurricane anchors properly installed. 8 Roof Sheeting properly installed. 9 Exterior sheeting nail pattern as per plan. We hope the foregoing information is of assistance. Should there be any questions,or additional information requested,please contact this office immediately. REPORT DISTRIBUTION RESPECTFULLY SUBMi t l ED, 1.FILE 5. CONSTRUCTION TECHNOLOGY 2: 6. RaieW.aikn 3: 7. ROBERT BEHAN,(NICET) 4: 8. MANAGER TECHNICAL SERVICES CONSTRUCTION TECHNOLOGY 4 William Street,Ballston Lake,New York 12019 Phone:(518)399-1848 Email:constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 1 :PAGE#:1 509 STATE ROUTE 67 INSPECTION DATE: 06/06/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 INSPECTOR&TEST SET: SCOTT ROBBINS #17 ATT'N: MR.JARED GEORGE AMBIENT WEATHER: 70's:CLOUDY PROJECT: WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK OUR FILE LOCATION: 230603 CONCRETE FIELD INSPECTION & COMPRESSION TEST RESULTS PLACEMENT LOCATION OF LOAD# 1 : FOOTING:A/1-A/2 PLACEMENT LOCATION OF LOAD# 2: FOOTING:A/2-B/2-B/1.5 PLACEMENT LOCATION OF LOAD# 3: YARDAGE REJECTED:SLUMP DELIVERED LOAD NUMBER: 1 2 3 TRUCK NUMBER/TICKET NUMBER: 441/ 1839221 476 / 1839222 624 / 183923 YARDAGE DELIVERED/SUBTOTAL: 10.00/ 10.00 11.00 / 21.00 10.00 / 31.00 TIME CONC. BATCHED/ARRIVED: 1.59/ 2.20 2.15 / 2.30 2.20 / 2.35 TIME PLACEMENT BEGAN/ENDED: 2.25/ 2.35 2.35 / 2.50 / CONCRETE AGE(HOURS) (SPEC: MAX: 2.00) 0.60 0.58 SLUMP ON ARRIVAL (INCHES): 5.00 5.50 8.50 WATER ADDED ONSITE(GALLONS): WATER ADDED AT DISCRETION OF: SLUMP OF CONCRETE INTO PUMP: IF APPLICABLE: PLACEMENT SLUMP(INCH) (SPEC: 3.00- 5.00) 5.00 5.50 1 8.50 1 ENTRAINED AIR (%VOL) (SPEC: 4.50- 7.50) 6.20 UNIT WEIGHT (PCF) (SPEC: - ) 145.41 CONCRETE TEMP. (F) (SPEC: 45 - 90) 75 74 72 NUMBER OF TEST SPECIMEN CAST: 6 LAB CYLINDER CONTROL NUMBERS 230603- 230608 DISCREPANCIES&REMARKS: 1:CONTRACTOR NOTIFIED:LOAD 2,3:SLUMP PLACEMENT AREA REINFORCEMENT: CLEANLINESS&COVER ACCEPTABLE.PROPERLY SIZED&LOCATED. UNLESS NOTED ALL TESTING IAW: ASTM: C31, C138, C143, C172, C173, C231, C470, C567, C617, C1064 CONCRETE SUPPLIER: CRANESVILLE CONCRETE,INC. CONCRETE TEST CYLINDER COMPRESSIVE RESULTS PER: ASTM:C39 DESIGN STRENGTH&FORMULA: 3000 P.S.I.@ 28 DAYS : UNLESS OTHERWISE NOTED ALL CYLINDERS RECEIVED: 06/07/23 CEMENT: LBS. CYLINDER TEST TEST AGE ULTIMATE UNIT CEMENT: LBS. NUMBER DATE DAYS APPLIED LOAD P.S.I. WATER: GAL. COARSE AGGREGATE#1: LBS. 230603 06/13/23 7 32,850 2620 COARSE AGGREGATE#2: LBS. 230604 06/13/23 7 32,300 2570 COARSE AGGREGATE#3: LBS. 230605 07/04/23 28 43,400 3460 FINE AGGREGATE: LBS. 230606 07/04/23 28 44,700 3560 ADMIXTURE#1: OZS. 230607 07/04/23 28 43,950 3500 ADMIXTURE#2: OZS. 230608 SPARE ADMIXTURE#3: OZS. AIR ENTRAINING AGENT: OZS. REPORT DISTRIBUTION: 1:FILE 5: 2:SUPPLIER 6: 3: 7: 4: 8: RESPECTFULLY SUBMITTED, CONSTRUCTION TECHNOLOGY fur' 4s ROBERT BEHAN (NICET) MANAGER TECHNICAL SVCS. CONSTRUCTION TECHNOLOGY 4 William Street,Ballston Lake,New York 12019 Phone:(518)399-1848 Email:constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 1 :PAGE#:2 509 STATE ROUTE 67 INSPECTION DATE: 06/06/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 INSPECTOR&TEST SET: SCOTT ROBBINS #17 ATT'N: MR.JARED GEORGE AMBIENT WEATHER: 70's:CLOUDY PROJECT: WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK OUR FILE LOCATION: CONCRETE FIELD INSPECTION & COMPRESSION TEST RESULTS PLACEMENT LOCATION OF LOAD# 4: FOOTING:B/1.5-B/1-A/1 DELIVERED LOAD NUMBER: 4 TRUCK NUMBER/TICKET NUMBER: 476/ 1839225 YARDAGE DELIVERED/SUBTOTAL: 