Loading...
2004-091 'TOWN OF QUEENSBURY 742 Bay Road,Queensbury,NY 12804-5902 (518) 761-8201 Community Development - Building & Codes (518) 761-8256 CERTIFICATE: OF OCCUPANCY ' Permit-Number:' P20040091. _ Date Issued:. Monday, December 19, 2005 This is to certify that work requested to-be done as shown by Permit Number P20040091 has been completed. Tax Map Number: 523400-303-015-0001-005-000-0000 Location: 287 DIX Ave Owner: CRAIG BURROWS Applicant: GLENS FALLS TILE & SUPPLIES' This structure may be occupied as a: Commercial Alteration By order of Town Board Commercial/ Industrial Unheated TOWN OF QuEElvssuRY Issuance of this Certificate of Occupancy DOES NOT relieve the property owner of the responsibility for compliance with Site Plan, Variance, or other issues and conditions -as a result of approvals_by the _ Director of Building&Code Enforcement Planning Board or Zoning Board of Appeals. TOWN OF QUEENSBURY 742 Bay Road,Queensbuty,NY,12804-5902 (518)761-8201 Community Development-Building& Codes (518) 761-8256 . BUILDING PERMIT Permit Number: P20040091 Application Number: A20040091 Tax Map No: 523400-303-015-0001-005-000-0000 Permission is hereby granted to:' C'TT,F,NS FAT,T,S-TTI,F& STTPPT,TF,S- For property located at: 287 DIX Ave in the Town of Queensbury,to construct or place at the above location in accordance with application together with plot plans`and'.other information hereto filed and approved and in compliance with the NYS Uniform Building Codes and the Queensbury Zoning Ordinance. Type of Construction Value_ t Owner Address: CRAIG BURROWS 287 DIX Ave Commercial Alteration UEENSBURY, NY 12804-0000'' Cominercial/Industrial Unhea $80,000.00 Q Total Value $80,000.00 Contractor or Builder's Name /Address Electrical Inspection Agency Plans&Specifications, 2004-091 GLENS FALLS,TILE 1600 SQ FT COMMERCIAL INTERIOR ALTERATION AND,4000 SQ FT UNDATED WAREHOUSE ADDITION' $220.00 PERMIT FEE PAID-THIS PERMIT..EXPIRES: T ursday, April 20, 2006' (If a longer period is required,an application for an extension,must be made to the code Enforcement Officer of the Town of Queensbury before the expiration date.) I Dated at the T of Quee bury; JueWay,April 20, 2004 SIGNED BY A for the Town of Queensbury. Director ofBuildin C64 Enforcement - i \ ` TOWN OF QUEENSBURY 742 Bay Road,Queensbury,NY 12804-5902 (518)761-8201 Community Development-Building&Codes (518) 761-8256. .. BUILDING PERMIT Permit Number: P20040091 Application Number: A20040091 Tax Map No: 523400-303-015-0001-005-000-0000 Permission is hereby granted to: C"rFORCrF,HAGERTY For property located at: 287 DIX Ave in the Town of Queensbury,to construct or place at the above location in accordance with application together with plot plans and other information hereto filed and approved and in compliance with the NYS Uniform Building Codes and the Queensbury Zoning Ordinance. Type of Construction Value Owner Address: GEORGE HAGERTY 10 LYNDON Rd Commercial Alteration QUEENSBURY NY 12804 Commercial/Industrial Unhea $80,600.00 _ . Total Value $80,000.00 Contractor or Builder's Name /Address Electrical Inspection Agency Plans&Specifications 2004-091 1600 SQ FT COMMERCIAL INTERIOR ALTERATION AND 4000 SQ FT UNDATED WAREHOUSE ADDITION $220.00 PERMIT FEE PAID-THIS PERMIT EXPIRES: Wednesday, April 20, 2005 (If a longer period is required,an application for an extension must be made to the code Enforcement Officer of the Town of Queensbury before the expiration date.) Dated at the Town of sbury; ues 20, 2004 SIGNED BY for the Town of Queensbury. Director of Building&Code Enforcement BLDG. PERMIT NO. 2004-091 APPLICATION FOR A TEMPORARY CERTIFICATE OF OCCUPANCY A TEMPORARY CERTIFICATE OF OCCUPANCY is hereby requested for the property located at; 287 Dix. Avenue for the following uses: Ge-enz Fcct',i ) Tite (Foi occupancy o6 F)cont- Bu,1 d,�ng only. ) June 4, 2004 DATE SIGNATU E OF APPLICANT TEMPORARY CERTIFICATE OF OCCUPANCY The TEMPORARY CERTIFICATE OF OCCUPANCY is hereby. APPROVED ( )DISAPPROVED with the following conditions: CvL. c.t"ticat.e o6 occupancy to be i/jzued upon compt-u-.on og: l ) Change mechan,icaZ Room to zevet hanuf'..e 2) Fah warehouse 3) Ftinvsh 2 hou sepeAat, .on 4) Azac ACcezz mudt be 3011 5) I nd.ta U Handicap and no pc k..f ng 15�,gnz G) Pouk pZ t6o)Lm at 4' 6)Lom coon 121 to tatcn .5.tde 7) Finish Stile wo)Lk TEMPORARY CERTIFICATE OF OCCUPA CY F .0 D )$100.00 received on June 4, 2004 Date of Issuance Director of Bldg. & Code Enforcement THIS TEMPORARY CERTIFICATE OF OCCUPANCY EXPIRES 9 0 DAYS FROM THE DATE OF ISSUANCE. NOTE: This Certificate is NOT VALID unless signed by the Director of Bldg. & Code Enforcement or his designee. r Building Permit Application Town of Queensbury—Dept of Community Development,742 Bay Road,Queensbury,NY (518)761-8256 A permit must be obtained before beginning construction. Permit File No. No inspection will be made until applicant has received a Foe Paid $ valid building permit. All applicants' spaces on this Roo.Fee Paid $ application must be completed and must appear on the Reviewed By: application form. .,,,e• Applicant: � .�S- r�S'7�1,�- 6 .SiAb Owner: re-A I aog)�o--s Address: ? ) Address:„�.q!&.sr S2 71,E S7 KC4J5 s -4 /Z go/ Phone#(erg) W - Phone#O gso 6 Properly Location: Lot Number. / Plouse Number l �2 9 7 Z Lx 4(.111� Subdivision Name- Tax Map Number: u New Building: residence /commercial 'Estimated Market Value of Construction: $ 17 Addition: residence/ commercial if as Addi ' n,what will use of new addition be? q A1tEratio residence/ commeraial� � 0 No change to exterior size: residence 1 com'l O Other work(describe ) Check OccupaneyInformation 1 Floor 2° Floor Other floor Total Below sq.it. sq.ft. sq.ft. Square Feet o Single faxxiily dwelling o Two Am*y dwellin o Townhouse o Multifamily dwelling #of units 0 office r o Maaufactutin / 0 1 car detached arage m 2 car detached ge 0 3 cat detached page o 1 car&#ached garage o 2 cat attached 9=9e o 3 car attached garage o Storage building- commercial o Storage building- residential v Other What is the proposed height of the structure feet inches Will auy smond hand or ungraded lumber be used? If so,for what?, Type of Heating System: electric/ oil / gas/wood forced hot air/ baseboard/other: to be installed Number of off'o dst ves to be installed Number of�'trenrlaces, r List below the person(s)responsible for supervision of work as regards to building codes: Address- Phone Number e "�rS vim— �. `��-�--�--- Ruilder _ Plumber Mason Electrician7 . txs o,7,-e 1 -- below after you have carefbny read the statement: please sign specifications e the statements contained in this application,together with the plans and p TO tbebes�e �Y�iOWled$ to the proposed work shall be complied ratetement of all proposed work to be done on the described premises and that To ut %%Va tyk 00 01to Zoni4 Qtdiaattce and all other laws pertaining er,it's understood tbat Vwc span OvMtr* uestedbythezoning o��va1 dthat such work is authorized by the being sued,as I ,V to,scale,showinz actual a�,ed Otto �° 10T Ce&fioate of comp by a licensed surveyor, ®��,CO�°at0��e�gandCodes,an��.�g1� to apt - cast Building Permit Application Town of Queensbury-Dept of Community Development,742 Bay Road,Quoensbury,NY (518)761.8256 A permit must be obtained before beginning construction. Permit File No. 0(*) "0fW% No inspection will be made until applicant has received a Fee Paid $ ^ valid building permit. All applicants' spaces on this Rec.Fee Paid application must be completed and must appear on the Reviewed By: application form. �r Owner: 5�,e� as A L i c r� A Applicant: ��aRe cG A. PP N C� Address: oC�II o o,a 1�-8o K Address: �UIC p/NG� v�( Phone#(5�t )-IR 3 -,-Uk 3`'t Phone# Property Location: Lot Number: House Number / i /�6V e,>v;A,-a., Subdivision Name: SL,`L%j t?f- `(-a-L-d Tax Map Number: 3 d'3• l S- t - 5 o New Building: residence /commercial 'Estimated Market Value of Construction. $ g a a 0 -0 Addition: residence/ commercial _ V, Alteration: residence/ commercial an Addition,w twill use of new addition be?� o No change to exterior size: restsi en�m'1 1~'kR_I ` (' A'�� e �` S o Other work(describe Check Occupancylnformation 1' Floor 28d Floor Other1lo-odr,, Total Below sq. sq.ft. sq.ft. Square Feet it o Single family dwollin o Two family dwe ' o Townhouse o Multifamily dwell' g #of units o Office Mercantile 6 d c1 `-1 0 Q d S 6 a o o Maaufacturin . 0 1 car detached gar4ge 0 2 car detached gars e , 0 3 car detached gara o 1 car attached gamag --0 2 car attached garage 0 3 car attached garage CI Storage building- commercial �k \1V I o Storage building- residential o Other What is the proposed height of the structure, feet o inches Will any second-hand or ungraded lumber be used? If so,for what? /V d Type of Heating System: electric oil gas/wood /forced hot ai / baseboard/other: Number of Elmo-es to'be installed Number of Woodsteves to be installed o List below the person(s)responsible for supervision of work as regards to building codes: Name Address Phone Number Builder ;,-, :N N: d Q s Q r 9 3 - z 4 Plumber C ti� s 2l S-t��te. t - N Y -7 `-t ti-6R57 Mason T f-I Electrician 1 CA-k1 j a Peclaration: please sign below after you have carefully read the statement: To the best of my knowledge the statements contained in this application,together with the plans and specifications submitted,are a true and complete statement of all proposed work to be done on the described premises and that all provisions of the Building Code,the Zoning Ordinance and all other laws pertaining to the proposed work shall be complied with,whether specified or noted,and that such work is authorized by the owner: Further,it is understood that Uwe shall submit,prior to a Certificate of Occupancy or Certificate of Compliance being issued,as requested by the Zoning Administrator or Director of Building and Codes,an As Built Survey by a licensed surveyor;drawn to scale,showing actual location of all new construction. Signature: V owner,owner's agent,architect,contractor ILI l ti t 20 Commercial Final Inspection eport Office No.: (518) 761-8256 Date Inspect'on re r Queensbury Building& Code Enforcement Arrive: Depart: am/pm 742 Bay Road, Queensbury,NY 12804 Inspectors i NAME: GLEz1') FAU 1-) T�� PERMIT 7 QU24 -CR, LOCATION: E_ DATE: \7- --\C\-p COMMENTS: Y N NA Chimney/"B"Vent/Direct Vent Location Plumbing Vent Through Roof 6"/Roof Complete Exterior Finish/Grade Complete 6"in 10' or Equivalent Interior/Exterior Guardrails 42 in. Platform/Decks Interior/Exterior Ballisters 4 in. Spacing Platform/Decks Stair Handrail 34 in.-38 in./Step Risers 7"/Treads 11" Vestibules For Exit doors>3000 s . ft. All Doors 36 in.w/Lever Handles/Panic Hardware,if required Exits At Grade Or Platform 36 (w)x 44"(1)/Canopy or Equiv. _ Gas Valve Shut-off Exposed&Regulator 18" Above Grade Floor Bathroom Watertight/Other Floors Oka Relief Valve,Heat Trap/Water Temp. 110 Degrees Maximum Boiler/Furnace Enclosure 1 hr. or Fire Extinguishing System Fresh Air Supply for Occupancy/Ventilation Combustion Low Water Shut Off For Boilers _ Gas Furnace Shut Off Within 30 ft. or Within Line Of Site Oil Furnace Shut Off at Entrance to Furnace Area Stockroom/Storage/Receiving/Shipping Room(2 hr.), 1 %doors > 10%> 1000 s . ft. 3/4 Hour Corridor Doors&Closers Firewalls/Fire Separation,2 Hour, 3 Hour Complete/Fire Dampers/Fire Doors Ceiling Fire Stopping, 3,000 s . ft. Wood Frame Attic Access 30"x 20"x 30"(h),Crawl Space Access 18"x 24" Smoke Vents Or Fan, if required Elevator Operation and Si a e/Shaft Sealed 01 Handicapped Bathroom Grab Bars/Sinks/Toilets Handica ed Bath _Parkin of Signage Public Toilet Room andicap ed Accessible Handicapped Service Counters, 34 in., Checkout 36" Handicapped Ramp/Handrails Continuous/12 in.Beyond[Both sides] Active Listening System and Signage Assembly Space Final Electrical Site Plan/Variance required Final Survey,New Structure/Flood Plain certification,if req. As-built Septic System Layout Required or On File -Building Number or Tenant Address on Building or Driveway Water Fountain or Cooler Building Access All Sides 0' /Driveable Surface 20'wide Okay To Issue Temp. o Permanent C/O Okay To Issue C/C L:\Building&Codes Forms\Building&Codes\Inspection Forms\Commercial Final Inspection Report.doc Inspection for Permit to Occupy Fire Marshal's Office Request Rec'd Permit No. Town of Queensbury 742 Bay Road P> Queensbury,NY 12804 Scheduled Inspection Date: 12�i�)v5 Time: `p Phone: (518) 761-8206 Business Name: y-4-e4js Fax: (518) 745-4437 Location: o'10-7 Oi)r /lLe, Type of Inspection N/A Yes No Exlrs: �. Exit Access COMMENTS Exit Enclosure Exit Discharge AISLES: Main Aisle Width Secondary Aisle Width EXIT SIGNAGE Sign-normal Sign-battery TRUSS ID SIGNAGE EMERGENCY LIGHTING FIRE EXTINGUISHER: Hun Inspection of extinguisher Hydro extinguisher FIRE ALARM SYSTEM Fan Shutdown X Fire Sprinkler System Fire Suppression-kitchen Fire Suppression-Gas Island Hood Installation Interior Finishes Storage Compressed Gas X Clearance to Sprinklers Clearance to Electrical Electric Wiring Enclosed Combustible Waste Vehicle Impact Protection Fire Lane F.D.Si na e-Utility Rooms No Smoking Signs Maximum Occupancy Sign Emergency Evacuation Plan Approved (If no other approvals apply,the B&C Office will issue the Certificate of Occupancy) ❑ Denied ❑ Call for Recheck Inspected & L:\Sue Hemingway\Fire Marshals Office Inpsection 08.17.2005.do 1 Commercial Final Infspection Report i Office No.: (518) 761-8256 Date Inspection r u Queensbury Building&Code Enforcement Arrive: r epart: D' a 742 Bay Road, Queensbury,NY 12804 Inspector's Initial NAME: _ �- S PE T 1 LOCATION: DATE: COMMENTS: Y N NA Chimney/"B"Vent/Direct Vent Location Plumbing Vent Through Roof 6"/Roof Complete Exterior Finish Grade Complete 6"in 10' or Equivalent Interior/Exterior Guardrails 42 in. Platform/Decks .41 Interior/Exterior Ballisters 4 in. Spacing Platform/Decks Stair Handrail 34 in.—38 in./Step Risers 7"/Treads 11" Vestibules For Exit doors>3000 sq. ft. All Doors 36 in.w/Lever Handles/Panic Hardware,if required Exits At Grade Or Platform 36 (w)x 44"(1)/Canopy or Equiv. Gas Valve Shut-off Exposed&Regulator(18")Above Grade Floor Bathroom Watertight/Other Floors Oka Relief Valve,Heat Trap/Water Temp. 110 Degrees Maximum Boiler/Furnace Enclosure 1 hr. or Fire Extinguishing System Fresh Air Supply for Occupancy/Ventilation Combustion Low Water Shut Off For Boilers Gas Furnace Shut Off Within 30 ft. or Within Line Of Site Oil Furnace Shut Off at Entrance to Furnace Area Stockroom/Storage/Receiving/Shipping Room(2 hr.), 1 %doors > 10%> 1000 s .ft. ' 3/4 Hour Corridor Doors &Closers Firewalls/Fire Separation, 2 Hour, 3 Hour Complete/Fire Dampers/Fire Doors Ceiling Fire Stopping, 3,000 s . ft.Wood Frame Attic Access 30"x 20"x 30"(h),Crawl Space Access 18"x 24" Smoke Vents Or Fan, if required Elevator Operation and Si a e/Shaft Sealed Handicapped Bathroom Grab Bars/Sinks/Toilets Handicapped Bath/Parking Lot Si na a � Public Toilet Room Handicapped Accessible Handicapped Service Counters, 34 in., Checkout 36" Handicapped Ramp/Handrails Continuous/12 in. Beyond Active Listening System and Signage Assembly Space Final Electrical Site Plan/Variance required Final Survey,New Structure/Flood Plain certification, if req. As-built Septic System Layout Required or On File Building Number or Tenant Address on Building or Driveway Water Fountain or Cooler Building Access All Sides by 20' /Driveable Surface 20' wide Okay To Issue Temp. or Permanent C/O Okay To Issue C/C Last printed 6/3/2003 9:27 AML:\PamW\Building&Codes\Commercial Final Inspection Report.doc AUG 30 2004 4: 26PM HP LHSERJE-1 JeUU P.a .,. f . I s 169 Haviland Road,Queensbury,NY 12904 Phone-519-7454460 Fax -518-792-8511 August 30,2004 Job#43153 kk.John O'Brien VIA FAX—745-4437 Buildings and Codes Tawas of Queensbury 742 Bay Road Queensbury,NY 12804 RE: Glens Falls Tile&Su plies New Warehouse—2° Floor Office Dear John: Mr. Craig Burrows, owner of Glens Falls Tile & Supplies, asked me to look at the structural capacity of the floor slab in their new warehouse to determine if it is adequate to support the load imposed by the walls for a proposed mezzanine area to be used for offices. The second floor mezzanine will cover an area.running 20 feet in the north-south direction and 32 feet in the east west direction. The south side of this area will back up to the north wall of the existing showroom building and the west.wall will be just inside the west wall of the new warehouse. The floor joists for the proposed mezzanine will run east west and will be supported by three stud walls running north south;one on each end of the mezzanine and one in the middle. As such the middle wall will carry the greater load. This wall will have a combined design live and dead load of 0.96 kips per lineal foot. The other two walls will have a design load of only half that value. fihave analyzed the stresses in the concrete floor and on the compacted Item 4 subgrade material Which would be imposed by the walls supporting the mezzanine. Both of these stresses are well below the normally accepted allowable design stresses for these materials, Therefore I am proposing that these mezzanine walls,be supported directly on the existing floor slab. Please call me if you have any questions. Sin rely, Thomas W.Nace,P.E. Fax copy: Craig Burrows—745-68.W COMMONWEALTH ELECTRICAL INSPECTION SERVICE,INC. Main Office 176 Doe Run Road-Manheim,PA 17545 ^ MUNICIPAL CERTIFICATE - ELECTRICAL APPROVAL Cam. Permit No........................................Cert. N 9 3 6 5 9 Cut-in Card No................................ Owner............... l..j"�.......l...l.... i.»........ ....................................................... .... ...................... Location...........�'�.......�.1.�.�...... '. �........... Installation Consisting of. Y G'��.z.....A.rw�� rT�/1.1r�1�.................., .........................................Ajel° . ...:............................................................................................ .................................................................................................................................................................................... InstalledBy..........?...a..Pav..c ....................................Lie.No..................................................I The conditions following governed the issuance of this certificate,and any certificate previously issued is cancelled:- This certificate only covers the electrical equipment and installation conditions as of date:Upon the introduction of additional equipment or alterations,application shall be promptly made for inspection. Inspectors of this Company shall have the privilege of in ki inspections at any time, and if its rules are violated,the Company shall have the right t voke i ertifica . Date....l...Z...I...7....'�� ....... INSPECTOR................... ......................................................................... Memher N.AP.A._r.A.F..r. Framing / Firestopping Inspection Report Office No. (518) 761-8256 Date Inspection re es rec ve Queensbury Building& Code Enforcement Arrive: rn % /p part: O a 742 Bay Road, Queensbury, NY 12804 Inspector's Initia NAME: -�L�►J� FPt�� TI t.� PERMIT#: �D�^ LOCATION: INSPECT ON: TYPE OF STRUCTURE: Framing Y N N/A COMMENTS Jack Studs/Headers Bracing/Bridging Joist hangers Jack Posts/Main Beams Exterior sheeting nailed properly 12"O.C. Headroom 6 ft. 8 in. Stairwells 36 in. or more Headroom 6 ft. 8 in. Notches/Holes/Bearing Walls Metal Strapping for Notches Top Plate 1 %2 (w) 16 gauge (8) 16D nails each side Draft stopping 1,000 sq. ft. floor trusses Anchor Bolts 6 ft. or less on center Ice and snow shield 24 inches from wall Fire separation 1, 2, 3 hour Fire wall 2, 3, 4 hour Firestopping Penetration sealed 16 inch insulation in cavity min. Garage Fire Separation House side % inch or 5/8 inch Type X Garage side 5/8 inch Type X Ceiling/wall Windows Habitable Space/Bedrooms 24 in. (H) 20 in. (W) 5.7 sf above/below grade 5.0 sf grade L:\SueHemin-.way\Building.Codes.lnspection.FORMS\Framing Firestopping Inspection Report.doc January 28,2003 Framing / Firestopping Inspection Report Office No. (518) 761-8256 Date Inspection rPuesred: Queensbury Building &Code Enforcement Arrive: rt: a pm 742 Bay Road, Queensbury, NY 12804 Inspector's Initi 1 NAME: l S C� PERMIT#: LOCATION- _ INSPECT ON: —� TYPE OF STRUCTURE: Y N N/A COMMENTS Framing Jack Studs/Headers / Bracing/Bridging Joist hangers I Jack Posts/Main Beams Exterior sheeting nailed properly 12"O.C. Headroom 6 ft. 8 in. Stairwells 36 in. or more Headroom 6 ft. 8 in. Notches/Holes/Bearing Walls Metal Strapping for Notches Top Plate 1 %z (w) 16 gauge (8) 16D nails each side Draft stopping 1,000 sq. ft. floor trusses Anchor Bolts 6 ft. or less on center ce and snow shield 24 inches from wall Fire separation 1, 2, 3 hour Fire wall 2, 3, 4 hour �r >restopping Penetration sea d 16 inch insulation in cavity min. ✓ ge Fire Separation House side % inch or 5/8 inch Type X Garage side 5/8 inch Type X Ceiling/wall Windows Habitable Space/Bedrooms 24 in. (H) 20 in. (W) 5.7 sf above/below grade 5.0 sf grade L:\SueHemingway\Building.Codes.Inspection.FORMS\Framing Firestopping Inspection Report.doc January 28,2003 Rough Plumbing / Insulation Inspection Deport Office No. (518) 761-8256 Date Inspection request ec ived.-)Queensbury Building& Code Enforcement Arrive: p _ part: tfi 742 Bay Road, Queensbury, NY 12804 Inspector's Initial NAME: -c f' PERMIT #: " 0 LOCATION: INSPECT ON: _ �- TYPE OF STRUCTURE: Y N N/A PVC: R-1, R-2, R-3,R4 Drain/Vents Cast Iron, Copper Drain/Vent/ Comm. PlumbingVent/Vents in Place Rough Plumbing/Nail Plates 1 % inch min.Drain Size Washing Machine Drain 2 inch min. Head or Air Supply Test Drain and Vents 5 PSI or 10 feet above highest connection for 15 minutes Cleanout every 100 feet/change of direction Water Supply Piping Cooper Commercial C er, CPVC,Pex One and Two-Family sulation/Residential Check/Commercial Check Proper Vent,Attic Vent Duct/Hot Water Piping Insulation If required unheated spaces' Combustion Air Supply for Furnace Duct work sealed properly/No duct tape COMMENTS: T L:\SueHemingway\Building.Codes.Inspection.FORMS\Rough Plumbing Insulation Report.doc November 17,2003 Framing / Firestopping Inspection eport Office No. (518) 761-8256 Date Inspection que r ved: Queensbury Building&Code Enforcement Arrive: am/p �part: m 742 Bay Road, Queensbury,NY 12804 Inspector's Initi ls. NAME: CL PERMIT#: J LOCATION: /� INSPECT ON. TYPE OF STRUCTURE: f /I Y N N/A Framing COMMENTS Jack Studs/Headers Bracing/Bridging Joist hangers Jack Posts/Main Beams Exterior sheeting nailed properly 12"O.C. Headroom 6 ft. 8 in. Stairwells 36 in. or more Headroom 6 ft. 8 in. Notches/Holes/Bearing Walls Metal Strapping for Notches Top Plate 1 %z(w) 16 gauge(8) 16D nails each side Draft stopping 1,000 sq. ft. floor trusses Anchor Bolts 6 ft. or less on center Ice and snow shield 24 inches from wall Fire separation 1,2, 3 hour Fire wall 2 ,4 hour SL restopping H.Q� 7 Penetration sealed 16 inch insulation in cavity min. Garage Fire Separation House side %inch or 5/8 inch Type X Garage side 5/8 inch Type X Ceiling/wall ] � �- Windows Habitable Space/Bedrooms 24 in. (H) 20 in. (W) 5.7 sf above/below grade 5.0 sf grade Framing / Firestopping Inspection Report Office No. (518) 761-8256 Date Inspection regfte t rec ��d: Queensbury Building&Code Enforcement Arrive: _a 41/prrr epart: Ljv 1->jam/ 742 Bay Road, Queensbury, NY 12804 Inspector's Initials f> NAME: _ �^ PERMIT#: �l LOCATION: INSPECT ON: �G TYPE OF STRUCTURE: Y 1v iv/A raming COMMENTS Jack Studs/Headers j Bracing/Bridging Joist hangers No- Jack Posts/Main Beams `'„ Exterior sheeting nailed properly 12"O.C. Headroom 6 ft. 8 in. Stairwells 36 in. or more Headroom 6 ft. 8 in. Notches/Holes/Bearing Walls Metal Strapping for Notches Top Plate 1 %z (w) 16 gauge(8) 16D nails each side Draft stopping 1,000 sq. ft. floor trusses Anchor Bolts 6 ft. or less on center Ice and snow shield 24 inches frorn wall Fire separation 1, 2, 3 hour / rre wall 2, 3, 4 hour n Firestopping Penetration sealed 16 inch insulation in cavity min. Garage Fire Separation House side % inch or 5/8 inch Type X Garage side 5/8 inch Type X Ceiling/wall Windows Habitable Space/Bedrooms 24 in. (H) 20 in. (W) 5.7 sf above/below grade 5.0 sf grade LASueHemingw•ay\Building.Codes.Inspection.FORM S\Framing Firestopping Inspection Report.doc January 28,2003 Framing / Firestopping InspePre Office No. (518) 761-8256 Date InspectioQueensbury Building& Code Enforcement Arrive: : %! am/pm 742 Bay Road, Queensbury, NY 12804 Inspector's Ini NAME: PERMIT#: zjmq—al LOCATION: INSPECT ON: TYPE OF STRUCTURE: Framing Y N N/A COMMENTS Jack Studs/Headers �P — Bracing/Bridging Joist hangers Jack Posts/Main Beams Exterior sheeting nailed properly 12"O.C. Headroom 6 ft. 8 in. Stairwells 36 in. or more Headroom 6 ft. 8 in. Notches/Holes/Bearing Walls Metal Strapping for Notches Top Plate 1 %z (w) 16 gauge (8) 16D nails each side Draft stopping 1,000 sq. ft. floor trusses Anchor Bolts 6 ft. or less on center Ice and snow shield 24 inches from wall Fire separation 1, 2, 3 hour Fire wall 2, 3, 4 hour Firestopping Penetration sealed 16 inch insulation in cavity min. Garage Fire Separation House side % inch or 5/8 inch Type X Garage side 5/8 inch Type X Ceiling/wall Windows Habitable Space/Bedrooms 24 in. (H) 20 in. (W) 5.7 sf above/below grade 5.0 sf grade L:\SueHemingway\Building.Codes.Inspection.FORMS\Framing Firestopping Inspection Report.doc January 28,2003 Town of Queensbury Fire Marshal's Office 742 Bay Road d rai� v_(roc .5 Queensbury, NY 12804 Phone (518) 761-8205 Fax(518) 745-4437 Fire Marshal's Inspection Report Request SCHEDULE Received: Permit# L INSPECTION ON:L_ ._._ Name: �� � AM PM ANYTIME Location: �l� 01-y1_A4,VUV_ _ APPROVED _ _ --- -------- N/A YES NO COMMENTS EXITS _ � AISLE WIDTHS EXIT SIGNS ORMAL _BATTERY EMERGENCY LIGHTING FIRE EXTINGUISHERS _ FIRE ALARM SYSTEM l FIRE SPRINKLER SYSTEM_-- FIRE SUPPRESSION SYSTEM-- - HOOD INSTALLATION �_- INTERIOR FINISHES STORAGE __^ --- COMPRESSED GAS _ CLEARANCE TOSPRlNKLE12S CLEARANCE.TO HEATING CLEARANCE�'O ELECTRECAE_ - - l r3 V�I�✓l� o(�(�, _ li4 oiDi�It REQUIRED SIGNAGE EMERGENCY PLAN_ MAXIMUM OCCUPANCY S16 CHIMNEY MASONRY _ROUG°rE 1N JOFpUAL � � �51 CHIMNEY FACTORY BUILT _ ROUGH IN FINAL 1 WOOD STOVE ROUGH IN VENTED GAS FINAL APPLIANCE ROUGH IN FINAL FIREPLACE _r MASONRY ROUGH IN _ OIL THIS DATE OK FOR CO NOT OK ZI FIREPLACE -- - -_-- FINAL r FACTORY BUILT ROUGH IN 1 SPECIE® BY _ FINAL COMUEV/CHRISJIWORDILETTERS2001/FIREMARSHALINSPECTIONREPOR 11022001 YELLOW-OCCUPANT COPY WHITE-BUILDING DEPARTMENT COPY Commercial Final Inspection Report Office No.: (518) 761-8256 Date Inspection requ t tD,,epart: fi Queensbury Building&Code Enforcement Arrive: a p -3`e� a 742 Bay Road, Queensbury,NY 12804 Inspector's Initials. NAME: C-�� t�\� EA L.L 2) '�11_E PERMIT, :LOCATION: D t �C {��_-lLt LE= DATE: COMMENTS: N NA Chimney/"B"Vent/Direct Vent Location Plumbing Vent Through Roof 6"/hoof Complete L Exterior Finish Grade Complete 6"in 10' or Equivalent Interior/Exterior Guardrails 42 in. Platform/Decks 1 \ E Interior/Exterior Ballisters 4 in. Spacing Platform/Decks � Stair Handrail 34 in.—38 in./Step Risers 7"/Treads 11" Vestibules For Exit doors>3000 s . ft. All Doors 36 in.w/Lever Handles/Panic Hardware,if required Exits At Grade Or Platform 36(w)x 44"(1)/Canopy or Equiv. Gas Valve Shut-off Exposed&Regulator 18")Above Grade Floor Bathroom Watertight/Other Floors Oka Relief Valve,Heat Trap/Water Temp. 110 Degrees Maximum Boiler/Furnace Enclosure 1 hr. or Fire Extinguishing System Fresh Air Supply for Occupancy/Ventilation Combustion Low Water Shut Off For Boilers Gas Furnace Shut Off Within 30 ft.or Within Line Of Site Oil Furnace Shut Off at Entrance to Furnace Area Stoclaoom/Storage/Receiving/Shipping Room(2 hr.), 1 '/2 doors >10%> 1000 s . ft. 3/a Hour Corridor Doors &Closers Firewalls/Fire Separation,2 Hour, 3 Hour Complete/Fire i� Dampers/Fire Doors _ 'Ceiling Fire Stopping, 3,000 s . ft.Wood Frame `j Attic Access 30"x 20"x 30"(h), Crawl Space Access 18"x 24" Smoke Vents Or Fan, if required P Elevator Operation and Si a e/Shaft Sealed Handicapped Bathroom Grab Bars/Sinks/Toilets C— � _ Handica ed Bath/Parking Lot Si na e ''� D b�\Q Public Toilet Room Handicapped Accessible Handicapped Service Counters, 34 in., Checkout 36" Handicapped Ram /Handrails Continuous/12 in.Beyond Active Listening System and Signage Assembly Space Final Electrical Site Plan/Variance required Final Survey,New Structure/Flood Plain certification,if req. As-built Septic System Layout Required or On File Building Number or Tenant Address on Building or Drivewa Water Fountain or Cooler Building Access All Sides by 20' /Driveable Surface 20'wide Okay To Issue Temp. or Permanent C/O Okay To Issue C/C Last printed 6/3/2003 9:27 AML:\PamW\Building&Codes\Commercial Final Inspection Report.doc Framing / Firestopping Inspection Report Office No. (518) 761-8256 Date Inspection req t re eive . Queensbury Building& Code Enforcement Arrive: a pm D a t a in Bay Road, Queensbury, NY 12804 Inspector's Initials: NAME: G PERMIT#: LOCATION: d! v__ INSPECT ON: TYPE OF STRUCTURE: Framing Y N /A COMMENTS Jack Studs/Headersl—C— Bracing/Bridging Joist hangers Jack Posts/Main Beams Exterior sheeting nailed properly 'i�7 E_ 12" O.C. Headroom 6 ft. 8 in. Stairwells 36 in. or more Headroom 6 ft. 8 in. Notches/Holes/Bearing Walls � ��� Metal Strapping for Notches Top Plate -�� q -� 1 %2 (w) 16 gauge (8) 16D nails each side aJ Draft stopping 1,000 sq. ft. floor trusses ��> � , pie Anchor Bolts 6 ft. or less on center � AWL ��Ice and snow shield 24 inches from wall Fire separation 1,2, 3 hour Fire wall 2, 3, 4 hour Firestopping Penetration sealed 16 inch insulation in cavity min. Garage Fire Separation House side %2 inch or 5/8 inch Type X Garage side 5/8 inch Type X Ceiling/wall Windows Habitable Space/Bedrooms 24 in. (H) 20 in. (W) 5.7 sf above/below grade 5.0 sf grade I_ASueHemingway\Building.Codes.Inspection.FORMS\Framing Firestopping Inspection Report.doc January 28,2003 Commercial Final Inspection Report `s 303 .is- l--) Office No.: (518) 761-8256 Date Inspection request received: Queensbury Building&Code Enforcement Arrive: 110 am/pm Depart: am/pm 742 Bay Road,Queensbury,NY 12804 Inspector's Initials: NAME: I PERMIT#: LOCATION: DATE: W 1 COMMENTS: Y N NA Chimney/"B"Vent/Direct Vent Location Plumbing Vent Through Roof 6"/Roof Complete Exterior Finish Grade Complete 6"in 10' or Equivalent Interior/Exterior Guardrails 42 in. Platform/Decks Interior/Exterior Ballisters 4 in. Spacing Platform/Decks Stair Handrail 34 in.