11.00/ 32.00 TIME CONC. BATCHED/ARRIVED: 3.15/ 3.45 TIME PLACEMENT BEGAN/ENDED: 3.50/ 4.15 CONCRETE AGE(HOURS) (SPEC: MAX: 2.00) 1.00 SLUMP ON ARRIVAL (INCHES): 5.00 WATER ADDED ONSITE(GALLONS): WATER ADDED AT DISCRETION OF: SLUMP OF CONCRETE INTO PUMP: IF APPLICABLE: PLACEMENT SLUMP(INCH) (SPEC: 3.00- 5.00) 5.00 ENTRAINED AIR (%VOL) (SPEC: 4.50- 7.50) UNIT WEIGHT (PCF)- (SPEC: - ) CONCRETE TEMP. (F) (SPEC: 45 - 90) 74 NUMBER OF TEST SPECIMEN CAST: LAB CYLINDER CONTROL NUMBERS DISCREPANCIES&REMARKS: PLACEMENT AREA REINFORCEMENT: CLEANLINESS&COVER ACCEPTABLE.PROPERLY SIZED&LOCATED. UNLESS NOTED ALL TESTING IAW: ASTM: C31, C138, C143, C172, C173, C231, C470, C567, C617, C1064 CONCRETE SUPPLIER: CRANESVILLE CONCRETE,INC. T CONCRETE TEST CYLINDER COMPRESSIVE RESULTS PER: ASTM:C39 DESIGN STRENGTH&FORMULA: 3000 P.S.I.@ 28 DAYS : UNLESS OTHERWISE NOTED ALL CYLINDERS RECEIVED: 06/07/23 CEMENT: LBS. CYLINDER TEST TEST AGE ULTIMATE UNIT CEMENT: LBS. NUMBER DATE DAYS APPLIED LOAD P.S.I. WATER: GAL. COARSE AGGREGATE#1: LBS. COARSE AGGREGATE#2: LBS. COARSE AGGREGATE#3: LBS. FINE AGGREGATE: LBS. ADMIXTURE#1: OZS. ADMIXTURE#2: OZS. ADMIXTURE#3: OZS. AIR ENTRAINING AGENT: OZS. REPORT DISTRIBUTION: 1:FILE 5: 2:SUPPLIER 6: 3: 7: 4: 8: RESPECTFULLY SUBMITTED, CONSTRUCTION TECHNOLOGY AS4 fl33`a. ROBERT BEHAN (NICET) MANAGER TECHNICAL SVCS. CONSTRUCTION TECHNOLOGY 4 William Street,Ballston Lake,New York 12019 Phone:(518)399-1848 Email:constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 2 :PAGE#:1 509 STATE ROUTE 67 INSPECTION DATE: 06/12/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 INSPECTOR&TEST SET: DONALD HOOK#9 ATT'N: MR.JARED GEORGE AMBIENT WEATHER: 70's:CLOUDY PROJECT: WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK OUR FILE LOCATION: 230765 CONCRETE FIELD INSPECTION & COMPRESSION TEST RESULTS PLACEMENT LOCATION OF LOAD# 1 : FOUNDATION WALL:SOUTH WALL PLACEMENT LOCATION OF LOAD# 2: FOUNDATION WALL:EAST WALL,SOUTH SECTION PLACEMENT LOCATION OF LOAD# 3: FOUNDATION WALL:EAST WALL,NORTH SECTION;NORTH WALL,EAST SECTION DELIVERED LOAD NUMBER: 1 2 3 TRUCK NUMBER/TICKET NUMBER: 688/ 1839252 710 / 1839253 664 / 1839254 YARDAGE DELIVERED/SUBTOTAL: 10.00/ 10.00 10.00 / 20.00 10.00 / 30.00 TIME CONC. BATCHED/ARRIVED: 11.24/ 12.01 11.48 / 12.15 11.58 / 12.30 TIME PLACEMENT BEGAN/ENDED: 12.12/ 12.28 12.34 / 12.48 12.54 / 1.09 CONCRETE AGE(HOURS) (SPEC: MAX: 2.00) 1.07 1.00 1.18 SLUMP ON ARRIVAL (INCHES): 5.00 4.75 4.50 WATER ADDED ONSITE(GALLONS): WATER ADDED AT DISCRETION OF: SLUMP OF CONCRETE INTO PUMP: IF APPLICABLE: 5.00 4.75 4.50 PLACEMENT SLUMP(INCH) (SPEC: 3.00- 5.00) 5.00 4.75 4.50 ENTRAINED AIR (%VOL) (SPEC: 4.50- 7.50) 7.00 UNIT WEIGHT (PCF) (SPEC: - ) 138.14 CONCRETE TEMP. (F) (SPEC: 45 - 90) 78 79 78 NUMBER OF TEST SPECIMEN CAST: 6 LAB CYLINDER CONTROL NUMBERS 230765- 230770 DISCREPANCIES&REMARKS: PLACEMENT AREA REINFORCEMENT: CLEANLINESS&COVER ACCEPTABLE.PROPERLY SIZED&LOCATED. UNLESS NOTED ALL TESTING IAW: ASTM: C31, C138, C143, C172, C173, C231, C470, C567, C617, C1064 CONCRETE SUPPLIER: CRANESVILLE CONCRETE,INC. CONCRETE TEST CYLINDER COMPRESSIVE RESULTS PER: ASTM:C39 DESIGN STRENGTH&FORMULA: 4500 P.S.I.@ 28 DAYS : UNLESS OTHERWISE NOTED ALL CYLINDERS RECEIVED: 06/13/23 CEMENT: LBS. CYLINDER TEST TEST AGE ULTIMATE UNIT CEMENT: LBS. NUMBER DATE DAYS APPLIED LOAD P.S.I. WATER: GAL. COARSE AGGREGATE#1: LBS. 230765 06/19/23 7 46,600 3710 COARSE AGGREGATE#2: LBS. 230766 06/19/23 7 46,200 3680 COARSE AGGREGATE#3: LBS. 230767 07/10/23 28 60,250 4800 FINE AGGREGATE: LBS. 230768 07/10/23 28 59,800 4760 ADMIXTURE#1: OZS. 230769 07/10/23 28 61,300 4880 ADMIXTURE#2: OZS. 230770 SPARE ADMIXTURE#3: OZS. AIR ENTRAINING AGENT: OZS. REPORT DISTRIBUTION: 1:FILE 5: 2:SUPPLIER 6: 3: 7: 4: 8: RESPECTFULLY SUBMITTED, CONSTRUCTION TECHNOLOGY ROBERT BEHAN (NICET) MANAGER TECHNICAL SVCS. CONSTRUCTION TECHNOLOGY 4 William Street,Ballston Lake,New York 12019 Phone:(518)399-1848 Email:constructiontech@live.com CLIENT: ' QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 2 :PAGE#:2 509 STATE ROUTE 67 INSPECTION DATE: 06/12/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 INSPECTOR&TEST SET: DONALD HOOK#9 ATT'N: MR.JARED GEORGE AMBIENT WEATHER: 70's:CLOUDY PROJECT: WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK OUR FILE LOCATION: CONCRETE FIELD INSPECTION & COMPRESSION TEST RESULTS PLACEMENT LOCATION OF LOAD# 4: FOUNDATION WALL:NORTH WALL,WEST SECTION;WEST WALL,NORTH SECTION PLACEMENT LOCATION OF LOAD# 5: FOUNDATION WALL:WEST WALL,SOUTH SECTION DELIVERED LOAD NUMBER: 4 5 TRUCK NUMBER/TICKET NUMBER: 441/ 1839255 624 / 1839256 YARDAGE DELIVERED/SUBTOTAL: 10.00/ 40.00 7.00 I 47.00 TIME CONC. BATCHED/ARRIVED: 12.09/ 12.45 12.16 / 12.50 TIME PLACEMENT BEGAN/ENDED: 1.14/ 1.27 1.31 / 1.36 CONCRETE AGE(HOURS) (SPEC: MAX: 2.00) 1.30 1.33 SLUMP ON ARRIVAL (INCHES): 4.75 4.50 WATER ADDED ONSITE(GALLONS): WATER ADDED AT DISCRETION OF: SLUMP OF CONCRETE INTO PUMP: IF APPLICABLE: 4.75 4.50 PLACEMENT SLUMP(INCH) (SPEC: 3.00- 5.00) 4.75 4.50 ENTRAINED AIR (%VOL) (SPEC: 4.50- 7.50) UNIT WEIGHT (PCF) (SPEC: - ) CONCRETE TEMP. (F) (SPEC: 45 - 90) 79 78 NUMBER OF TEST SPECIMEN CAST: LAB CYLINDER CONTROL NUMBERS DISCREPANCIES&REMARKS: PLACEMENT AREA REINFORCEMENT: CLEANLINESS&COVER ACCEPTABLE.PROPERLY SIZED&LOCATED. UNLESS NOTED ALL TESTING IAW: ASTM: C31, C138, C143, C172, C173, C231, C470, C567, C617, C1064 CONCRETE SUPPLIER: CRANESVILLE CONCRETE,INC. CONCRETE TEST CYLINDER COMPRESSIVE RESULTS PER: ASTM:C39 DESIGN STRENGTH&FORMULA: 4500 P.S.I.@ 28 DAYS : UNLESS OTHERWISE NOTED ALL CYLINDERS RECEIVED: 06/13/23 CEMENT: LBS. CYLINDER TEST TEST AGE ULTIMATE UNIT CEMENT: LBS. NUMBER DATE DAYS APPLIED LOAD P.S.I. WATER: GAL. COARSE AGGREGATE#1: LBS. COARSE AGGREGATE#2: LBS. COARSE AGGREGATE#3: LBS. FINE AGGREGATE: LBS. ADMIXTURE#1: OZS. ADMIXTURE#2: OZS. ADMIXTURE#3: OZS. AIR ENTRAINING AGENT: OZS. REPORT DISTRIBUTION: 1:FILE 5: 2:SUPPLIER 6: 3: 7: 4: 8: RESPECTFULLY SUBMITTED, CONSTRUCTION TECHNOLOGY ROBERT BEHAN (NICET) MANAGER TECHNICAL SVCS. CONSTRUCTION TECHNOLOGY INSPECTION&TESTING DIVISION,P.D.&T.S., INC. 4 William Street, Ballston Lake,New York 12019 Phone: (518)399-1848 Email: constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT DATE: 06/14/23 509 STATE ROUTE 67 SAMPLE NUMBER: 23234 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 LAB TECHNICIAN: ROBERT BEHAN ATT'N: MR.JARED GEORGE PROJECT: WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK REPORT OF MOISTURE/DENSITY RELATION OF SOILS ::: PROCTOR MATERIAL SOURCE: ONSITE MATERIAL:SAMPLE-2 MATERIAL DESCRIPTION: SAND,medium/fine;trace Silt/Clay;trace fine Gravel PROCTOR METHOD: ASTM D-1557:MODIFIED EFFORT GRADATION METHOD: ASTM D-1140/D-422:WASHED ZERO AIR VOIDS CURVE: 2.46 SPECIFIC GRAVITY MAXIMUM DENSITY 110.6 PCF OPTIMUM MOISTURE 12.8 % 116 I I J I I I I I J I I GRADATION 115 SIEVE PERCENT SPECIFICATION I I I I I I I I I I SIZE PASSING ALLOWANCE I I I I I 4" 114 --I 3" } • 2 1/2 113 1 1/2" >- 1, >- ceI i 3/4" 100.0 0112 1/2" 99.0 0 3/8" 98.5 1/4" 97.2 111 #4 96.0 I I 1/8" a #8 92.6 p 110 #10 � I #16 83.3 00 I I I 1 #20 109 #30 54.2 I I I I I #40 37.5 I #50 22.8 108 #60 18.9 I I I I #80 I I I I I I #100 11.0 • - 107 I I _1. I I I 1 I L_ I i #140 9 10 11 12 13 14 15 16 17 #200 7.6 MOISTURE CONTENT::: PERCENT DRY WEIGHT REPORT DISTRIBUTION: GENERAL NOTES: Respectfully, 1: CONSTRUCTION TECHNOLOGY 4: ROBERT BEHAN,(NICET) 5: MANAGER TECHNICAL SERVICES • CONSTRUCTION TECHNOLOGY INSPECTION&TESTING DIVISION, P.D.