-38 in./Step Risers 7"/Treads 11" Vestibules For Exit doors>3000 s . ft. All Doors 36 in.w/Eever Handles/Panic Hardware, if required ,/sec Exits At Grade Or Platform 36 (w)x 44" (1)/Canopy or Equiv. /e"e, 41-11, 1- Gas Valve Shut-off Exposed&Regulator 18")Above Grade Floor Bathroom Watertight/Other Floors Oka Relief Valve,Heat Trap/Water Temp.110 Degrees Maximum Boiler/Furnace Enclosure 1 hr. or Fire Extinguishing System Fresh Air Supply for Occupancy/Ventilation Combustion Low Water Shut Off For Boilers Gas Furnace Shut Off Within 30 ft. or Within Line Of Site Oil Furnace Shut Off at Entrance to Furnace Area �: f Stockroom/Storage/Receiving/Shipping Room(2 hr.), 1 '/2 doors lu 't 2fe✓le > 10%> 1000 s . ft. 3/4 Hour Corridor Doors&Closers Firewalls/Fire Separation,2 Hour, 3 Hour Complete/Fire Dampers/Fire Doors 'Ceiling Fire Stopping, 3,000 s . ft. Wood Frame / Attic Access 30"x 20"x 30"(h),Crawl Space Access 18"x 24" Q�S�/ Smoke Vents Or Fan, if required Elevator Operation and Si a e/Shaft Sealed Handicapped Bathroom Grab Bars/Sinks/Toilets Handicapped Bath/Parking Lot Si na e Public Toilet Room Handicapped Accessible Handicapped Service Counters, 34 in., Checkout 36" ✓ Handicapped Ramp/Handrails Continuous/12 in.Be and Active Listening System and Signa e Assembly Space ,�-r,m ctJJc� �L / J / Final Electrical Site Plan/Variance required f Final Survey,New Structure/Flood Plain certification,if reg. l// /J e mt As-built Septic System Layout Required or On File Building Number or Tenant Address on Building or Driveway Water Fountain or Cooler Building Access All ides by 20' /Driveable Surface 20' wide Oka To Issue em �or Permanent C/O o- (1i.(✓�,4A6 C, f'�"JL Okay To Issue (� Last printed 6/3/2003 9:27 A11IL:\PamW\Building&Codes\Commercial Final Inspection Report.doc Foundation Inspection Report Office No. (51S)761-8256 Date Inspection request received: Queensbury Building R Code Enforcement Arrive: am/pm h/ Depart: am/pm 742 Bay Rd., Queensbury,NY 12804 Inspector's Initials: NAME: C PERMIT#: LOCATION: 7 76;�r AVE INSPECT ON: Z D TYPE OF STRUCTURE: Comments Footings Y N N/A 6 Piers �� Monolithic Slab �< Reinforcement in Place The contractor is responsible for providing protection from freezing for 48 hours following the placement of the concrete. Materials for this purpose on site. Foundation/Wallpour Reinforcement in Place Foundation Dampproofing Foundation/Waterproofing Type of Dampproofing/Waterproofing Footing Drain Daylight or Sump Footing Drain Stone: 12 inch width 6 inches above footing 6 mil poly for wet areas under slab Backfill Approval Plumbing Under Slab PVC/Cast/Copper Foundation Insulation Interior/Exterior R- Rough Grade 6 inch drop within 10 ft. L;\SueHemingway\Building.Codes.InspectionYORMSToundation Inspection Report.doc January 28,2003 APR 29 2004 3: 52PM HP LASERJET 3200 10. 1 fA ENGINEERING,NACE 169 Haviland Road, Queensbury,NY'i2804 �= Phone-518-745-4400 Fax -518-792=8511 APRDR � TURN OF c�J�L►v� BUf!-1 ING AND CODE Fax , To: Joel Clugstone From: Tom Nace Firm: Town of Queensbury Pages: i Fax: 745-4437 Date: April 29,2004 Re: Hagerty Warehouse Job#: 47377 0 Comments: Joel, This will-confirm my phone message to Dave Hatin earlier this'.- on'.. Late this morning I inspected the footing excavation, formwotkk aiid reinforcing steel;for the new warehouse on George Hagarty's property on Dix Avenue:.-.It is 1Uy*:understarirlirigllatthe.: : :.. contractor wants to pour leveling pads on the top of bedrock #o facilitate setting l0..fbM*: The leveling pads will be relatively thin and will be stepped to•accomi odate the changes in._ the top of bedrock elevations. The existing rebar which-is.groI into rook-along`the foundation wall grade beam will extend well above the leveling slab and well into the grade beam. Once the leveling pad is poured, additional rebar at.eaeh-:calurnn pier will be.drilled through the leveling pad and set into bedrock with epoxy. The use of leveling pads in the manner proposed by the contractoris acceptable and does not affect the approved foundation design. Call if you have any questions. tL tY /�Ja►� /�-Z �A-2. c, o-+4,1. l c���,,, Yak t, (m 1 PLO�, ✓,"�,aJs L a ` l�/ 1 (iU u I— ��(J✓ !7 �1 •� 4C j V� � b4u)l�t wok, \ tjlzvov4j :�4) O-CW5 A, `��� �� ��o�.. � ��� �l,�v�v`���.'x' " 2-► �,��v-ems LA (1•�- d d -f'f-�,d a �4 J�L. d,J y w � 0 C,4+�� �J C�!n,/►J� � '�/ TOWN OF QUEENSBURY 742 Bay Road, Queensbury, NY 12804-5902 518-761-8201 April 14, 2004 George Hagerty 10 Lyndon Road Queensbury,NY 12804 Dear George: The following items still need to be addressed on the plans for the proposed renovations and addition at your Dix Avenue property. The handicap bathroom is not dimensioned in order to assure that it will meet the handicapped requirements for the Building Code. Please provide a blowup detail of the o� bathroom wail dimensions showing placement of fixtures and dimensional requirements to meet handicap specifications The service counter, sales counter needs to have a portion of it handicap accessible ti with a portion of it no more than 34" high by at least 36" wide. The elevations do not show or do not depict whether the entrance door will be at grade or a handicap ramp will be required. All required exits are required to be handicap accessible and therefore the side door must be handicap accessible. This would mean y that a ramp would have to be provided depending on the height of the threshold above grade. This would also apply to the warehouse building as well. 4 The exit doors in the warehouse must be covered by canopies and sidewalks must be provided to legal open space such as a parking lot. Ohere are no errey lights shown in the arehous area or the display room. 9 here are no emergency lights shown in the warehouse. 7) The portion of the drawing that you highlighted regarding seismic loads only states the loads, they do not state calculations on how the engineer arrived at a seismic C category. fl5 Please contact the engineer to have him provide the calculations to show how he arrived at a Seismic C category or fill out the seismic design sheet provided to you. "HOME OF NATURAL BEAUTY . . . A GOOD PLACE TO LIVE" SETTLED 1763 �t = v�I . D Tuesday, January 27,2004 ' J From: GFI-Metal Building Sales. Revised to reflect Base Plate Size and Anchor Bolt Plan. Concrete Specifications: George.Hagerty, NY 12804' Building Sizes is 50'x 80' x 15'. Concrete All concrete will be Glens Falls Portland Cement. Footers: 3000 psi. 2281f. of-16"x 12", with three rows of number#4 bars continuous. Number#4 bars vertical every 24"by 4'. Frostwalls: 3000 psi. 2281f. of- 8"x 60", with 3 rows of number#4 rebar, horizontally. Slab: 3500 psi.50'x 80' x 4"with 6/6-10/10 mesh. Steel trowel finish. The slab is to lay to the frost wall. Thicken slab at opening. See drawing. Fiberglass fabric may be used in place of wire mesh. FF is 12" below the height of the Frost wall. Piers: 3000 psi. with#4 hairpins and#4 rebar wire cage x 4'. Corners *(4)24"x 14"x. 60". Footer- 36"x 24"x 12". Main Frame *(6) 10"x 15"x .60". Footer- 36"x 36"x 12". Endwall Col. *(3) 10"x 15"x 60". *Footer- 16"x 24"x 12". Footer for.Piers: With#4 rebar mats and a horizontal cage of#4 bars. Anchor,bolts required are, 52-3/4", supplier by,the mason. . 2" Insulation board around the perimeter of the building. Aprons: 1-Approx. 41f. x 6"x 18' and 14' x 4'. Note: The site work contractor is responsible for compacted clear&level site, and the finial-grade plus or minus a half inch. Co-ordinate concrete with mechanical trades. Pier sizes may change at the direction of an Engineer. Changes could effect the cost. No additives to concrete or Temp. heat, no floor treatment is included. If this is required, the expense.will be paid for by the owner. Concrete to be completed by May 1 st./04 ** revised 3/15/04 BUILDER NAME C^ = DESCRIBE OR NOTE SPECIAL NOTES BUILDER JOB NO. PART CUSTOME_ N E n o 7ZM1 DATE (a SKETCH BY: SHEET OF Z SKETCH SHEETS n �'1 ABC JOB NO: - T3 FORM C-MI90 Of OQ. i o zl I I j r3`r'01 -r3po �-- ao4 - 13 P03 I - - - - - - -1 i 4 L 'i�q1 L I r� I c f BUILDING SKETCH FORM (FORM-C) `� - --------------------------------..............--.. -A--- --*-" . m.... �t Zptlr-r-1 NU....................Ut.................. CHKD. BY ...........DATE..................... ......... ................. JOB NO.................................................. ....................................................................... ........)AA!X...Rh........ch(lE..........PIAT.................. .................................................................... A. iLLANENL -UIJE �7 D fi Oho _ ,hz 1W � 1 BUILDER NAME Cm�-'=- BUILDER JOB NO. PART DESCRIBE OR NOTE SPECIAL NOTES CUSTOM U R A E F L-4Z4 DATE 4 6 SKETCH BY: SHEET Z OF Z SKETCH SHEETS ABC JOB No:�-�- b9�3 I N � FORM C-040190 �(2�)8 d. B 33 I I A � J i 1 I I r� I e BUILDING SKETCH FORM (FORM-C) "� TOWN Off' Q UEENSB URY 742 Bay Road, Queensbury, NY. 12804-5902 March 19, 2004 George Hagerty 10 Lyndon Avenue Queensbury, NY 12804 Dear George: The following items need to be addressed on a plan before this Department can issue a building permit for the renovations and addition to your existing Dix Avenue building. 1. This building is considered a change in occupancy. Therefore the existing building, as well as the addition, must meet the Building Code for New York State. 2. There needs to be :a two- hour fire separation between the new warehouse and the existing building, which would be the wall that is common to the existing building and the new warehouse. This wall most be a two hour rated wall with any doors leading through it rated at one and a half hours. 3. We need a complete architectural floor plan and elevations of the building showing all interior walls, doors, windows to determine what is needed for exit purposes as well as h handicap accessibility. The building is required to be handicap accessible and all exits and entrances must be handicap accessible as well as all interior portions of the building must have an accessible route through the building for a person in a wheelchair. 4. While I see the wind and snow loads for the building and the design calculations, I see:nothing that refers to the seismic calculations for the new structure. 5. We have nothing :that refers to the type of interior finishes that will be provided for this structure. 6. We need exit lights and emergency lights provided throughout the structure, as currently we have no plan that shows any. 7. There has to be at least one handicap toilet room within the structure. 8. We need to know if the building will be heated or not in order to comply with the Energy Code. This would refer to the warehouse area. " 9. We're not clear if there will be any fire protection systems installed in this building. If there are, we need plans accordingly. 10. We need an engineered foundation plan. Based on the limited plans I have in the building permit file, these are the items t hat need to be addressed. Once you make a complete submission, there may be other issues that will need to be addressed, based on that plan. If you have any questions, I can be reached at 761-8253. Thank you for your attention in this matter. Sincerely, Town of Quee sbury David Ha ' , Director Building and Code Enforcement DH/mg cc: Steve Smith, Fire Marshal Mike Palmer, Dep. Fire Marshal L:\Mada\MAR1AG\Hagerty.doc "Home of Natural Beauty ... A Good Place to Live " _ 04/14/2004 23/: 131 5187-79332834 �T/ECHHNIDYYNE�HAGERTYTEC PAGE 01 10 Lyndon Road Queensbury,NY 12804 April 14, 2004 Attn: David Hatin, Director Building and Code Enforcement Queensbury Town Office Building 742 Bay Road Queensbury,NY 12804 Re: Bldg permit filed 03/12/04 for Dix Avenue warehouse project—Seismic Loading Dear Mr. Hatin: For expediency, I am faxing this letter to save time. I have about 40,000 pounds of steel being delivered in about one week, and I need the building permit. "Exhibit A" is a copy of the cover letter from American Building Company, which fully certifies that design loads and associated calculations are applied in accordance with the 2002 New York State Building Code. It is sealed and signed by Jerry M. Christensen, who is a Professional Engineer, licensed in the State of New York. "Exhibit B" and "Exhibit C" covers two pages that I selected from his design calculation package(which had over 100 pages), for which Exhibit A was the cover letter. Thew pages fully covered the seismic loading values. When I submitted the application for the building permit to your office on March 12, 2004, I included 2 copies of Exhibits A, B, and C, as mentioned above. After having submitted the above documentation, I am at a total loss as to why I need to submit any more documentation covering the seismic calculations. On Friday, April 16, 2004, I will be available to stop by your office for you(or your associates) show me, in writing, exactly'where in the New York State Building Code it specifies that I have to provide additional details on this subject. I will be in Connecticut on April 15, This building is an engineered structure. The stress distributions in all load carrying members are obtained by the most applicable methods of the universally accepted elastic theory, as applied to indeterminate structures. A digital computer is used for many of the complex and laborious design calculations_ When I purchased this building, an important part of the package was to receive the necessary certifications from a licensed professional engineer. I am sure that Mr. Christensen would also be interested to learn of any tabular information format that is required,by the State of New York that is different from the format that he presented in his design calculations. I have a better chance of getting this done quickly if I can show him that his calculations and presentation of the data are not in conformance with NYS Building Code requirements. Sincerely, George A. Hagerty /� y 04/14/2004 23:31 5187932834 TECHNIDYNEHAGERTYTEC PAGE 02 E&,1o# + A AMERICAN BUILDINGS COMPANY 6115 Coca Cola Blvd.;Columbus,GA 31909 Phone(706)562-8020 Fax(706)562-8017 March 2, 2004 GFI- Metal Bulldings Sales 71-6973.01 506 Queensbury Ave. Goo Hagerty Queensbury, NY 12804-7612 Queensbury, NY LRF 50'x 80'x 15' Gentlemen, This is to certify that metal building components furnished by American Buildings Company, an AISC-MB certified manufacturer,are scheduled for design In our Columbus, GA office and for fabrication in our Lacrosse,VA plant. The members are designed to comply with the following loads specified In the Order documents: Design Loads: Design Load Combinations: 1) psf Metal Building Dead Load(D) 1) D+C+S(L) 2) 2Q psf Roof Live Load(L) 2) D+ 1.30W 3) 2Q psf Frame Live Load(L) 3) D+C+ 1.30W+0.50S 4) 90 mph Wind Speed(3 Second Gust)(W) 4) D+C+ L(S)+0.65S 1=1.0, Exp=C 5) 1.05(D+C)+0.20S +0.71 E 5) 52.90 psf Flat Roof Snow Load(S) 6) 0.85(D+C)+0.71 E 1-1.0. Ce-0.9,Ct=1.2, Pgs70 psf 7) D+C+UNB.S 6) 1_0 psf Collateral Load(C) 7) Seismic Data-Equiv Let Force Procedure(E) Ss=35-5, S'I-10.4,Fa=1.54,Fv=2.40 1-1.0.Soil-D,SUG=1, SDC=B R(X-Bracing)-5.0, R(Rigid Frame)=4.0 This project is designed as an Enclosed Building. Accessories(doors,windows, etc.)by others must be designed as"components and cladding"in accordance to specific wind provisions of the referenced Code.. Please note that unless otherwise specified on your Purchase Order,American Buildings Company Serviceability Standards(1996 MBMA/AISC criteria)will be used for design and fabrication of your order. These design loads and combinations are applied in accordance with the 2002 New York State Building Code. The design is in general accordance with the A.I.S.C.(Ninth Edition)and A.I.S.I.