&T.S.,INC. 4 William Street, Ballston Lake,New York 12019 Phone: (518)399-1848 Email: constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT DATE: 06/15/23 509 STATE ROUTE 67 SAMPLE NUMBER: 23236 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 LAB TECHNICIAN: ROBERT BEHAN ATT'N: MR.JARED GEORGE PROJECT: WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK REPORT OF MOISTURE/DENSITY RELATION OF SOILS ::: PROCTOR MATERIAL SOURCE: BORROW:CRUSHER RUN MATERIAL DESCRIPTION: CRUSHED STONE sized as:GRAVEL,tine;and Sand;trace Silt/Clay PROCTOR METHOD: ASTM D-1557:MODIFIED EFFORT GRADATION METHOD: ASTM D-1140/D-422:WASHED ZERO AIR VOIDS CURVE: 2.72 SPECIFIC GRAVITY MAXIMUM DENSITY 143.2 PCF 148 OPTIMUM MOISTURE 5.1 % 1 - I GRADATION I 1 SIEVE PERCENT SPECIFICATION 147 I I I SIZE PASSING ALLOWANCE I I 4" 146 . 2 1/2" • in I I I I • 2. w I I I I 1 1/2" 0 1„ 145 I I 0 •3/4" 100.0 0 1/2" 96.3 O I I I 3/8" 77.4 U 144 I 1/4" 54.8 D I I #4 50.5 V I CL 1/8" a,143 I #8 39.7 co I 7.--- I #10 z I I I . #16 27.9 O I I #20 0-142 I #30 20.2 I I #40 17.6 I I" #50 15.1 141 I I I I #60 13.4 I I #80 #100 10.0 - 140 L #140 1 2 3 4 5 6 7 8 9 #200 7.5 MOISTURE CONTENT:::PERCENT DRY WEIGHT • REPORT DISTRIBUTION: GENERAL NOTES: Respectfully, • I: CONSTRUCTION TECHNOLOGY 2: 3: .8,cio.o 4: ROBERT BEHAN,(NICET) 5: MANAGER TECHNICAL SERVICES CONSTRUCTION TECHNOLOGY INSPECTION&TESTING DIVISION,P.D.&T.S.,INC. 4 William Street,Ballston Lake,New York 12019 Phone: (518)399-1848 Email: constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 1:PAGE#: 1 509 STATE ROUTE 67 INSPECTION DATE: 05/26/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 1681.003 FIELD INSPECTOR: MIKE MARQUETTE ATT'N: MR.JERED GEORGE PROJECT:WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK SOIL COMPACTION VERIFICATION REPORT ::: INPLACE SOIL DENSITY MATERIALS LABORATORY DATA CODE MOISTURE MAX DENSITY PCF MATERIAL DESCRIPTION MATERIAL SOURCE 23199 10.7 119.8 SAND,medium/fine;some fine Gravel;trace Silt/Clay ONSITE MATERIAL FIELD COMPACTION TEST RESULTS LOCATION OF TESTING: FOOTING SUBGRADE ELEVATION REFERENCE: F.G.=FINISH GRADE=TOP OF FOOTING SUBGRADE COMPACTION TEST METHOD ASTM D-6938 CO-ORDINATE REFERENCE: PER LOCATION COMPACTION REQUIREMENTS 95.0% TEST SOIL SOIL DEPTH OR MOISTURE INPLACE DRY PERCENT NO. BEARING CODE ELEVATION LOCATION OF TEST CONTENT DENSITY(PCF) COMPACT 1 23199 FINISH GRADE NORTHEAST BUILDING CORNER 3.8% 115.4 96.3% 2 23199 FINISH GRADE NORTH WALL,CENTER 3.1 % 114.0 95.2% 3 23199 FINISH GRADE NORTHWEST BUILDING CORNER 3.0% 116.1 96.9% 4 23199 FINISH GRADE WEST WALL,CENTER 3.6% 114.7 95.7% 5 23199 FINISH GRADE SOUTHWEST BUILDING CORNER 4.0% 115.9 96.7% 6 23199 FINISH GRADE SOUTH WALL,CENTER 3.2% 117.3 97.9% 7 23199 FINISH GRADE SOUTHEAST BUILDING CORNER 4.1 % 116.0 96.8% 8 23199 FINISH GRADE EAST WALL,CENTER 3.5% 114.2 95.3% REPORT DISTRIBUTION: GENERAL NOTES: RESPECTFULLY SUBMITTED, 1:FILE 1.D-1556=SAND CONE METHOD OF TEST CONSTRUCTION TECHNOLOGY 2: 2.D-6938=NUCLEAR GAUGE METHOD OF TEST 3: 3. FF =FINISH FLOOR 4: 4. FG =FINISH GRADE '. e, 5: 5. ROBERT BEHAN(NICET) 6: 6. MANAGER TECHNICAL SERVICES CONSTRUCTION TECHNOLOGY INSPECTION&TESTING DIVISION,P.D.