(1996)specifications with 1999 supplement. This certification is limited to the structural design of the framing and covering parts manufactured by American Buildings Company and as specified in the contract. Accessory items such as doors,windows, lowers, translucent panels,and ventilators are not included. Also excluded are other parts of the project not provided by American Buildings Company such as foundations,masonry walls, mechanical equipment and the erection and inspection of the building. The building should be erected on a properly designed foundation In accordance with The American Bar ildings Company Erection Manual and American's drawings for the referenced job. The undersigned is not the engineer of record for the overall project. Cordially, rO�fJr Jerry M.Christensen Licensed Engineer,State of New York ���(�� 04f 14f 2004 23:31 5187932834 TECHNIDYNEHAGERTYTEC PAGE 03 MCE Parameters - wnterminous 48 States Zip Code - 12804 Central Latitude 43.349572 Central Longitude = -073,677666 Data are based on the 0.10 deg grid set Period SA (sec) (%g) 0.2 034.2 Map Value, Soil Factor of 1.0 1.0 010.1 Map Value, Soil Factor of 1.0 MCE Parameters x Specified Soil Factors 0.2 052.3 Soil Factor of 1.53 1.0 024.2 Soil Factor of 2.40 MCE Parameters - Conterminous 48 States Zip Code - 12804 Central Latitude = 43.349572 Central Longitude 073.677666 Data are based on the 0.10 deg grid set Period SA (sec) (%g) 0.2 034.2 Map Value, Soil Factor of 1.0 1.0 010.1 Map Value, Soil Factor of 1.0 MCE SPECTRUM x SOIL FACTORS Fa = 1.53 Fv = 2.40 Period SA (sec) (%g) 0.000 020.9 0.4FaSs 0.093 052.3 To 0.200 052.3 T=0.2, FaSs 0.465 052.3 Ts 0.500 048.6 0.600 040.5 0.700 034.7 - 0.800 030.4 0.900 027.0 1.000 024.3 T=1.0, FvS1 1.100 022.1 1.200 020.3 1.300 018.7 1.400 017.4 1.500 016.2 1.600 015.2 1.700 014.3 1.800 013.5 1.900 012.8 2.000 012.2 04/14/2004 23:31 5187932834 TECHNIDYNEHAGERTYTEC PAGE 04 Period,sec Se.A 0. 0.209 Maximum DA9 Considered Earthquake Ground Motion 9 Fa a 1.53 F1 =2.40 0.623 { Zip Code=12504 0.20, 0.523 Central Lat.=43.349672 deg Central Long._-73.677666 deg 0•r 0.623 1.50 0.466 ' 1 0.60 0.406 0.70 0.347 Im G 0.00 U04 .Q 0.75 0.90 0.270 1.00 0.243<. .� 1.10 0221 0.5 1.20 0.203 4 � 1.30 0.167 0.25 1.40 0.174 +�•�.,� 1.60 0,152 cn 1.60 OA62 0 1.70 0.143 0 0.5 1 1.5 2 1.80 0.136 Period, 1.90 0.125 od,sec 2.00 0.122 Lx �� b :t G A' DRAFT COPY (3/21/03) G, CHECKI,IS°T NYS BUILDING'CODE (BC) Building: Gr 5 NYS FIRE CODE (FC) NYS PLUMBING CODE (PC) Location: NYS MECHANICAL CODE (MC) NYS FUEL GAS CODE (FGC) Date: 3 NYS ENERGY CODE (ECC) Reviewer. Publication Date: May 2002 COMMERCIAL& MULTIPLE DWELLING OCCUPANCIES No. Topic Code Page Required Actual Section No. or Allowed 1 Jurisdiction BC-101.2 1 2 Flood Plain BC-1603.1.6 285 3 Separated or Non-Separated BC-302.3 18 Occupancies 4 Occupancy BC-302 17 S' 5 Type of Construction BC-Table 601 81 J213 6 No. of Sleeping Units/Level BC-202 14& No. of Units—Total 31 No. of Occupants BC-Table 1003.2.2.2 201 7 Covered Malls BC-402 33 Hi-Rise (75' Rule) BC-403 . 36' Atriums BC-404 37 8 Basement Definition BC-502.1 71 (See page 8 of this check list) of Required NS = Not Shown NA= Not Applicable G I- U�r✓ Note: * Non-separated occupancies impose the most restrictive requirements JAM Pagel of 10 { No. Topic Code Page Required Actual Section No. or Allowed 9. Heights & Building Areas Maximum Tabular Area BC-Table 503 72 Maximum Tabular Height BC-Table 503 72 Maximum Stories BC-Table 503 72 b � Mezzanines BC-505 73 10. Sprinkler System (water) BC-903 168 Basement Sprinkler BC-903.2.10.1 170 Water Source Sprinkler BC-903.3.5 172 Water Source Site FC-508.1 31 11. Frontage &Sprinkler Credits Area Modifications (calc.) BC-506 74 Height Modifications BC-504 73 12. Height&Area Summary_ Ht/Area Ht/Area Tabular Area BC-Table 503 72 Frontage Credit BC-506 74 Sprinkler Credit BC-506.3 75 Total Allowable Area Max Aggregate Area BC-503.3 73 (Allowable Area/Fir. x No. of Stories up to 3 maximum) 13. Fire Apparatus Road FC-503.1 29 - (150'rule) FC S®&.S' 31 V�� 14. Exterior Walls Distance Separation* BC-Table 602 82 Exterior Wall Openings BC-Table 704.8 87 Parapets BC-704.11 88 Exterior Wall Coverings' BC-Table 1405.2 257 Exterior Wall Finishes BC-Table 1406.2 261 Combustible * Distance separations are doubled if fire fighting water is not available (FC-508.1.3). NOTES; JAM Page 2 of 10 . c No. Topic Code Page Required Actual Section No. or Allowed 15. Fire Rated Construction g , Incidental Use Areas BC-Table 302.1.1 17 �� .G �� 3 - Accessory Occupancy BC-302.2 18 Mixed Occupancy BC-Table 302.3.3 19 Control Areas BC-414.2 52 Fire Walls BC-705 89 Fire Barrier BC-706 91 Shaft Enclosure BC-707 92 Fire Partition (Tenant Sep.) BC-708 95 Smoke Barriers BC-709 96 Opening Protectives BC Table 714.2 101 Fire Blocking BC-716 107 Draft Stopping BC-716.3 108 16. Space ,L (a.) iw( hC- /ZOZ 257) Min. Rm. Dimensions 'r� BC-1207.1 251 Min. Ceiling Height BC-1207.2 .251 17. Ventilation (Nat. or Mech.) BC-1202.1 249 18. Light (Nat. or Mech.) BC-1204.1 250 —� 19. Exits '�v�ewefi9! loa`1��.2. �18 Occupancy Load BC Table 1003.2.2.2 201 One Exit Permitted BC Tablel005.2.2 224 Stair Enclosure BC-1005.3.2 224 Emergency Egress BC-1009.1 235 Distance of Travel BC-Table 1.004.2.4 220 Aisle Width BC-1004.3.1.1 221 Corridor Width BC-1004.3.2.2 221 Capacity of Exits (calc.). BC-Table 1003.2.3 202 Corridor Wall Fire Rating BC-Table1004.3.2.1 222 Corridor Dead End BC-1004.3.2.3 222 Door Width BC-1 003.3.1.1 208 Door Swing BC-1003.3.1.2 208 Panic Hardware BC-1003.3.1.9 213 20. Stairs Riser BC-1003.3.3.3 213 Tread BC-1003.3.3.3 213 Width BC-1003.3.3.1 213 Headroom BC-1003.3.3.2 213 Vertical Rise BC-1003.3.3.6 215 Handrails BC-1003.3.3.11 215 6u..,ds I EC 16D3;3,2.iz- I z6 Mau Ilse 12.' e.,1K JAM Page 3 of 10 No Topic Code Page Required Actual Section No. or Allowed 21. Structural Snow,�oading—Ground BC Fig 1608.2 296 Snow Loading—Roof(calc.) ASCE-7-98 Drifting Snow BC-1608.7 295 Ponding BC-1608.3.5 295 Floor Loading BC Table 1607.1 291 Balcony Loading BC-Table 1607.1 291 Wind Loading (calc.) BC-1609 297 Roof Walls Windows Seismic Loading (talc.) BC-1614 315 Foundation Depth BC-1805.2 398 22. Interior Finishes BC-Table 803.4 161 23. Swimming Pools BC-3109 629 24. Sun Rooms BC Appendix 1 693 25. Electrical Exit Lights or Signs BC-1003.2.10 203 Emergency Lights BC71003.2.11.2 204 Emergency Power BC-2702 611 General Lighting-Exits-Stairs -BC-1003.2.11 204 26. HC ACCESS Exempt Buildings BC-1104.4 238 Parking BC-Table 1106.1 239 Route BC-1104.1 . 238 Entrance BC-1105.1 239 #of Sleeping Rooms BC-Table-1.107.6.1.1 241 #of Dwelling Units BC-1107.6.2 241 Toilet Facilities BC-1109.2 244 Service Counters BC-1109.12.3 246 Areas of Refuge BC-1003.2.13.5 207 Signage Supplemental HC Req'mts Appendix E 681 ([, Notes: 7. SPECIAL INSPECTIONS BC-1704 379 JAM Page 4 of 10 No. Topic Code Page Required Actual Section No. or Allowed 28. Fire Protection Equipment Centr.ql Station Monitoring FC-901.9 52 Sprinkler Systems FC-903 55 Other Extingushing Syst. FC-904 59 Kitchen Hood Extinguisher FC-609.8 41 Standpipe Systems FC-905 62 Fire Extingushers FC-906 64 Fire Alarm Systems &SD FC-907.2 66 Fire Alarm Boxes+2 Wef FC-907.4.1 9•6'7-9 72,73 Smoke Detection FC-907.2.10 68 Hi-Rise Fire Safety FC-907.2.12 69 Visible Alarms FC-Table 907.10.1.2 73 Smoke Control FC-909 75 Smoke Vents FC-910 82 Fire Pumps FC-913 . 85 1,66 ser►+etirr!s FC-903.�,lu, 1 S{o 29. Plumbing Code Fixture Count PC-Table 403.1 21 i�k►nS Serva� S,,k Water Supply Service Pipe Size PC-603 33 Fixture Pipe Size PC-603.1 33 Pipe Material PC-Table 605.4. 36 Labor Law Art. 10-A UFPBC-904.6 12,340 Pipe Insulation See Energy Code Backflow Prevention PC-Table 608.1 41 Sprinkler System PC-608.16.4 44 Lawn Irrigation PC-608.16.5 44 Pipe Freezing PC-305.6 14 Sanitary Drainage Drain Pipe Size PC-Table 709.1 54 Drain Pipe Material PC-702 47 Labor Law Art. 10-A UFPBC-904.6 12,340 Vent Size PC-Table 910.4 63 Pipe Hangers PC-Table 308.5 17 Air Admittance Valves PC-917 67 Notes: JAM Page 5 of 10 No. Topic Code Page Required Actual Section No. or Allowed 30. Mechanical Code Ventilqtion Rates MC-Table 403.3 24 Propane Below Grade MC-502.8.10.1 31 Dryer Exhaust MC-504 33 Kitchen Exhaust MC-506 34 Kitchen Hoods MC-507 37 Kitchen Make-Up Air MC-508 39 Chimney Termination MC-Table 511.2 41 Air Plenums MC-602 47 Fire&Smoke Dampers MC-607.5.1 52 Combustion Air MC-701 55 Confined Spaces-Def. MC-202 5 31. Fuel Gas Code Appliance Location FGC-303 18 Combustion Air FGC-304 19 Clearance to Combust. FGC-Table 308.2 25 Pipe Material FGC-403 46 Shut Off Valves FGC-409 53 Chimney Termination FGC-Fig. 503.5.4 63 Gas Vent Termination FGC-Fig. 503.6.6 65 Exit Terminal Location FGC-503.8 68 Clothes Dryer Exhaust FGC-613 96 Unvented Room Heaters FGC-620 99 32. Energy Code Prescriptive Method ECCC-Table 602.1(1) 50 High Truss Credit ECCC-602.1.2 51 Pipe Insulation—Heating ECCC-Table 503.3.3.1 44 Duct Insulation—Heating ECCC-Table 503.3.3.3 45 Pipe Insulation—Hot Water ECCC-Table 504.2 47. HWH Heat Trap ECCC-504.7 47 COMcheck Computer Software Compliance Report Required Notes: JAM 'Jl� tJ�c��e'J�/ �� �a�o�� Lj Page 6 of 10 RUG 30 2004 4: 19PM HP LRSERJET 3200 p. 1 NACE ENGINEERING, P.C. 169 Haviland Road, Queensbury,NY 12804 Phone-519-745-4460 Fax -518-792-8511 August 30, 2004 Job#43153 Mr. John O'Brien VIA FAX—7454437 Buildings and Codes Town of Queensbury 742 Bay Road Queensbury,NY 12804 RE: Glens Falls Tile&Supplies New Warehouse—2° Floor Office Dear John: Mr_ Craig Burrows, owner of Glens Falls Tile & Supplies, asked me to look at the structural capacity of the floor slab in their new warehouse to determine if it is adequate to support the load imposed by the walls for a proposed mezzanine area to be used for offices. The second floor mezzanine will cover an area running 20 feet in the north-south direction and 32 feet in the east west direction. The south side of this area will back up to the north wall of the existing showroom building and the west wall will be just inside the west wall of the new warehouse. The floor joists for the proposed mezzanine will run east west and will be supported by three stud walls running north south;one on each end of the mezzanine and one in the middle. As such the middle wall will carry the greater load. This wall will have a combined design live and dead load of 0.96 kips per lineal foot. The other two walls will have a design load of only half that value. I have analyzed the stresses in the concrete floor and on the compacted Item 4 subgrade material which would be imposed by the walls supporting the mezzanine. Both of these stresses are well below the normally accepted allowable design stresses for these materials. Therefore I am proposing that these mezzanine walls be supported directly on the existing floor slab. Please call me if you have any questions. Sin rely, Thomas W.Nace,P.E. Fax copy: Craig Burrows—745-6875 SEISMIC REVIEW SUMMARY PROJECT: -z'FE:7-4 G�,e—u ti LOCATION: Z d 7 /,Z QS ZIP CODE: ITEM Value BCNYS BCNYS Code Section Page No. Site Class Table 1615.1.1 317 (default to site class D) Section 1615.1.1 316 SS (short period) 3' ' Figure 1615(1) 318 S, (1 second period) Figure 1615(2). 319 Fa (site coefficient—short) �, �� Table 1615.1.2(1) 320 F, (site coefficient-1 sec.) Z �-{ _ Table 1615.1.2(2) 320 SR15 (short period adjusted) p. 1 j Equation 16-16 317 SR„ (1 sec. period adjusted) 0/, ZL{ Equation 16-17 317 Sos (short period) (), j Ll Equation 16-18 320 So, (1 sec. period) l�, Equation 16-19 320 Seismic Use Group (�aL, ( f�, Table 1604.5 287 Seismic Design Category Table 1616.3(1) 324 (short period) Seismic Design Category Table 1616.3(2) 324 (1 sec. period) SEISMIC DESIGN CATEGORY This category determines the (most severe of above two) design analysis and whether MEP systems must be braced. Analysis Procedure Used Section 1616.E 326 Building Components Subject To S r Section 1621 345 Seismic Design Requirements: Architectural Section 1621.1.1 & 345 Mechanical Section 1621.1.6 347 Plumbing f' `'� ""'lam°') ' ditto 347 Electrical ditto 347 JAM c(opy Page 10 of 10 AMERICAN BUILDINGS COMPANY 6115 COCA COLA ?LVD COLUMBUS, vE02GIA 31409 PHONE: 706-562-8020X107 _ FAX: 706-562-8017 Ll,h'� E-MAIL: fruimsC)ame:icanbuilc�iugs.com FAC5IMILE TRANSMITTAL SHEET TO. FROM: im Minnick Frank H. Mims, P.E. COMPANY: DATE: GFI 4/16/04 FAX NUMBER: TOTAL NO.OF PAGE5 INCLUDIN5 COVER: 518-793-8290 2 PEONS NUMBER: SENDER'S REFERENCE NUMBER: 518-793-8254 71697301 YOUR REFERENCE NUMBER: ],UP,GENT [, FOR REVIEW ❑ PL:ASE COMMENT ❑ ?LEASE REPLY ❑ PL.A5E RECYCLE NOTES/COMMENTS: Jim, Attached is a spread sheet enaiysis program that we use for checking seismic. forces applied. to our buildings. I'll get with Jerry about your fax on Monday. Fra C(DPY rL. J Yh 1 Minimum Seismic And Wind Forces Calculation (IBC2000) American Biilliiings Company Job Number 71697301 Engineer. Qu Buii ing Geometry Information Building Width= 50.00 ft. Roof Weight D+C = 5.50 psf Building Length= 80.00 _ft. Roof 0 0%Snow for Seismic= 0a0 psf . FSW Eave Height= _ 14.83 ft. Weight of Sidewall= 2.00 psf Ridge From FSW= 25.00 ft. Weight of Endwall= 2.00 psf Roof Pitch= 6 /12 Longitudinal Partition WT.= 0.00 _psf Canopy Width @ FSW= 0.00. ft Quantity of Longitudinal Part.= 0 Canopy Width @ RSW= 0.00_ft Transverse Partition WT. = 0.00 psf Max. Interior Bay Trib.= _ 20.00 ft. Quantity of Transverse Part.= 0 Building End Bay Trlb, _ _9.65 ft Longitudinal Special Weight= 0.00 kips. . Torsional Bracing: y , Transverse Special Weigh:= 0.00 kips C yes c Least dumber of Braced Bay Per Sidewall= 1 Algid Frame Interior Column Information Number of Interior Column = 0 Top Connection: IJPinned O Fixed Seismic Information Seismic Use Group= [ + SS(%)= 35.20% SIM)= 10.40% Site Class= �� Transverse Dlrection(Interior): R= 4.00 Qc,= _ 2.00 rnsx= 0.25 Transverse Direction(End): R= 4:00 flo= 2.00 Longitudinal Direction: R= 5.00 a,= 2.00 rmax= 0.50 Seismic Factor le= 1 Fa= 1.52 F,= 2.38 Sans= 0.53 Sw = 025 Seismic Desigri.Category= C Sys= 0.36 SM = 0.17 Wind Information qh=0.00256KhKZ&V2IW= 16.10 psf Longitudina!GCy-GCpf= 0,69il.44 Transverse GCpf-GC,j= 0.96/1.44 Wind Factor I,v= 1.00 Interior Bay Tributary Width=20 ft End Bay Tributary Width =9.65 ft 1. Wind Load 1. Wind Load Total Load =PW'B'1-1/2= a.2 KIDS Totat Load =P•„*B"1-1/2= 3.1 Kins 2.Seismic Load 2.Seismic Load p=2-20/(rma;�AB"O.5)= 1.00 p=2-20/(rma„"Ay^0.5)=1.00 W= 6.09 Kips W=2.94 Kips V=GE=0.54 Kips V=CIE=0.2E Kips p'0=11.4= 0.4 Kins 0.2SD;0!1.4= 0.3 Kips p•Ce/1.4= 0.2 Kips 0.2SQ'0/1.4= 0.1 Kips o;QE.•`1.7= 0.6 Kins 0.2Sa,'0/1.7= 0.2 Kips fk,Q_i1.7= 0.3 Kips 02Sa LY1 7= 0.1 Kias 1. Wind Load Total Load =P.,,,'B'H/2= 6.4 Klos 2.Seismic Load(Accidental Torsion Included) p=2-201(rmax'Aa^0.6)= 1.00 W= 24.1 KiFa V=CIE= 1.7 Kips p'QE/1.4= 1.3 Kips 0.2S�0/1.4= 1.'.Kips S2o'QE/1.7= 2.2 Klps 02S�Di 1.7= 0.9 Kips Version 2.0 Quality And Service Author.YJ4Y Every Time...All The Time 3:41 -M4/1 612 0 04 (C (OPY 7 CD ''mplCROm� 0 {110 NNN S �00o a of en Cv7 to w rL wga��a�o�s�oo�g �� it R _ _ tyy71 HIM J�yy� P}�}n�l iV,t NOp� �V�ppr lN�{J.a.1a�DVlQs ppY b�y�fi1�J.Nm�m7W7�,,oCA Np��{�.P:�•ty1+n.�W•I4wl7.+��NceN O dm Fn. mpp����OON0 .m1 LVy.�V01}�}��DAD VVP tV�ppAA�1I WI�.i7�+f0{Vl�.411N O �OIM migS O�O�OCIOOVC1OOa 6Oti000O O0000Oh Oo 'a a Ob�O 6000O O p OOiiO OOOON wmJAAJbNS AWpipJJo iwOaWigaWaz:i:-AinN+NNO A`�S�tiV AAPVOIVPNOp010�O�OrOOPVJmV'V m p0000O $0i08o$13iSNMpN000v S$'ooS 88oaog 'i®�d'S�� +'0�0��o8ob a n r Ob VO)VVm010101O1VOW WmP POYDVO/VVW�1m POI O+PPmWm�OOPVPOIV aaOlaa j 3 10 r ..wwM JwJ J w J JJ J.. �ipapm�mrmrQrOO jjJJJOr JOOp OJJ O.OeO..w wwmO7oDf00 W01mQ1 W. OOIAO/D OPOV0IWPOJW VOOWOP mO)O� � � a c� em �+� g+>��» z <ff -+ r d O�V){J♦S OV NYI{AO �Oi/J {�JJNJ JJJ rJ J�� Ji J . VV9OpOpp QsQ1uUlspgo�oOlNNoo �000�u�ovw$o�ooaeuoaouoo�eo"���OIou3Li�u'QoogS r+► S�i g s qg� 3 it Z Io��$��y{o��y�ouoiNu���t'i .4 -4((�d,�DO�VPy.Yb�A:� {,��pWVO�tPSD�rI•ialflQdpp?AvgP7aO0mgP;;l��i:y.IONLO+o+j�•0 p� 4711)OI l,V,aoi O �AeoOflW- }U}��Nd . 0000�$o`'e38oY��S�3�3ob'o2l�a'800'� 0008o9 98 0008SSt9Cioo -A r ' piNw JJ IU +r7;+�N }f +NoO•lwom+au�r'a:uL�Gwuromipmo+mWNonep.ly�ylGww `+ml►�iamp!�JaiPru�u►� fJ o�a�o�agggg�oggog.�o�agO�go�o�ogasggggg m*88$�sgn� o�$sQso Zorn N,�,+w,71 J!011.�a•I.�OI} PPOPO�O+�001®OV mNVmWtiR�D PP-aPV VymV WmOmVmOOO+V�IWPm WVQ1WOVm WVmOOm OsVV3 A � A J JJJJ JOlOm viw J m0�~ �J J i JJJ JJ..}}i-tl';:OaO m w d=J OOw V VPPVOV VDOWW0IVV Q7m�B,nIO�rJQQ.+ 00-+, ..GO .