&T.S.,INC. 4 William Street,Ballston Lake,New York 12019 Phone: (518)399-1848 Email:constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 2:PAGE#: 1 509 STATE ROUTE 67 INSPECTION DATE: 06/01/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 FIELD INSPECTOR: DAVE CASAW ATT'N: MR.JARED GEORGE PROJECT:WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK SOIL COMPACTION VERIFICATION REPORT ::: INPLACE SOIL DENSITY MATERIALS LABORATORY DATA CODE MOISTURE MAX DENSITY PCF MATERIAL DESCRIPTION MATERIAL SOURCE 23199 10.7 119.8 SAND,medium/fine;some fine Gravel;trace•Silt/Clay ONSITE MATERIAL FIELD COMPACTION TEST RESULTS LOCATION OF TESTING: UNDERGROUND DETENTION AREA ELEVATION REFERENCE: USGS ELEVATION REFERENCE COMPACTION TEST METHOD ASTM D-6938 CO-ORDINATE REFERENCE: PER LOCATION COMPACTION REQUIREMENTS 95.0% TEST SOIL SOIL DEPTH OR MOISTURE INPLACE DRY PERCENT NO. BEARING CODE ELEVATION LOCATION OF TEST CONTENT DENSITY(PCF) COMPACT 1 23199 472.30 UNDER GROUND DETENTION AREA,CENTER 3.7% 116.5 97.2% 2 23199 470.80 UNDER GROUND DETENTION AREA,SW CORNER 3.9% 117.0 97.7% 3 23199 470.90 EAST OF INSPECTION PORT 4.1 % 116.1 96.9 REPORT DISTRIBUTION: GENERAL NOTES: RESPECTFULLY SUBMITTED, 1:FILE 1.D-1556=SAND CONE METHOD OF TEST CONSTRUCTION TECHNOLOGY 2: 2.D-6938=NUCLEAR GAUGE METHOD OF TEST 3: 3. FF =FINISH FLOOR 4: 4. FG =FINISH GRADE /r .CFeekr 5: 5. ROBERT BEHAN(NICET) 6: 6. MANAGER TECHNICAL SERVICES CONSTRUCTION TECHNOLOGY INSPECTION&TESTING DIVISION, P.D.&T.S.,INC. 4 William Street,Ballston Lake,New York 12019 Phone: (518)399-1848 Email:constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 3:PAGE#: 1 509 STATE ROUTE 67 INSPECTION DATE: 06/14/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 FIELD INSPECTOR: TONY SHAHINIAN ATT'N: MR.JARED GEORGE PROJECT:WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK SOIL COMPACTION VERIFICATION REPORT ::: INPLACE SOIL DENSITY MATERIALS LABORATORY DATA CODE MOISTURE MAX DENSITY PCF MATERIAL DESCRIPTION MATERIAL SOURCE 23199 10.7 119.8 SAND,medium/fine;some fine Gravel;trace Silt/Clay ONSITE MATERIAL 23234 12.8 110.6 SAND,medium/fine;trace Silt/Clay;trace fine Gravel ONSITE MATERIAL:SAMPLE-2• FIELD COMPACTION TEST RESULTS LOCATION OF TESTING: FOUNDATION SYSTEM BACVKFILL ELEVATION REFERENCE: F.G.=FINISH GRADE=TOP OF FOUNDATION WALL COMPACTION TEST METHOD ASTM D-6938 CO-ORDINATE REFERENCE: PER LOCATION COMPACTION REQUIREMENTS 95.0% TEST SOIL SOIL T DEPTH OR MOISTURE INPLACE DRY PERCENT NO. BEARING CODE ELEVATION LOCATION OF TEST CONTENT DENSITY(PCF) COMPACT 1 23234 F.G.-4.00' INTERIOR BACKFILL:A/2 5.8% 105.6 95.5% 2 23234 F.G.-4.00' INTERIOR BACKFILL:A/1 6.1 % 106.3 96.1 3 23234 F.G.-4.00' INTERIOR BACKFILL:B/1 4.8% 107.0 96.7% 4 23234 F.G.-4.00' INTERIOR BACKFILL:B/2 5.0% 105.4 95.3% REPORT DISTRIBUTION: GENERAL NOTES: RESPECTFULLY SUBMITTED, 1:FILE 1.D-1556=SAND CONE METHOD OF TEST CONSTRUCTION TECHNOLOGY 2: 2.D-6938=NUCLEAR GAUGE METHOD OF TEST 3: 3. FF =FINISH FLOOR 4: 4. FG =FINISH GRADE i'f'a�. .C�3.0 is 5: 5. ROBERT BEHAN(NICET) 6: 6. MANAGER TECHNICAL SERVICES CONSTRUCTION TECHNOLOGY INSPECTION&TESTING DIVISION,P.D.&T.S.,INC. 4 William Street,Ballston Lake,New York 12019 Phone: (518)399-1848 Email: constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 4:PAGE#: 1 509 STATE ROUTE 67 INSPECTION DATE: 06/15/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 FIELD INSPECTOR: TONY SHAHINIAN ATT'N: MR.JARED GEORGE PROJECT:WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK SOIL COMPACTION VERIFICATION REPORT ::: INPLACE SOIL DENSITY MATERIALS LABORATORY DATA CODE MOISTURE MAX DENSITY PCF MATERIAL DESCRIPTION MATERIAL SOURCE 23199 10.7 119.8 SAND,medium/fine;some fine Gravel;trace Silt/Clay ONSITE MATERIAL 23234 12.8 110.6 SAND,medium/fine;trace Silt/Clay;trace fine Gravel ONSITE MATERIAL:SAMPLE-2 FIELD COMPACTION TEST RESULTS LOCATION OF TESTING: FOUNDATION SYSTEM BACVKFILL ELEVATION REFERENCE: F.G.=FINISH GRADE=TOP OF FOUNDATION WALL COMPACTION TEST METHOD ASTM D-6938 CO-ORDINATE REFERENCE: PER LOCATION COMPACTION REQUIREMENTS 95.0% TEST SOIL SOIL DEPTH OR MOISTURE INPLACE DRY PERCENT NO. BEARING CODE ELEVATION LOCATION OF TEST CONTENT DENSITY(PCF) COMPACT 1 23234 F.G.-3.00' INTERIOR BACKFILL:A/1.5 4.8% 108.1 97.7% 2 23234 F.G.-3.00' INTERIOR BACKFILL:A/2 5.1 % 106.2 96.0% 3 23234 F.G.-3.00' INTERIOR BACKFILL:B/1.5 4.7% 106.6 96.4% 4 23234 F.G.-3.00' INTERIOR BACKFILL:A.5/1.5 4.3% 105.2 95.1 % 5 23234 F.G.-2.00' INTERIOR BACKFILL:A/1.5 5.3% 107.3 97.0% 6 23234 F.G.-2.00' INTERIOR BACKFILL:A.5/2 4.8% 107.6 97.3% 7 23234 F.G.-2.00' INTERIOR BACKFILL:B/1.5 5.4% 109.4 98.9 8 23234 F.G.-2.00' INTERIOR BACKFILL:A.5/1.5 4.6% 108.0 97.6% 9 23234 F.G.-1.00' INTERIOR BACKFILL:A/1.5 3.9% 107.3 97.0% 10 23234 F.G.-1.00' INTERIOR BACKFILL:A.5/2 5.1 % 105.9 95.8% REPORT DISTRIBUTION: GENERAL NOTES: RESPECTFULLY SUBMITTED, 1:FILE 1.D-1556=SAND CONE METHOD OF TEST CONSTRUCTION TECHNOLOGY 2: 2.D-6938=NUCLEAR GAUGE METHOD OF TEST 3: 3. FF =FINISH FLOOR 4: 4. FG =FINISH GRADE i'retect ' -" 5: 5. ROBERT BEHAN(NICET) 6: 6. MANAGER TECHNICAL SERVICES CONSTRUCTION TECHNOLOGY INSPECTION&TESTING DIVISION,P.D.&T.S.,INC. 4 William Street,Ballston Lake,New York 12019 Phone: (518)399-1848 Email:constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 4:PAGE#:2 509 STATE ROUTE 67 INSPECTION DATE: 06/15/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 FIELD INSPECTOR: TONY SHAHINIAN ATT'N: MR.JARED GEORGE PROJECT:WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK SOIL COMPACTION VERIFICATION REPORT ::: INPLACE SOIL DENSITY MATERIALS LABORATORY DATA CODE MOISTURE MAX DENSITY PCF MATERIAL DESCRIPTION MATERIAL SOURCE 23199 10.7 119.8 SAND,medium/fine;some fine Gravel;trace Silt/Clay ONSITE MATERIAL 23234 12.8 110.6 SAND,medium/fine;trace Silt/Clay;trace fine Gravel ONSITE MATERIAL:SAMPLE-2 FIELD COMPACTION TEST RESULTS LOCATION OF TESTING: FOUNDATION SYSTEM BACVKFILL ELEVATION REFERENCE: F.G.=FINISH GRADE=TOP OF FOUNDATION WALL COMPACTION TEST METHOD ASTM D-6938 CO-ORDINATE REFERENCE: PER LOCATION COMPACTION REQUIREMENTS 95.0% TEST SOIL SOIL DEPTH OR MOISTURE INPLACE DRY PERCENT NO. BEARING CODE ELEVATION LOCATION OF TEST CONTENT DENSITY(PCF) COMPACT 11 23234 F.G.-1.00' INTERIOR BACKFILL:A/1.5 4.4% 107.3 97.0% 12 23234 F.G.-1.00' INTERIOR BACKFILL:A.5/2 4.6% 105.6 95.5% REPORT DISTRIBUTION: GENERAL NOTES: RESPECTFULLY SUBMITTED, 1:FILE 1.D-1556=SAND CONE METHOD OF TEST CONSTRUCTION TECHNOLOGY 2: 2.D-6938=NUCLEAR GAUGE METHOD OF TEST 3: 3. FF =FINISH FLOOR 4: 4. FG =FINISH GRADE 7'�-rer 5: 5. ROBERT BEHAN(NICET) 6: 6. MANAGER TECHNICAL SERVICES CONSTRUCTION TECHNOLOGY INSPECTION&TESTING DIVISION,P.D.