�O �O UO m �e� 4- to Mu camgmAmm�jrjN 9� $III 3 gN cc; � '-� � � is CL 5� � ate ' :x � ggz s a no o S N S ,7 HAGERTY TECHNOLOGIES, INC. 10 Lyndon Road Queensbury,NY 12804 October 21,2004 Attn: David Hatin Director of Building&Code Enforcement Town of Queensbury 742 Bay Road Queensbury,NY Re: Building permit#P20040091 (287 Dix Avenue Warehouse Expansion Project) American Buildings Company Project#716973.01 Dear Mr.Hatin: The purpose of this report is to comply with your verbal request for a post-construction analysis that verifies that the building has been erected as designed and supplied. If this request were made prior to the start of constriction,it would have been much easier for me to retain the services of a PE to respond to your request,as any PE would appreciate having access to the pertinent parts of the construction project prior to things being erected and covered up. Further,the request was so nebulous,as there was no written or defined scope of work or guidelines for such an inspection report,thus it could cost anywhere from hundreds of dollars to thousands of dollars,depending upon an engineer's interpretation of what needs to be done. With the above factors mentioned,I decided to take on this task myself, as I monitored the project from start to finish and certainly know enough about engineering to respond to your request. While I am not a Licensed Professional Engineer in the State of New York,I do have considerable experience with these matters in industrial settings. Among the related experiences in my career,I was the Plant Engineer for the Scott Paper Company's mill in Fort Edward,NY. I hold a Bachelor of Science degree(BSE issued in 1970)from the College of Engineering at the University of Connecticut, Storrs, Connecticut,and have a continuous history of performing engineering management tasks for over 34 years since graduation. I spoke with John O'Brien at your office last Friday, in your absence,and he thought that my report was probably more thorough than others that you have on file,especially for such a simple warehouse addition. He did not think that having a PE sign these closing documents was an absolute requirement, so I am submitting this package for your approval. In the Building Code of New York State, I find reference to "Section 109—Inspections",but do not see any tangible,detailed scope of work that covers this topic. Please keep in mind that this report covers the structural steel details of the warehouse only, and is not intended to include any other internal building changes that my lessee, Craig Burrows, may be performing under his currently-open building permit. The sheet rock fire stop necessary for his portion of the work is not part of the scope of this report. After your department has accepted the warehouse construction as being satisfactory, I will sell the property to Craig Burrows. Mr. Burrows will then be responsible for completing the remaining activities as required by the building code. We certainly welcome a visit from the Town of Queensbury Building and Codes Department to confirm any of the details outlined in this report,or to check out any other details that you deem necessary. I do ask that you provide me with the appropriate Certificate of Insurance showing coverage for the Town employees who may have to climb ladders,or perform other tasks of a hazardous nature that may be incurred during such an on-site visit,should it happen. Scope of work: To construct a 50'x 80' (nominal dimensions)warehouse to be added onto the 32' north side of an existing (nominal)50'x 32' wood frame structure. Page 1/4 HAGERTY TECHNOLOGIES, INC. Foundation: American Buildings Corporation drawing number 71697301 AB-01 specifies the dimensional layout of the anchor bolt pattern necessary for the erection of the building to be in conformance with the design load calculations. Further,Nace Engineering issued drawing#47377-171,as required by the Town of Queensbury for the engineered foundation plan. Starting from the southernmost end frame,the steel rigid frame sections are referenced as sections 1 through 5. Section#1: Columns @ BP05-A to BP07-A: Specified: 17'6" As found: 17' 6" Anchor Bolts @ BPO1-A to BP07-A: Specified: 49' 1" Not measured(restricted line of sight) Splices"A"and"C"(outer columns)verified to each have(10)3/4" diameter bolts at splice. Splice`B" (at peak)verified to have(8)3/4"diameter bolts at splice. Section#2: Columns @ BPO1-A of Section#1 to BP02-A of Section#2: Specified: 18' 4'/" As found: 18'4'/s" Columns @ BP07-A of Section#1 to BP08-A of Section#2: Specified: 18'4 1/2" As found: 18'4 1/8" Anchor Bolts @ BP02-A to BP08-A: Specified: 49' 1" As found: 49' '/4" Splices"A" and"C"(outer columns)verified to each have(8)3/4"diameter bolts at splice. Splice`B" (at peak)verified to have(10)3/4" diameter bolts at splice. Section#3: Columns @ BP02-A of Section#2 to BP02-A of Section#3: Specified: 20' 0" As found: 19' 11 1/4" Columns @ BP08-A of Section#2 to BP08-A of Section#3: Specified: 20' 0" As found: 20' 1/8" Anchor Bolts @ BP02-A to BP08-A: Specified: 49' 1" As found: 49'3/4" Splices"A"and"C"(outer columns)verified to each have(8)3/4"diameter bolts at splice. Splice`B" (at peak)verified to have(10)3/4" diameter bolts at splice. Section#4: Columns @ BP02-A of Section 43 to BP02-A of Section#4: Specified: 20' 0" As found: 20' '/2" Colunms @ BP08-A of Section#3 to BP08-A of Section#4: Specified: 20' 0" As found: 19" 11 5/8" Anchor Bolts @ BP02-A to BP08-A: Specified: 49' 1" As found:49'3/4" Splices"A"and"C" (outer columns)verified to each have(8)3/4"diameter bolts at splice. Splice`B" (at peak)verified to have(10)3/4" diameter bolts at splice. Section#5: Columns @ BP02-A of Section#4 to BP03-A of Section#5: Specified: 18' 4%2" As found: 18' 4 1/2" Columns @ BP08-A of Section#4 to BP09-A of Section#5: Specified: 18' 4%2" As found: 18'4 3/4" Anchor Bolts BP06-A to BP06-A: Specified: 22' 0" As found:22'0" Anchor Bolts @ BP03-A to BP09-A: Specified: 49' 1" Not measured(restricted line of sight) Splices"A"and"C"(outer cohmms)verified to each have(8)3/4"diameter bolts at splice. Splice`B" (at peak)verified to have(10)3/4"diameter bolts at splice. Clearance at Splice`B": Specified:25'2 7/16" As found:25'3"(measured to"rough floor") Page 2/4 HAGEMY TECHNOLOGIES, INC. Girts: American Buildings Corporation drawing number 71697301 E-4 specifies the number and location of the gins necessary for the erection of the end walls of the building to be in conformance with the supplied plans. End wall framing at Line#1: Girts specified: 8 pieces. Girts counted: 8 pieces. Girt spacing: verified to be satisfactory in relation to the spacing indicated on,the drawings. End wall framing at Line#5: Girts specified: 13 pieces. Girts counted: 13 pieces. Girt spacing: verified to be satisfactory in relation to the spacing indicated on the drawings. American Buildings Corporation drawing number 71697301 E-5 specifies the number and location of the girts necessary for the erection of the side walls of the building to be in conformance with the supplied plans. Side wall elevation at Line"A"(east wall) Girts specified: 12 pieces. Girts counted: 12 pieces. Girt spacing: verified to be satisfactory in relation to the spacing indicated on the drawings. Cable Bracing: 2 cables BC4-24.7 specified between bays, sections 2 to 3,were installed. Side wall elevation at Line"E"(west wall) Girts specified: 12 pieces. Girts counted: 12 pieces. Girt spacing: verified to be satisfactory in relation to the spacing indicated on the drawings. Cable Bracing: 2 cables BC4-24.7 specified between bays,sections 2 to 3,were installed. Cross brace KBA4-7.4 and associated GP-IX column section on south end wall was installed. American Buildings Corporation drawing number 71697301 E-3 specifies the number and location of the puffins necessary for the erection of the roof sheeting to be in conformance with the supplied plans. Pulins specified: 58 pieces. Purlins counted: 58 pieces. Purlin spacing: verified to be satisfactory in relation to the spacing indicated on the drawings. Roof Cable Bracing: 8 cables braces specified between bays, sections 1 to 2,were installed. Roof Cable Bracing: 8 cables braces specified between bays, sections 4 to 5,were installed. Page 314 HAGERTY TECHNOLOGIES, INC. The above inspection was performed by Craig Burrows and myself on September 29,2004. As a follow-up to the slight discrepancies foluid in the anchor bolt spacing(i.e.,49' 1"was specified whereas an on-site measurement at section 2 showed an excursion of 0.75"),I interviewed Dave Gambacorta of Gambacorta Construction on Oct 18, 2004. Gammbacorta Construction was sub-contracted by Jim Minnick of GFI-Metal Building Sales for the erection of the steelwork provided by American Buildings Corporation. Dave told me that after the 10 columns were fastened to the anchor bolts,the flange faces of the rafter assemblies mated flush to the flange faces of the columns,and the bolt patterns in the joining assemblies had sufficient clearances for the 3/4"bolts to be inserted with ease. Essentially, the design of the joints was such that angled faces of the mating flanges,combined with the bolt-to-hole clearances in the flange faces, allowed for such minor differences,and still provide strong,bolted joints. He also mentioned that in certain cases on other jobs, he would have to slot the flange holes at the anchor bolt locations in order for the upper structure to fit together properly;and in the case of our building on 287 Dix Avenue,he did not have to perform that task. He stated that is was a common industry practice to make such changes,when necessary, to compensate for the masonry errors. Based on the September 29 inspection,all of the structural framing materials as specified on the construction drawings were installed in the proper locations, and the quality of the assembly appeared to be satisfactory. Upon inspecting the fastening bolts,a random"spot check"verified that the bolts conformed to the designated grade A325. All of the A325 bolts for the steel building assembly were supplied by American Buildings Company. The anchor bolts, supplied by the masonry contractor,were verified to be 3/4 diameter,and the number of anchor bolts specified were in fact installed. The doorway openings and associated framing were installed in accordance with the design guidelines. The required canopies over the two doorways were installed. In addition to the related American Buildings Company erection drawings,I am including the updated survey map issued by Van Dusen and Steves, dated August 13,2004. They performed the survey of the foundation on May 14,2004, prior to the steel columns being erected. If we had been apprised of your request for a post-construction conformance report,we sure would have had the surveyors measure all of the anchor bolt locations and indicate the results on a detailed drawing.Lacking timely communication,we instead had to get tine best measurements we could with the structural steel in place. I look forward to a prompt resolution to the issues outlined in this correspondence,so I can proceed with the deeded transfer of the property. Sincerely, George A. Hagerty cc: Tom Nace,Nace Engineering, 169 Haviland Road, Queensbury,NY 12804 cc: Jim Minnick, GFI-Metal Building Sales,506 Queensbury Ave.,Queensbury,NY 12804 cc: Dave Gambacorta, Gambacorta Construction,P.O.Box 532,Philmont,NY 12565 Page 4/4 Jai Le"Jt �QIlk L t s i dti� bo�� ji- F/t Li s. r r FLVtSKPtg n � 1orC DESO<PDDII ^- D" -- �PTIaYtD� A Revised Numbering of Parts 4/9G Gene Snith u rn b CAN O 21 22 a19 m N O E E_- S'-6' rn Plan View 1 �_ u A I ' 26 25 ! ! 23 !( ! 24 i Side View d j 0 � + I IWMG ED L NANLF/C'nJ ED LHDEN RafLCTMN ff PA7ENT MEL-J J i � M.397 iLRED 4/13/41 IMEtl ODED.&=E61i.. sac. n 23 ,. . F I S C;ar�c �r ) y C; c�, 1 may WAi DIMM 10 o W t ,• G�a Smith __ » J' C a Y�U py C U v`"�r rcv Front V i e w �",�--- -- �L_ L ro o02 [a -- -- frtia sLm v i �. '' K'PA � i �T"aI(Ado,.S FLaod C-�5�'�5 -------- --- 1 itY)" eeA ll t----------- -- 3'does ,1„ ------- ------ --- ----- fiandicapb-d:h s ------------ -Columns -! ~.�i -Utility room 5'Ill 16�`" 9.5, ---� -------------- --�-- 1 I 9'ID i 16' . Display; Scale- ]:n'= l fi WEST - F.!sr�n=Casa ! Windows a 9' `I-PPL I1,_4,INC- DIX AVE.-=Z .T ' SliURY, `Y. l5oor` ��.c� (�o L� . M���� p�AJ tf L k -S� w DESIGN CALCULATIONS FOR ABC JOB 716973.01 G F I METAL BUILDING SALES GEO HAGERTY :^sty.vv i 11111 AMERICAN BUILDINGS COMPANY 6115 Coca Cola Blvd. ; Columbus,GA 31909 Phone(706)562-8020 Fax(706)562-8017 March 2, 2004 GFI - Metal Buildings Sales 71-6973.01 506 Queensbury Ave. Geo Hagerty Queensbury, NY 12804-7612 Queensbury, NY LRF 50'x 80'x 15' Gentlemen, This is to certify that metal building components furnished by American Buildings Company, an AISC-MB certified manufacturer, are scheduled for design in our Columbus, GA office and for fabrication in our Lacrosse,VA plant. The members are designed to comply with the following loads specified in the Order documents: Design Loads: Design Load Combinations: psf Metal Building Dead Load (D) 1) D+C +S(L) ') 20 psf Roof Live Load(L) 2) D+ 1.30W 3) 20 psf Frame Live Load(L) 3) D +C+ 1.30W+0.50S 4) 90 mph Wind Speed (3 Second Gust) (W) 4) D +C + L(S)+0.65S 1=1.0, Exp=C 5) 1.05(D+ C)+0.20S+0.71 E 5) 52.90 psf Flat Roof Snow Load(S) 6) 0.85(D+C)+ 0.71 E 1=1.0, Ce=0.9, Ct=1.2, Pg=70 psf 7) D+C + UNB. S 6) 1_0 psf Collateral Load (C) 7) Seismic Data- Equiv Lat Force Procedure (E) Ss=35.5, S1=10.4, Fa=1.54, Fv=2.40 1=1.0, Soil=D, SUG=1, SDC=B R(X-Bracing) = 5.0, R(Rigid Frame) =4.0 This project is designed as an Enclosed Building. Accessories(doors,windows, etc.) by others must be ;signed as"components and cladding"in accordance to specific wind provisions of the referenced Code. Please note that unless otherwise specified on your Purchase Order,American Buildings Company Serviceability Standards(1996 MBMA/AISC criteria)will be used for design and fabrication of your order. These design loads and combinations are applied in accordance with the 2002 New York State Building Code. The design is in general accordance with the A.I.S.C. (Ninth Edition) and A.I.S.I. (1996)specifications with 1999 supplement. This certification is limited to the structural design of the framing and covering parts manufactured by American Buildings Company and as specified in the contract. Accessory items such as doors,windows, louvers, translucent panels, and ventilators are not included. Also excluded are other parts of the project not provided by American Buildings Company such as foundations, masonry walls, mechanical equipment and the erection and inspection of the building. The building should be erected on a properly designed foundation in accordance with The American Buildings Company Erection Manual and American's drawings for the referenced job. The undersigned is not the engineer of record for the overall project. Cordially, Jerry M. Christensen Licensed Engineer, State of New York OH DESIGN- CALCULATIONS Pamphlet AMERICAN BUILDINGS COMPANY CONTENTS SECTION 1, General Introduction and General Design Approach 1.1 Figure 1 - Clear Span Rigid Frame Building 1.2 Selected References 1.3 SECTION 2, Rigid Frame Explanations and Methods of Analysis 2.1-2.3 Lateral Deflection of Frames 2.4 Rigid Frame Analysis SECTION 3, Endwalls and Rod Bracing Explanations and Methods of Analysis 3.1 Figure 4- Column and Beam Endwall Bracing 3.2 Figure 5- Column and Beam Endwall Rod Bracing 3.3 Nomenclature 3.4 Endwall Frame Analysis SECTION 4, Purlin and Girt Section Properties 4.1 Purlin and Girt Analysis SECTION 5, Panels Panel Profiles and Engineering Properties (LongSpan III) 5.1 Panel Profiles and Engineering Properties (Architectural III) 5.2 Panel Profiles and Engineering Properties (Architectural "V",Rib) 5.2b Panel Profiles and Engineering Properties (Standing Seam II) 5.3 Panel Profiles and Engineering Properties (Standing Seam 360) 5.3a Panel Profiles and Engineering Properties (Shadow) 5.4 Panel Profiles and Engineering Properties (16" Loc-Seam) 5.5 Panel Profiles and Engineering Properties (12" Loc-Seam) 5.6 Panel Profiles and Engineering Properties (Multi-Rib) 5.7 Panel Profiles and Engineering Properties (Seam Loc) 5.8 SECTION 6, Miscellaneous Standard Specifications 6.1 American Buildings Company Plant Locations:Eufaula,AL-Birmingham,AL-El Paso,IL Carson City,NV-LaCrosse, VA Service Centers:Phenix City,AL-Pine Bluff.AR-Modesto, CA LaGrange, GA-Columbus,MS-Rocky Mount,NC-Jamestown, OH INTRODUCTION The information contained within the pamphlet is a technical description of an American metal building. It represents the application of the most modern methods of mathematics and engineering to the design of a building. Its purpose is to provide interested reviewers with the necessary design calculations, and other documentation required to readily verify structural integrity. Figure 1 is'a drawing of an American building, illustrating the typical load carrying members; i.e., rigid frames, endwalls, purlins, girts, bracing and panels. A clear span rigid frame building was selected for this purpose; however, any of American's other standard designs, as described in the standard specifications for American Buildings Company pre-engineered Metal buildings, could also have been used -to illustrate the basic building components. All designs are in strict accordance with the latest editions of AISC and AISI specifications, whichever is applicable. The stress distributions in all load carrying members are obtained by the most applicable methods of the universally accepted elastic theory, as applied to indeterminate structures. A digital computer is used for many of the complex and laborious design calculations. American buildings are designed to meet the most severe conditions of load combinations set by the specified building code, but not less than,the following: a) , Building dead plus roof live load (or snow) uniformly distributed over the horizontal projection of the roof area. b). Building dead load plus wind load applied as pressure and suction normal to the building surfaces. c) Building dead load plus wind load plus 1/2 roof snow load. d) .Building dead load plus roof snow load plus 1/2 wind load. Other combinations and applications of loads are incorporated into the design of a . building when required. Occasionally these special design conditions can not be handled through one of our standard design formats. If this occurs, special hand calculations will be included. Subsequent sections of this report present the detailed design calculations and their necessary explanations. These are Section 2, Rigid Frame; Section 3,.`Column and Beam Endwall; Section 4, Purlins and Girts; Section 5, Roof and Wall Panels and Section 6, Miscellaneous and Special Conditions. SUBJECT TO CHANGE WITHOUT • .. Section 1 Page 1 a. CLEAR SPAN RIGID FRAME BUILDING ``'American Buildings Company Plant Locations:Eufaula,AL-Birmingham,AL-El Paso,IL Carson City, NV-LaCrosse, VA Service Centers:Phenix City,AL-Pine Bluff,AR-Modesto. CA LaGrange, GA-Columbus,MS-Rocky Mount,NC-Jamestown, OH SELECTED REFERENCES S ' 1) Manual of Steel Construction, AJ.S.C. 1989, Ninth Edition. 2) "Single Span Rigid Frames in Steel", by John D. Griffiths, A.I.S.C., 1984. 3) Specifications for the Design of Cold Formed Steel Structural Members, A.I.S.I., 1986 Edition with 1989 supplement. 4) Structural Steel Design, by L.S. Beedle,'et al, Fritz Engineering Laboratory, Civil Engineering Department, Lehigh University, 1962. 5) "Recommended Design Practices Manual", Metal Building Manufacturers Association, 1990 supplement. i SUBJECT i TO CHANGE WITHOUT • •• Section 1 Page 3 American Buildings- Company L Plant Locations:Eufaula,AL-Birmingham,AL-E/Paso, IL Carson City,NV-LaCrosse, VA Service Centers:Phenix City,AL-Pine Bluff AR-Modesto, CA LaGrange,GA-Columbus,MS-Rocky Mount, NC-Jamestown, OH RIGID FRAME EXPLANATION Rigid frame analysis and design is a very exacting task. American Buildings Company has developed a computer program that permits detailed analysis and design to be performed for steel frames. The following is a brief description of this program. Essentially the program combines the STIFFNESS METHOD of structural design theory with MATRIX mathematics operations. All of this is possible by the utilization of digital computer capabilities. The inherent speed of the computations permits the use of elaborate mathematical techniques which would be impossible by hand computations. These techniques along with the completely rigorous structural theory approach give technically precise and accurate results. The program consists of seven portions which are as follows: 1) Geometry input 2) Loading input and Stiffness Computation 3) Equivalent Forces Computations 4) Solution for Displacements 5) Reactions and Member Force_ Computation 6) Stress Analysis 7) Design Decisions - Geometry: The general structural configuration that the program can analyze or design is depicted in Figure 2. It shows a gable frame with vertical sidewalls, and a roof 'sloping downward on both sides of the ridge. The rafters may be supported at intermediate points by interior, columns. Each sidewall column or rafter may be composed of a number of segments; these segments may be prismatic or tapered, with "I" shaped cross-sections: The interior'columns must be prismatic, but may be "I" sections or pipes. The bases of sidewalls and interior columns maybe at different levels. The left and right sidewall heights and roof slopes may be unequal. SUBJECT TO CHANGE WITHOUT • •• Section 2 Page 1 American Buildings Company Plant Locations:Eufaula.AL-Birmingham.AL-El Paso. IL Carson City, NV-LaCrosse, VA Service Centers:Phenix City,AL-Pine Bluff.AR-Modesto. CA LaGrange, GA-Columbus,MS-Rocky Mount, NC-Jamestown, OH I- NODE II NODE MEMBER ENTER II I - . LINE I FIGURE 2 Typical Configuration of Frame Support and Loadings: The column bases may be specified pinned or fixed; the tops of interior columns may be specified pinned or fixed to the rafters. Uniformly distributed dead and live loads and wind loads are considered to be transmitted to the frame at and by the girts and purlins which are at specified spacings. In addition, concentrated.forces and moments may be specified at any location on the frame, thus permitting the inclusion of overhangs, cranes, and bracket loads, etc.. Input: The input to the program consists of information on building geometry; web depths at critical locations, column locations, girts and purlins, loading descriptions, material properties and stress criteria. If analysis only is required, the member cross-section details are input. If it is to be designed, inventories of flanges sizes and web thicknesses, and pipe sizes are used. Section 2 Page 2 American Buildings Company Plant Locations:Eufaula;AL-Birmingham,AL-El Paso.IL Carson City,NV-LaCrosse, VA Service Centers:Phenix City,AL-Pine Bluff,AR-Modesto, CA LaGrange, GA-Columbus,MS-Rocky Mount, NC-Jamestown, OH Analysis: In the analysis option no decision making is done concerning member selection. From the information supplied, which includes all member sizes,the program develops the precise centerline geometry of the frame. The analysis is carried out on the line configuration; composed of straight line segments ("Members") defined by the joints and other junction points called "Nodes". All the loads are transformed into equivalent forces and moments and applied at Node Points. The direct stiffness method of matrix structural elastic analysis is adopted. The member stiffnesses are computed,-and superposed to yield the force-displacement relations for.the entire frame. Stiffness coefficients and equivalent end actions for tapered members are obtained by numerical analysis. The Nodal displacements for the specified support and loading conditions are solved by a matrix block recursion routine. The support reactions and member end forces and moments are then calculated. Finally, the most critical and shear stresses along each member are computed-, and checked against allowable criteria according to AISC Specifications. The most critical stresses are those with the greatest ratio when compared to allowable stresses. The program analyzes the frame for each specified loading combination. Design: In the design option, a frame is determined by an iterative process of analysis and design. Initiated by the Analysis of a frame approximated from the specified flange, web and pipe inventories, the design proceeds in cycles of analysis, criteria checks, selection of fresh sections, and reanalysis until a satisfactory frame is obtained... When the design is complete, the program will analyze and_check the frame for each specified loading combination. Output: The output may be requested at various levels of detail. The basic output consists of a listing of input data, centerline geometry, reactions, member end reactions, Nodal displacements, member sizes, criteria checks, bolted connections, anchor bolts and base plates. More exhaustive information may be extracted if desired. SUBJECT TO CHANGE WITHOUT • .. Section 2 Page 3 American Buildings Company Plant Locations:Eufaula.AL-Birmingham.AL-El Paso. IL Carson City.NV-LaCrosse. VA Service Centers:Phenix City.AL-Pine Bluff.AR-Modesto. CA LaGrange, GA-Columbus.MS-Rocky Mount. NC-Jamestown, OH ' ' 1 In accordance with section C5.6, Metal Building Manufacturers Association (I':,`BMA/"86), many metal building systems are designed with moment-resistant frames aligned in the transverse direction to resist lateral loading. -Experience has shown that the lateral deflection of the frames under wind loading is far less than predicted by the usual analytical procedures. Consideration of just three factors undoubtedly accounts for most of this apparent anomaly: 1) drift calculations are traditionally based on full design loads, 2) the usual analytical procedures are based on "bare" frames (skin action of the roof diaphragms is neglected) and the moment-rotation stiffnesses of the "pinned" bases are taken as zero, and 3) load sharing has not been taken into account. Bare frame deflections are given on the computer printout for each node point. By considering the complete metal building system, the lateral deflection could be reduced to as much as 1/10 of that for the bare frame. The lateral deflection limitation is based upon the judgment of the design engineer unless specified otherwise. i Section 2 Page 4 low F _med Openings Calcula. in American Buildings Company Job Number 71-6973.01 Engineer Qu Module 1 ❑FSW BAY ❑RSW BAY 21 LEW BAY ❑REW BAY DIMENSIONS 0 No Stress Increase MSA SECONDARY FRAME OUTPUT Span length(column to column) 17,5.0 ft Wind pressure (50 yr.wind) 16,10 psf 1 0 Door width 8:92 ft Suction coefficient Door Height 7,92 ft Pressure coefficient 1 00 Distance from left column to lst jamb 4;5"0:ft:. - Suction -17.71 psf Distance from header to jamb support 5;00.ft Pressure 16.15 psf . .......... Ht. of the girt/eave after jamb support 19,$3 ft Design spacing,jamb supp. 35.50 in Deflection(standard is U90 for 50 yr.wind) L;J 90 Allowable Stress Ratio 1 03; Wall Girt Depth O 8" O 9.5" O 12" PANEL CONDITION Nested(2)Girts? Yes Stress Increase= 1.00 Jamb Support(s) R= 045". See comment window for R values Use Hot-Rolled Channels? O Yes OO No Distance Between Lateral Supports(in) N/A :in Header R= ` :65:" *Jambs R= ::0;65. See comment windows for R values Channel Depth Selection O C8 O C9 O C10 Use Hot Rolled Jambs? ❑ No Use Different Depth Jamb Support? ❑ No Use Different Depth Jambs? ❑ No Maximum Girt Spacing= Recommended Member For Jamb Support(s) Nested 8Z16 Stress Ratio= 0.89 Amax' =L/310 Recommended Minimum Member Size For Jambs 8C14 Stress Ratio= 0.46 Amy=L/494 Recommended Minimum Member Size For Header 8C14 Stress Ratio= 0.12 Am.=L/4202 J Minim 1 gage f Minimum 4 or'am b and header a span.Al l members re designed as simple The reduced sectional properties were used for cold formed members. 19.83 Next Girt/Eave Jamb Support 13.92 Door Header 7.92 W C C J J C E E m E� 0 U o p U 4.50 13.42 17.50 Framed Opening Calculation VIA 2/13/2004 2-56 PM Job Name C:\ABCP\FRAMES\71697301. 01A GESTAD -- INPUT ECHO COLUMNS CARD NO. ( . 01-10. ) ( . 11-20. ) ( .21-30. ) ( .31-40. ) ( .41-50. ) ( .51-60. ) ( . 61-70. ) ( .71-80. ) JOB NAME AND NUMBER :- 71697301 71697301 ------------------_ ----------------------------------------------------- KTY KSY KPR KAN NCY INV NDC= 1 0 0 1 FE76 1 5 2 1 KUN FYF FYW DEF EXC RSB AFL EHL EHR AOH ITF NDC= 2 1 55.0 55. 0 0.030 0.050 0.000 0.000 15. 000 15.000 3.1 0 2 XWR YWR FRS NWL NRS NWR NIC MRC NBS NTC SPW SPT NDC= 3 50. 000 0. 000 20. 000 1 2 1 0 0 1 1 0. 000 0.500 3 SWL TWL DWL EWL FSL WSL KWL LWL IWL NGL NDC= 4 15. 000 0.000 10. 000 24. 000 55. 0 55. 0 1 2 0 3 4 NSL BT1 BT2 BT3 BT4 BT5 BT6 BT7 NDC= 5 0 5.000 0.375 0. 134 5. 000 0.500 0. 000 0.000 5 DGL GL1 GL2 GL3 GL4 GL5 NDC= 7 1.500 28.000 48. 000 72.000 0.000 0. 000 7 XT TT DT ET FST WST KT LT LTB LTC IT NP NDC= 9 0. 000 6. 000 24. 000 24. 000 55. 0 55. 0 1 0 1 0 1 8 9 NSL BT1 BT2 BT3 BT4 BT5 BT6 BT7 NDC= 5 0 5. 000 0.313 0.219 5. 000 0.375 0. 000 0.000 5 NSL SS DS FSS WSS KS LS LSB NDC= 6 1 11.584 24. 000 0. 0 0.0 1 0 0 6 NSL BT1 BT2 BT3 BT4 BT5 BT6 BT7 NDC= 5 0 5.000 0.313 0. 164 5.000 0.375 0. 000 0. 000 5 DP PUl PU2 PU3 PU4 PU5 NDC=10 8 . 000 16.100 42. 932 42. 932 42. 932 42.932 10 PU- PU- PU- PU- PU- PU- NDC=ll 42. 932 34.617 34.617 0. 000 0. 000 0. 000 11 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + LEU- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 20.000 0.000 1.000 A 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0.000 0. 000 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + L FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 12. 000 0.000 1. 000 A 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0:000 0.000 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52.920 0.000 1. 000 A 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0.000 0. 000 0.000 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUL1<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 0. 000 1.000 A 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0.000 0. 000 0.000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0.000 0. 000-101. 136-101.136 2 23 2 0. 000 25.000 0.000 0. 000 -15. 876 -15.876 3 23 ------------- LOAD -------=---= RPT KL ND NK NY KA NDC=20 D+C + SUR1-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 0. 000 1.000 A 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0.000 0. 000 0. 000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0.000 25.000 0. 000 0. 000 -15. 876 -15. 876 2 23 2 0. 000 25.000 0.000 0. 000-101.136-101. 136 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1. 30WL^ FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20. 930 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0.870 -0. 630 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1.30WLX^ FE76 0 0 2 0 1 20' UD UL UW Omega DgnM H V KW NDC=21 2.200 0.000 20.930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.870 -0. 870 -0. 630 0. 000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0.500 0. 000 2. 924 0.000 4.024 1 24 2 0.500 0. 000 2. 924 0. 000 4.024 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1.30W1-> FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20.930 1. 000 B 0 0 1 21 Cwl CW2 CW3 CW4 CW5 CW6 NDC=22 0.730 0. 080 -0.270 -0.210 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1.30W1<- FE76 0 0 0 0 1 20 UD UL Uw Omega DgnM H V KW NDC=21 2.200 0. 000 20.930 1. 000 B 0 0 1 21 cWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.210 -0.270 0. 