&T.S.,INC. 4 William Street,Ballston Lake,New York 12019 Phone: (518)399-1848 Email:constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 5:PAGE#: 1 509 STATE ROUTE 67 INSPECTION DATE: 06/15/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 FIELD INSPECTOR: TONY SHAHINIAN ATT'N: MR.JARED GEORGE PROJECT:WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK SOIL COMPACTION VERIFICATION REPORT ::: INPLACE SOIL DENSITY MATERIALS LABORATORY DATA CODE MOISTURE MAX DENSITY PCF MATERIAL DESCRIPTION MATERIAL SOURCE 23199 10.7 119.8 SAND,medium/fine;some fine Gravel;trace Silt/Clay ONSITE MATERIAL 23234 12.8 110.6 SAND,medium/fine;trace Silt/Clay;trace fine Gravel ONSITE MATERIAL:SAMPLE-2 FIELD COMPACTION TEST RESULTS LOCATION OF TESTING: SLAB ON GRADE SUBGRADE ELEVATION REFERENCE: F.G.=FINISH GRADE=TOP OF SLAB SUBGRADE COMPACTION TEST METHOD ASTM D-6938 CO-ORDINATE REFERENCE: PER LOCATION COMPACTION REQUIREMENTS 95.0% TEST SOIL SOIL DEPTH OR MOISTURE INPLACE DRY PERCENT NO. BEARING CODE ELEVATION LOCATION OF TEST CONTENT DENSITY(PCF) COMPACT 1 23234 F.G.-1.00' SLAB SUBGRADE:B.8/1.2 5.7% 107.3 97.0% 2 23234 F.G.-1.00' SLAB SUBGRADE:B.5/1.3 6.1 % 109.6 99.1 % 3 23234 F.G.-1.00' SLAB SUBGRADE:B/1 6.6% 106.1 95.9% 4 23234 F.G.-1.00' SLAB SUBGRADE:A.2/1.8 5.0% 105.9 95.8% 5 23234 F.G.-1.00' SLAB SUBGRADE:B.5/1.5 4.2% 107.2 96.9% 6 23234 F.G.-1.00' SLAB SUBGRADE:B.2/1.9 4.7% 107.6 97.3% REPORT DISTRIBUTION: GENERAL NOTES: RESPECTFULLY SUBMITTED, • 1:FILE 1.D-1556=SAND CONE METHOD OF TEST CONSTRUCTION TECHNOLOGY 2: 2.D-6938=NUCLEAR GAUGE METHOD OF TEST 3: 3. FF =FINISH FLOOR 4: 4. FG =FINISH GRADE /0 .�. ¢a 5: 5. ROBERT BEHAN(NICET) 6: 6. MANAGER TECHNICAL SERVICES CONSTRUCTION TECHNOLOGY INSPECTION&TESTING DIVISION,P.D.&T.S.,INC. 4 William Street,Ballston Lake,New York 12019 Phone: (518)399-1848 Email:constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 4:PAGE#:2 509 STATE ROUTE 67 INSPECTION DATE: 06/15/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 FIELD INSPECTOR: TONY SHAHINIAN ATT'N: MR.JARED GEORGE PROJECT:WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK SOIL COMPACTION VERIFICATION REPORT ::: INPLACE SOIL DENSITY MATERIALS LABORATORY DATA CODE MOISTURE MAX DENSITY PCF MATERIAL DESCRIPTION MATERIAL SOURCE 23199 10.7 119.8 SAND,medium/fine;some fine Gravel;trace Silt/Clay ONSITE MATERIAL 23234 12.8 110.6 SAND,medium/fine;trace Silt/Clay;trace fine Gravel ONSITE MATERIAL:SAMPLE-2 FIELD COMPACTION TEST RESULTS LOCATION OF TESTING: FOUNDATION SYSTEM BACVKFILL ELEVATION REFERENCE: F.G.=FINISH GRADE=TOP OF FOUNDATION WALL COMPACTION TEST METHOD ASTM D-6938 CO-ORDINATE REFERENCE: PER LOCATION COMPACTION REQUIREMENTS 95.0% TEST SOIL SOIL DEPTH OR MOISTURE INPLACE DRY PERCENT NO. BEARING CODE ELEVATION LOCATION OF TEST CONTENT DENSITY(PCF) COMPACT 11 23234 F.G.-1.00' INTERIOR BACKFILL:A/1.5 4.4% 107.3 97.0% 12 23234 F.G.-1.00' INTERIOR BACKFILL:A.5/2 4.6% 105.6 95.5% REPORT DISTRIBUTION: GENERAL NOTES: RESPECTFULLY SUBMITTED, 1:FILE 1.D-1556=SAND CONE METHOD OF TEST CONSTRUCTION TECHNOLOGY 2: 2.D-6938=NUCLEAR GAUGE METHOD OF TEST 3: 3. FF =FINISH FLOOR if�e�.tf. r 4: 4. FG =FINISH GRADE 5: 5. ROBERT BEHAN(NICET) 6: 6. MANAGER TECHNICAL SERVICES CONSTRUCTION TECHNOLOGY INSPECTION&TESTING DIVISION,P.D.&T.S.,INC. 4 William Street,Ballston Lake,New York 12019 Phone: (518)399-1848 Email:constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 6:PAGE#: 1 509 STATE ROUTE 67 INSPECTION DATE: 06/16/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 FIELD INSPECTOR: MIKE MARQUETTE ATT'N: MR.JARED GEORGE PROJECT:WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK SOIL COMPACTION VERIFICATION REPORT ::: INPLACE SOIL DENSITY MATERIALS LABORATORY DATA CODE MOISTURE MAX DENSITY PCF MATERIAL DESCRIPTION MATERIAL SOURCE 23199 10.7 119.8 SAND,medium/fine;some fine Gravel;trace Silt/Clay ONSITE MATERIAL 23234 12.8 110.6 SAND,medium/fine;trace Silt/Clay;trace fine Gravel ONSITE MATERIAL:SAMPLE-2 23236 5.1 143.2 CR STONE sized as:GRAVEL,fine;and Sand;trace Silt/Clay BORROW:CRUSHER RUN FIELD COMPACTION TEST RESULTS LOCATION OF TESTING: SLAB ON GRADE SUBGRADE ELEVATION REFERENCE: F.G.