080 0.730 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1.30W2-> FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0.000 20.930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.510 -0. 190 -0.270 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1.30W2<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20.930 1. 000 B 0 0 1 21 cwl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0. 190 -0. 510 -0.270 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1.30W3-> FE76 0 0 0 0 1 20 UD UL Uw Omega DgnM H V KW NDC=21 2.200 0. 000 20. 930 1.000 B 0 0 1 21 cWl CW2 CW3 CW4 CW5 CW6 NDC=22 0.370 -0.280 -0. 630 -0.570 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1.30W3<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0.000 ' 20. 930 1. 000 B 0 0 1 21 cwl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.570 -0.630 -0.280 0.370 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1.30W4-> FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20. 930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.870 -0.550 -0. 630 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1.30W4<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20. 930 1.000 B 0 0 1 21 cWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.550 -0. 870 -0. 630 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30WL^ + 0.50S FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20. 930 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0. 870 -0. 630 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30WLX^ + 0.50S FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26. 460 20.930 1.000 B 0 0 1 21 cWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.630 -0. 870 -0. 870 -0. 630 0. 000 0.000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0.500 0. 000 2. 924 0. 000 4.024 1_ 24 2 0. 500 0.000 2. 924 0.000 4.024 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30Wl-> + 0.50S FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20. 930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.730 0.080 -0.270 -0.210 0.000 0. 000 1 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30Wl-> + 0.50SUR1-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0.000 20. 930 1.000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 730 0. 080 -0.270 -0.210 0.000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0.000 25. 000 0. 000 0. 000 -7.938 -7. 938 2 23 2 0. 000 25. 000 0. 000 0. 000 -50.568 -50.568 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30Wl<- + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20.930 1. 000 B 0 0 1 21 ti CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.210 -0.270 0. 080 0.730 0.000 0. 000 22 ----- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W1<- + 0.50SUL1<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0.000 20.930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.210 -0.270 0. 080 0.730 0.000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25.000 0. 000 0. 000 -50.568 -50.568 2 23 2 0. 000 25.000 0.000 0. 000 -7. 938 -7.938 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W2-> + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20.930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.510 -0. 190 -0.270 0.000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W2-> + 0.50SUR1-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 20.930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.510 -0.190 -0.270 0.000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000 -7.938 -7.938 2 23 2 0. 000 25. 000 0. 000 0. 000 -50.568 -50.568 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W2<- + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20.930 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.190 -0.510 -0.270 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W2<- + 0.50SUL1<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 20.930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.190 -0.510 -0.270 0. 000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000 -50.568 -50.568 2 23 2 0. 000 25. 000 0.000 0. 000 -7. 938 -7.938 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W3-> + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20. 930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.370 -0.280 -0. 630 -0.570 0.000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W3-> + 0.50SUR1-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0.000 20.930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.370 -0.280 -0. 630 -0.570 0.000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0.000 25.000 0. 000 0.000 -7.938 -7.938 2 23 2 0. 000 25. 000 0. 000 0.000 -50.568 -50.568 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W3<- + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20. 930 1.000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 . CW6 NDC=22 -0.570 -0. 630 -0.280 0.370 0.000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W3<- + 0.50SUL1<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0.000 20. 930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.570 -0. 630 -0.280 0.370 0.000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0.000 -50.568 -50.568 2 23 2 0. 000 25. 000 0. 000 0. 000 -7. 938 -7.938 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W4-> + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20. 930 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0.550 -0. 639 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W4-> + 0.50SUR1-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 20. 930 1.000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0.550 -0. 630 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0.000 25. 000 0.000 0.000 -7. 938 -7.938 2 23 2 0.000 25. 000 0.000 0.000 -50.568 -50.568 3 23 ------------- LOAD ------------ RPT KL ND NK NY„ KA NDC=20 D+C + 1.30W4<- + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20.930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.550 -0. 870 -0. 630 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W4<- + 0.50SUL1<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 20.930 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.550 -0. 870 -0. 630 0. 000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0.000 25. 000 0.000 0.000 -50.568 -50.568 2 23 2 0. 000 25. 000 0. 000 0.000 -7.938 -7.938 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65WL^ FE76 0 0 0 0 1 20 UD UL- UW Omega DgnM H V KW NDC=21 3.200 52.920 10.470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0.870 -0. 630 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0.65WLX^ FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H\ V KW NDC=21 3.200 52. 920 10.470 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0. 870 -0. 630 0. 000 0.000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0.500 0.000 1.462� 0.000 2. 012 1 24 2 0.500 0.000 1.462 0. 000 2. 012 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65W1-> FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52.920 10.470 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.730 0. 080 -0.270 -0.210 0. 000 .0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65W1<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52.920 10.470 1.000 B 0 0 1 21 CW1 CW2 CW3, CW4 CW5 CW6 NDC=22 -0.210 -0.270 0. 080 0.730 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65W2-> FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52. 920 10.470 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.510 -0. 190 -0.270 0.000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65W2<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52. 920 10.470 11. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0. 190 -0.510 -0.270 0.000 0.000' 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0.65W3-> FE76 0 0 0 0 1 20 UD UL Uw Omega DgnM H V KW NDC=21 3.200 52.920 10.470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 370 -0.280 -0. 630 -0.570 0.000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65W3<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52. 920 10. 470 1.000 B 0 0 1 21 CW1 CW2 CW3 Cwt CW5 CW6 NDC=22 -0.570 -0.630 -0.280 0.370 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65W4-> FE76 0 0 0 0 1 20 UD UL Uw Omega DgnM H V KW NDC=21 3.200 52. 920 10.470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.870 -0.550 -0. 630 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65W4<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52.920 10.470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.550 -0. 870 -0. 630 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUL1<- + 0. 65W1<- FE76 0 2 0 0 1 20 UD UL Uw Omega DgnM H V KW NDC=21 3.200 0.000 10.470 1.000 B 0 0 1 21 Cwl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.210 -0.270 0. 080 0.730 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0.000-101.136-101.136 2 23 2 0. 000 25. 000 0. 000 0. 000 -15.876 -15. 876 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUL1<- + 0. 65W2<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0.000 10.470 1. 000 B 0 0 1 21 cwl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.190 -0.510 -0.270 0.000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0.000-101.136-101. 136 2 23 2 0. 000 25. 000 0. 000 0. 000 -15.876 -15. 876 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUL1<- + 0. 65W3<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0.000 10.470 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.570 -0. 630 -0.280 0.370 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0.,600-101.136-101. 136 2 23 2 0. 000 25. 000 0. 000 0. 000 -15. 876 -15. 876 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUL1<- + 0. 65W4<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 10.470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.550 -0. 870 -0.630 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25.000 0. 000 0. 000-101.136-101.136 2 23 2 0. 000 25. 000 0. 000 0. 000 -15. 876 -15.876 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUR1-> + 0. 65W1-> FE76 0 2 0 0 1 20 UD UL Uw Omega DgnM H V KW NDC=21 3.200 0.000 10.470 1. 000 B 0 0 1 21 Cwl CW2 CW3 CW4 CW5 CW6 NDC=22 0.730 0.080 -0.270 -0.210 0.000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25.000 0.000 0. 000 -15. 876 -15. 876 2 23 2 0. 000 25.000 0.000 0. 000-101.136-101.136 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUR1-> + 0. 65W2-> FE76 0 2 0 0 1 20 UD UL Uw Omega DgnM H V KW NDC=21 3.200 0.000 10.470 1. 000 B 0 0 1 21 cWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.510 -0. 190 -0.270 0.000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0.000 -15.876 -15. 876 2 23 2 0. 000 25. 000 0. 000 0. 000-101. 136-101. 136 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUR1-> + 0. 65W3-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H` V KW NDC=21 3.200 0.000 10.470 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0.370 -0.280 -0.630 -0.570 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0.000 -15. 876 -15. 876 2 23 2 0. 000 25. 000 0. 000 0. 000-101. 136-101.136 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUR1-> + 0. 65W4-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 10.470 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0.550 -0. 630 0. 000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0.000 -15. 876 -15. 876 2 23 2 0.000 25. 000 0. 000 0.000-101. 136-101. 136 3 23 ------------- LOAD ------------ RPT KL - ND NK NY KA NDC=20 1. 05D+C + 0.205 + 0.71E-> FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.360 10.580 0. 000 3. 000 B 0 0 1 21 cwl CW2 CW3 CW4 cw5 CW6 NDC=22 0. 000 0. 000 0. 000 0.000 0.000 0.000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 15. 000 0.509 0. 000 0. 000 0. 000 1 24 2 15. 000 0.509 0. 000 0. 000 0.000 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 1. 05D+C + 0.205 + 0.71E<- FE76 0 0 2 0 .1 20 UD UL UW Omega DgnM H V KW NDC=21 3.360 10.580 0. 000 3. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 15. 000 -0.509 0.000 0.000 0.000 1 24 2 15.000 -0.509 0. 000 0. 000 0. 000 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 1. 05D+C + 0.205 + 0.71ELX FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.360 10.580 0.000 2. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.000 0. 000 0. 000 0.000 0.000 0.000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0.500 0. 000 1. 616 0.000 2.225 1 24 2 0.500 0.000 1. 616 0.000 2.225 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA/ NDC=20 0. 85D+C + 0.71E-> FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.720 0.000 0. 000 3. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0.000 0. 000 0.000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 15.000 0. 509 0. 000 0. 000 0. 000 1 24 2 15.000 0.509 0. 000 0.000 0.000 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 0. 85D+C + 0.71E<- FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.720 0. 000 0. 000 3. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0.000 0.000 22 i NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 15. 000 -0.509 0. 000 0.000 0.000 1 24 2 15. 000 -0.509 0.000 0.000 0.000 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 0. 85D+C + 0.71ELX FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.720 0.000 0. 000 2. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0.000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0.500 0. 000 1. 616 0. 000 2.225 1 24 2 0.500 0. 000 1. 616 0.000 2.225 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 0. 000 1. 000 N 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0.000 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 0. 000 1. 000 N 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 LEU- 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 20.000 0.000 1. 000 N 60 180 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 L 10040 0 0 0 0 1 20 UD UL, UW Omega DgnM H V KW NDC=21 0.000 12. 000 0.000 1. 000 N 60 180 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0.000 0.000 0. 000 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 S 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 52. 920 0. 000 1. 000 N 60 180 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0.000 0.000 0. 000 0.000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 SUL1<- 10040 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0. 000 0. 000 1. 000 N 60 180 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0.000 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0.000 25.000 0. 000 0. 000-101.136-101.136 2 23 2 0.000 25.000 0.000 0. 000 -15. 876 -15.876 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 SUR1-> 10040 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0.000 0.000 0.000 1. 000 N 60 180 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0.000 0. 000 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000 -15. 876 -15.876 2 23 2 0.000 25. 000 0. 000 0. 000-101.136-101.136 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 WL^ 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0.000 16. 100 1. 000., N 42 126 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.630 -0. 870 -0.870 -0. 630 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 WLX^ 10040 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0. 000 16. 100 1.000 N 42 126 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0. 870 -0.630 0. 000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0.500 0. 000 2.249 0. 000 3. 096 1 24 2 0.500 0. 000 2.249 0.000 3.096 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W1-> 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0. 000 16. 100 1. 000 N 42 126 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.730 0.080 -0.270 -0.210 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W1<- , 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0. 000 16. 100 1. 