=FINISH GRADE=TOP OF SLAB SUBGRADE COMPACTION TEST METHOD ASTM D-6938 CO-ORDINATE REFERENCE: PER LOCATION COMPACTION REQUIREMENTS 95.0% TEST SOIL SOIL DEPTH OR MOISTURE INPLACE DRY PERCENT NO. BEARING CODE ELEVATION LOCATION OF TEST CONTENT DENSITY(PCF) COMPACT 1 23236 FINISH GRADE SLAB SUBGRADE:SOUTHEAST BUILDING CORNER 2.3% 139.9 97.7% 2 23236 FINISH GRADE SLAB SUBGRADE:SOUTHWEST BUILDING CORNER 2.2% 138.7 96.9% 3 23236 FINISH GRADE SLAB SUBGRADE:BUILDING PAD CENTER 2.9% 138.3 96.6% 4 23236 FINISH GRADE SLAB SUBGRADE:NORTHEAST BUILDING CORNER 2.7% 138.6 96.8% 5 23236 FINISH GRADE SLAB SUBGRADE:NORTHWEST BUILDING CORNER 2.6% 137.9 96.3% REPORT DISTRIBUTION: GENERAL NOTES: RESPECTFULLY SUBMITTED, 1:FILE 1.D-1556=SAND CONE METHOD OF TEST CONSTRUCTION TECHNOLOGY 2: 2.D-6938=NUCLEAR GAUGE METHOD OF TEST 3: 3. FF =FINISH FLOOR 4: 4. FG =FINISH GRADE i'a�.tf.Cr air 5: 5. ROBERT BEHAN(NICET) 6: 6. MANAGER TECHNICAL SERVICES CONSTRUCTION TECHNOLOGY 4 William Street,Ballston Lake,New York 12019 Phone:(518)399-1848 Email:constructiontech@live.com CLIENT: QUEENSBURY REALTY PARTNERS,LLC. REPORT NUMBER: 3 :PAGE#:1 509 STATE ROUTE 67 INSPECTION DATE: 09/06/23 MALTA,NEW YORK 12020 OUR FILE NUMBER: 100.187 INSPECTOR&TEST SET: PAUL SANTIAGO#14 ATT'N: MR.JARED GEORGE AMBIENT WEATHER: 80's:CLEAR PROJECT: WELL NOW URGENT CARE:920 ROUTE 9,QUEENSBURY,NEW YORK OUR FILE LOCATION: 234957 CONCRETE FIELD INSPECTION & COMPRESSION TEST RESULTS PLACEMENT LOCATION OF LOAD# 1 : SIDEWALK ON ROUTE 9 DELIVERED LOAD NUMBER: 1 TRUCK NUMBER/TICKET NUMBER: 624/ 1830223 YARDAGE DELIVERED/SUBTOTAL: 7.50/ 7.50 TIME CONC. BATCHED/ARRIVED: 1,20/ 1.30 TIME PLACEMENT BEGAN/ENDED: 1.45/ 2.39 CONCRETE AGE(HOURS) (SPEC: MAX: 2.00) 1.32 SLUMP ON ARRIVAL (INCHES). 3.25 WATER ADDED ONSITE(GALLONS): WATER ADDED AT DISCRETION OF: SLUMP OF CONCRETE INTO PUMP: IF APPLICABLE: 3.25 PLACEMENT SLUMP(INCH) (SPEC: 3.00- 5.00) 3.25 ENTRAINED AIR (%VOL) (SPEC: 4.50- 7.50) 6.20 UNIT WEIGHT (PCF) (SPEC: - ) 144.80 CONCRETE TEMP. (F) (SPEC: 45 - 90) 85 NUMBER OF TEST SPECIMEN CAST: 6 LAB CYLINDER CONTROL NUMBERS 234957- 234962 DISCREPANCIES&REMARKS: PLACEMENT AREA REINFORCEMENT: CLEANLINESS&COVER ACCEPTABLE.PROPERLY SIZED&LOCATED. UNLESS NOTED ALL TESTING IAW: ASTM: C31, C138, C143, C172, C173, C231, C470, C567, C617, C1064 CONCRETE SUPPLIER: CRANESVILLE CONCRETE,INC. CONCRETE TEST CYLINDER COMPRESSIVE RESULTS PER: ASTM:C39 DESIGN STRENGTH&FORMULA: P.S.I.@ 28 DAYS : NYSDoT CLASS D UNLESS OTHERWISE NOTED ALL CYLINDERS RECEIVED: 09/07/23 CEMENT: LBS. CYLINDER TEST TEST AGE ULTIMATE UNIT CEMENT: LBS. NUMBER DATE DAYS APPLIED LOAD P.S.I. WATER: GAL. COARSE AGGREGATE#1: LBS. 234957 09/13/23 7 66,450 5290 COARSE AGGREGATE#2: LBS. 234958 09/13/23 7 65,600 5220 COARSE AGGREGATE#3: LBS. 234959 10/04/23 28 FINE AGGREGATE: LBS. 234960 10/04/23 28 ADMIXTURE#1: OZS. 234961 10/04/23 28 ADMIXTURE#2: OZS. 234962 SPARE ADMIXTURE#3: OZS. AIR ENTRAINING AGENT: OZS. REPORT DISTRIBUTION: 1:FILE 5: 2:SUPPLIER 6: 3: 7: 4: 8: RESPECTFULLY SUBMITTED, CONSTRUCTION TECHNOLOGY ROBERT BEHAN (NICET) MANAGER TECHNICAL SVCS.