000 N 42 126 1 21 cW1 CW2 CW3 CW4 cW5 CW6 NDC=22 -0.210 -0.270 0. 080 0.730 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W2-> 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0.000 0.000 16. 100 1.000 N 42 126 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.510 -0. 190 -0.270 0.000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W2<- 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0.000 16.100 1. 000 N 42 126 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0. 190 -0.510 -0.270 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W3-> 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0.000 16.100 1. 000 N 42 126 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0.370 -0.280 -0. 630 -0.570 0. 000 0. 000 22 i -! ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W3<- 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0.000 16.100 1. 000 N 42 126 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.570 -0. 630 -0.280 0.370 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W4-> 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0. 000 16. 100 1. 000 N 42 126 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.870 -0.550 -0. 630 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W4<- 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V _KW NDC=21 0. 000 0. 000 16.100 1. 000 N 42 126 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.550 -0. 870 -0. 630 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 E-> 10040 0 0 4 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0. 000 0. 000 3. 000 N 60 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 15. 000 0. 027 0. 000 0. 000 0.000 1 24 2 15.000 0. 027 0. 000 0.000 0.000 4 24 3 15. 000 0. 685 0. 000 0.000 0.000 1 24 4 15. 000 0.685 0. 000 0. 000 0.000 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 E<- 10040 0 0 4 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0. 000 0. 000 3. 000 N 60 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0.000 0. 000 0. 000 0. 000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 15. 000 -0. 027 0. 000, 0. 000 0.000 1 24 2 15. 000 -0.027 0.000 0. 000 0.000 4 24 3 15.000 -0.685 0. 000 0.000 0. 000 1 24 4 15. 000 -0. 685 0. 000 0.000 0.000 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 ELX 10040 0 0 2 0 0 20 UD UL UW Omega DgnM H V KW NDC=21 0.000 0. 000 0. 000 2. 000 N 60 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0.000 0. 000 0.000 0.000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0.500 0. 000 2.263 0. 000 3.115 1 24 2 0.500 0. 000 2.263 0.000 3.115 4 24 FRAME SELF-WEIGHT AS APPLIED DEAD LOAD MEMBER MEMBER WEIGHT CONNECTION WEIGHT (lbs) (lbs) 1 310.8 79. 9 2 364.8 3 368.9 57. 0 4 368. 9 5 364. 8 79. 9 6 310. 8 Total: 2088.9 216. 9 AMERICAN BUILDINGS CO. P.O. BOX 800 EUFAULA, ALABAMA 36072 Job Name: C:\ABCP\FRAMES\71697301. 01A 02/12/04 04:26 PM Ver. 21.0 STEEL FRAME ANALYSIS AND DESIGN BY THE DIRECT STIFFNESS METHOD ALL DESIGN IN ACCORDANCE WITH 89 AISC AND MBMA AS APPLICABLE BUILDING DESCRIPTION - - 71697301 71697301 FRAME WIDTH BAY SPACING ROOF SLOPES INT. COLUMNS MEMBERS NODES 50.000 ft. 20. 000 ft. 2 0 6 7 LEFT WALL SLOPE W/VERT. GIRT DEPTH TYP. GIRT SPACE --------------- 0. 000/ 12.0 1.50 in. 72.00 in. NODE LOCATION WEB DEPTH CONNECTION BASE 1 0. 000 ft. 10. 000 in. PINNED EAVE 2 15.000 ft. 24. 000 in. RIGID Y ROOF SLOPE 1 SLOPE W/HORIZ. PURLIN DEPTH TYP. PURLIN SPACE --------------- 6. 000/ 12. 0 8. 00 in. 34. 62 in. NODE LOCATION WEB DEPTH CONNECTION LEFT END 2 0. 000 ft. 24. 000 in. RIGID SPLICE 3 11.584 ft. 24. 000 in. RIGID RIGHT END 4 25. 000 ft. 24.000 in. RIGID ROOF SLOPE 2 SLOPE W/HORIZ. PURLIN DEPTH TYP. PURLIN SPACE --------------- -6. 000/ 12.0 8. 00 in. 34. 62 in. NODE LOCATION WEB DEPTH CONNECTION LEFT END 4 25.000 ft. 24. 000 in. RIGID SPLICE 5 38.416 ft. 24. 000 in. RIGID RIGHT END 6 50. 000 ft. 24. 000 in. RIGID RIGHT WALL SLOPE W/VERT. GIRT DEPTH TYP. GIRT SPACE --------------- 0. 000/ 12. 0 1.50 in. 72. 00 in. NODE LOCATION WEB DEPTH CONNECTION _ EAVE 6 15. 000 ft. 24. 000 in. RIGID BASE 7 0. 000 ft. 10. 000 in. PINNED Job Name: C:\ABCP\FRAMES\71697301. 01A 02/12/04 04:26 PM Ver. 21. 0 BUILDING -- 71697301 71697301 MEMBER SIZES * * * WEB- OUTER FLANGE * WEB * INNER FLANGE * FLANGE * YIELD STRESS MEMBER WIDTH THICK. * THICK. * WIDTH THICK. * WELD * FLANGE WEB (in. ) (in. ) (in. ) * (in. ) (in. ) * (in. ) * (ksi) (ksi) 1 5. 00 X 0.3750 0. 1345 5. 00 X 0.5000 0.1250 55.0 55. 0 2 5. 00 X 0.3125 0.2188 5.00 X 0.3750 0. 1875 55.0 55. 0 3 5. 00 X 0.3125 0. 1644 5. 00 X 0.3750 0. 1250 55.0 55. 0 4 5. 00 X 0.3125 0. 1644 5.00 X 0.3750 0.1250 55. 0 55. 0 5 5. 00 X 0.3125 0.2188 5. 00 X 0.3750 0.1875 55. 0 55. 0 6 5. 00 X 0.3750 0. 1345 S. O%X 0.5000 0. 1250 55.0 55. 0 l ' Job Name: C:\ABCP\FRAMES\71697301. 01A 02/12/04 04:26 PM Ver. 21. 0 BUILDING -- 71697301 71697301 NODE COORDINATES NODE X Y (in. ) (in. ) 1 7.00 0. 00 2 14. 00 164 . 08 3 144.37 229.27 4 300. 00 307. 08 5 455. 63 229.27 6 586. 00 164. 08 7 593. 00 0. 00 4 Job Name: C:\ABCP\FRAMES\71697301. 01A 02/12/04 04:26 PM Ver. 21.0 BUILDING -- 71697301 71697301 MAXIMUM STRESS RATIOS-89 AISC ALLOWABLE STRESS DESIGN OUTER FLANGE * WEB * INNER FLANGE * OUTER FLG WEB SHEAR INNER FLG MEM WIDTH THICK * THICK * WIDTH THICK * RATIO LOAD RATIO LOAD RATIO LOAD (in) (in) (in) (in) (in) 1 5. 00 0. 3750 0. 1345 5. 00 0.5000 0. 972 5 0.764 4 0. 991 4 2 5. 00 0.3125 0.2188 5. 00 0. 3750 0. 867 5 0.796 5 0. 950 5 3 5. 00 0.3125 0. 1644 5. 00 0. 3750 0. 943 4 0. 960 4 0. 722 4 4 5. 00 0. 3125 0. 1644 5. 00 0.3750 0.943 4 0. 960 4 0.722 4 5 5. 00 0. 3125 0.2188 5. 00 0.3750 0. 867 4 0.796 5 0. 950 5 6 5. 00 0.3750 0.1345 5. 00 0.5000 0. 972 5 0. 764 4 0. 991 4 Job Name: C: \ABCP\FRAMES\71697301. 01A 02/12/04 04:26 PM Ver. 21. 0 BUILDING -- 71697301 71697301 BOLTED SPLICE SUMMARY PLATE * BOLTS WIDTH/ * * CONNECTION RESISTANCE *MOM. THICK. * ROWS GAGE DIA. * TENSION COMPRES. MOMENT * ARM YT YC NODE (in. ) * LINES (in. ) * (kips) (kips) (kip-ft) * (in. ) (in. ) (in. ) 2 S.00X TOP 2 2 1. 000 81. 9 114. 8 176. 6 21.55 5.48 2. 19 0.750 BOT. 2 2 1. 000 62.2 82.1 151.5 22.13 5. 48 1. 60 4 5. 00X TOP 2 2 0. 750 47.5 47. 9 92. 9 23.38 4 . 01 0.21 0.500 BOT. 2 2 0.750 55.7 60. 7 127. 0 26.19 0. 82 0.59 6 5. 00X TOP 2 2 1. 000 81. 9 114. 8 176. 6 21.55 5.48 2. 19 0.750 BOT. 2 2 1. 000 82.2 82. 1 151.5 22.13 5.48 1. 60 Job Name: C:\ABCP\FRAMES\71697301. 01A 02/12/04 04 :26 PM Ver. 21.0 BUILDING -- 71697301 71697301 FRAME SUPPORTS * BASE PLATE * ANCHOR BOLTS * THICKNESS WIDTH LENGTH * NO. DIAMETER AREA SUP. * NODE (in. ) (in. ) (in. ) * (in. ) (in2) 1 1 0.500 6. 000 11.500 4 0.750 1.767 2 7 0.500 6. 000 11. 500 4 0.750 1.767 CONNECTION DESIGN FORCES AT SUPPORTS BOLT RESISTANCE . HORIZONTAL VERTICAL MOMENT SHEAR TENSION NODE LOAD (kips) (kips) (kip-ft) (kips) (kips) 1 1 4. 99 12.75 0.00 17. 67 35.34 2 3.38 8.75 -0. 00 17. 67 35.34 3 11. 63 29.21 0. 00 17. 67 25.01 4 12.76 42. 67 0. 00 17. 67 22. 98 5 12.76 21.34 0. 00 17. 67 22. 98 6 -0.44 -6. 85 0.00 23.56 47. 12 7 -0.44 -9.78 0. 00 23.56 47.12 4. 02 (out-of-plane) 8 -4. 10 0.51 -0.00 23.56 47. 12 9 3. 17 2. 01 0.00 23.56 47. 12 10 1. 17 -1.54 0.00 23.56 47. 12 11 -0.51 -1.28 0. 00 23.56 47. 12 12 -4.27 -3.26 0. 00 23.56 47. 12 13 3. 01 -1.76 -0. 00 23.56 47.12 14 1. 00 -5.31 -0. 00 23.56 47. 12 15 -0. 67 -5. 05 -0. 00 23.56 47. 12 16 5.10 6. 88 -0. 00 23. 56 47. 12 17 5. 09 3. 95 0. 00 23.56 47. 12 4. 02 (out-of-plane) 18 1.43 14.24 -0. 00 23.56 47. 12 19 2. 00 10.30 -0. 00 23.56 47. 12 20 8.71 15.74 0. 00 23.56 45.58 21 9.27 22.47 0. 00 23.56 44.57 22 6.71 12.19 0.00 23.56 47.12 23 7.27 8.25 0.00 23:56 47.12 24 5. 03 12.45 -0. 00 23.56 47.12 25 5.59 19. 18 -0. 00 23.56 47.12 26 1.27 10.47 -0. 00 23.56 47. 12 27 1. 83 6.53 -0.00 23.56 47. 12 28 8.54 11.97 0. 00 23.56 45. 88 29 9. 11 18.70 -0.00 23.56 44. 87 30 6.54 8. 42 -0. 00 23.56 47. 12 31 7. 10 4.49 -0. 00 23.56 47. 12 32 4. 87 8. 68 0. 00 23.56 47. 12 33 5.43 15.41 -0. 00 23.56 47. 12 34 11. 03 24. 66 0.00 23.56 41.40 35 11. 03 23.20 0.00 23.56 41.41 2. 01 (out-of-plane) 36 9.20 28.34 0.00 23.56 44.70 37 12. 84 29. 09 0. 00 23.56 38. 15 38 11. 84 27.31 -0. 00 23.56 39.96 39 11.00- 27. 45 0.00 23.56 41.46 40 9.12 26. 45 0. 00 23.56 44.85 41 12.76 27.21 -0.00 23.56 38.30 42 11.75 25.43 0. 00 23.56 40.11 43 10. 92 25.56 0.00 23.56 41.61 44 13.96 42.55 0.00 23.56 36.13 45. 12. 12 40. 90 -0.00 23.56 39.44 46 13. 88 40. 66 0. 00 23.56 36.27 47 12. 04 39.02 -0.00 23.56 39.59 48 10.33- 20.47 0. 00 23.56 42. 68 49 12.96 19.44 0. 00 23.56 37.93 50 10.24 18.58 -0. 00 23.56 42.82 51 12.88 17.56 0.00 23.56 38.08 52 7. 85 23.51 -0. 00 23.56 47. 12 53 10.90 25.22 0.00 23.56 41. 63 54 6.25 13. 01 -0. 00 23.56 47.12 4.45 (out-of-plane) 55 1. 06 6. 68 -0. 00 23.56 47.12 56 4.12 8.39 0.00 23.56 47. 12 57 1.72 1.79 0. 00 23.56 47.12 4.45 (out-of-plane) 7 1 -4. 99 12.75 -0.00 17. 67 35.34 2 -3.38 8.75 0.00 17. 67 35.34 3 -11.63 29.21 -0.00 17. 67 25.01 4 -12.76 21.34 -0.00 17. 67 22. 98 5 -12.76 42. 67 0. 00 17. 67 22. 98 6 0.44 -6. 85 0.00 23.56 47. 12 7 0.44 -9.78 =0. 00 23.56 47. 12 8 -3. 17 2. 01 0. 00 23.56 47. 12 9 4. 10 0.51 -0.00 23.56 47.12 10 0.51 -1.28 0. 00 23.56 47. 12 11 -1.17 -1.54 -0.00 23.56 47. 12 12 -3.01 -1.76 -0.00 23.56 47.12 13 4.27 -3.26 -0.00 23.56 47. 12 14 0. 67 -5. 05 0.00 23.56 47.12 15 -1. 00 -5.31 -0. 00 23.56 47.12 16 -5.10 6. 88 0.00 23.56 47. 12 17 -5. 09 3. 95 -0. 00 23.56 47.12 18 -8.71 15.74 0. 00 23.56 45.58 19 -9.27 22. 47 -0.00 23.56 44.57 20 -1.43 14.24 0.00 23.56 47. 12 21 -2.00 10.30 0.00 23.56 47.12 22 -5. 03 12.45 -0.00 23.56 47. 12 23 -5.59 19. 18 -0. 00 23.56 47.12 24 -6.71 12.19 -0.00 2-3.56 47.12 25 -7.27 8-25 0.00 23.56 47.12 26 -8.54 11. 97 0.00 23.56 45.88 27 -9. 11 18.70 0.00 23.56 44.87 28 -1.27 10.47 0.00 23.56 47. 12 29 -1. 83 6.53 0.00 23.56 47. 12 30 -4. 87 8. 68 -0.00 23.56 47.12 31 -5.43 15.41 -0.00 23.56 47.12 32 -6.54 8.42 -0.00 23.56 47. 12 33 -7.10 4. 49 0.00 23.56 47.12 34 -11. 03 24. 66 0.00 23.56 41.40 35 -11.03 23.20 -0.00 23.56 41.41 36 -12. 84 29. 09 -0. 00 23.56 38.15 37 -9.20 28.34 0. 00 23.56 44.70 38 -11. 00 27.45 0. 00 23.56 41.46 39 -11. 84 27 .31 0. 00 23.56 39.96 40 -12.76 27.21 -0. 00 23.56 38.30 41 -9. 12 26. 45 0. 00 23.56 44. 85 42 -10. 92 25.56 -0.00 23.56 41. 61 43 -11.75 25. 43 0.00 23.56 40. 11 44 -10.33 20. 47 -0. 00 23.56 42. 68 45 -12. 96 19. 44 -0. 00 23.56 37. 93 46 -10.24 18.58 -0. 00 23.56 42. 82 47 -12. 88 17. 56 -0. 00 23.56 38.08 48 -13.96 42.55 -0. 00 23.56 36. 13 49 -12. 12 40. 90 -0.00 23.56 39.44 50 -13. 88 40. 66 0. 00 23. 56 36.27 51 -12. 04 39. 02 0. 00 23.56 39.59 52 -10. 90 25.22 0. 00 23.56 41. 63 53 -7. 85 23.51 -0.00 23.56 47.12 54 -6.25 13. 01 -0.00 23.56 47.12 55 -4 . 12 8.39 -0.00 23.56 47. 12 56 -1. 06 6. 68 0. 00 23.56 47.12 57 -1. 72 1. 79 0. 00 23.56 47. 12 Connection design forces for load combination 52 include an omega of 3. 00 Connection design forces for load combination 53 include an omega of 3. 00 Connection design forces for load combination 54 include an omega of 2. 00 Connection design forces for load combination 55 include an omega of 3. 00 Connection design forces for load combination 56 include an omega of 3. 00 Connection design forces for load combination 57 include an omega of 2. 00 Job Name: C:\ABCP\FRAMES\71697301. 01A 02/12/04 04:26 PM Ver. 21. 0 BUILDING -- 71697301 71697301 WEIGHT OF BUILT-UP MEMBERS = 2069.3 lbs WEIGHT OF W SHAPE MEMBERS = 0.0 lbs WEIGHT OF PIPE MEMBERS = 0. 0 lbs WEIGHT OF SPLICES = 163.2 lbs WEIGHT OF BASE PLATES = 19.5 lbs WEIGHT OF STIFFENERS = 58.5 lbs TOTAL WEIGHT = 2310.5 lbs Job Name: C:\ABCP\FRAMES\71697301.01A 02/12/04 04:26 PM Ver. 21. 0 BUILDING -- 71697301 71697301 IZ IZFB 1 0 2 1 3 1 4 2 5 1 6 0 7 1 8 0 9 1 10 0 11 3 12 3 13 0 14 1 15 0 16 1 17 0 18 1 19 2 20 1 21 1 22 0 Job Name: C:\ABCP\FRAMES\71697301. 01A 02/12/04 04 :26 PM Ver. 21. 0 BUILDING -- 71697301 71697301 FRAME COMPONENTS FLANGES WIDTH * THICKNESS * LENGTH (in. ) * (in. ) * (ft. ) 2.5 0.3750 9. 17 2.5 0.3750 9. 17 5. 0 0.3125 12.76 5. 0 0.3125 15. 00 5. 0 0. 3125 15. 00 5. 0 0.3125 12.76 5.0 0.3750 14.29 5. 0 0.3750 11.53 5. 0 0.3750 �14. 00 5. 0 0.3750 14. 00 5. 0 0.3750 11.53 5. 0 0.3750 14 .29 5. 0 0.5000 4. 60 5. 0 0.5000 13.11 5. 0 0. 5000 13. 11 5. 0 0.7500 4. 87 5. 0 0. 7500 4. 87 6. 0 0. 5000 0. 96 6. 0 0.5000 0. 96 WEBS CUT DIMENSIONS THICKNESS * LENGTH * (1) * (2) * (3) * (4) (in. ) * (ft. ) * (in. ) 0.1345 14.29 10.00 10. 00 24 . 00 25.33 0. 1345 14.29 25.33 24. 00 10. 00 10. 00 0. 1644 15.00 24. 00 24. 00 24. 00 24. 00 0.1644 15. 00 24. 00 24 . 00 24. 00 24. 00 0.2188 12.76 24.00 24 . 00 24. 00 24. 00 0.2188 12.76 24. 00 24. 00 24. 00 24.00 Job Name C:\ABCP\FRAMES\71697301. 01B GESTAD -- INPUT ECHO COLUMNS CARD NO. ( . 01-10. ) ( .11-20. ) ( .21-30. ) ( .31-40. ) ( .41-50. ) ( .51-60. ) ( . 61-70. ) ( .71-80. ) JOB NAME AND NUMBER :- FRAME LINE 1 NON-EXPAN 71697301 ----------------------------------------------------------------------- KTY KSY KPR ' KAN NCY INV NDC= 1 0 0 1 FE76 1 5 2 1 KUN FYF FYW DEF EXC RSB AFL EHL EHR AOH ITF NDC= 2 1 55. 0 55. 0 0. 030 0. 050 0. 000 0. 000 15. 000 15. 000 3. 1 0 2 XWR YWR FRS NWL NRS NWR NIC MRC NBS NTC SPW SPT NDC= 3 50. 000 0. 000 10. 812 1 2 1 0 0 1 1 0. 000 0.500 3 SWL TWL DWL EWL FSL WSL KWL LWL IWL NGL NDC= 4 15.000 0. 000 10. 000 20. 000 55. 0 55. 0 1 2 0 3 4 NSL BT1 BT2 BT3 BT4 BT5 BT6 BT7 NDC= 5 0 5. 000 0.250 0. 134 5. 000 0.313 0. 000 0. 000 5 DGL GL1 GL2 GL3 GL4 GL5 NDC= 7 1. 500 28. 000 46. 000 72. 000 0. 000 0. 000 7 XT TT DT ET FST WST KT LT LTB LTC IT NP NDC= 9 0.000 6. 000 20. 000 20.000 55. 0 55. 0 1 0 1 0 1 8 9 NSL BT1 BT2 BT3 BT4 BT5 BT6 BT7 NDC= 5 0 5. 000 0.250 0. 164 5.000 0.250 0. 000 0. 000 5 NSL SS DS FSS WSS KS LS LSB NDC= 6 1 11.584 20. 000 0. 0 0.0 1 0 0 6 NSL BT1 BT2 BT3 BT4 BT5 BT6 BT7 NDC= 5 0 5. 000 0.250 0. 134 5. 000 0.250 0. 000 0. 000 5 DP PU1 PU2 PU3 PU4 PU5 NDC=10 9. 500 16. 100 42.932 42. 932 42. 932 42. 932 10 PU- PU- PU- PU- PU- PU- NDC=ll 42. 932 34. 617 34. 617 0. 000 0. 000 0. 000 11 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + LEU- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 20. 000 0. 000 1. 000 A 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + L FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 12.000 0. 000 1.000 A 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52 . 920 0. 000 1. 000 A 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUL1<- FE76 0 2 0 0 1 20 UD UL UW Omega w DgnM H V KW NDC=21 3.200 0. 000 0. 000 1. 000 A 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0.000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000-101. 136-101.136 2 23 2 0. 000 25. 000 0. 000 0. 000 -15. 876 -15. 876 3 23 ------------- LOAD ------------ RPT KL . ND NK NY KA NDC=20 D+C + SUR1-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 0. 000 1. 000 A 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0.000 0. 000 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000 -15. 876 -15. 876 2 23 2 0. 000 25. 000 0. 000 0. 000-101.136-101. 136 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1. 30WL^ FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20. 930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0. 870 -0. 630 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1. 30WLX^ FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2 .200 0.000 20.930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0. 870 -0. 630 0. 000 0.000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0. 500 0. 000 2. 924 0. 000 4.024 1 24 2 0.500 0. 000 2. 924 0.000 4. 024 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1.30Wl-> FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20.930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.730 0. 080 -0.270 -0.210 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1.30Wl<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20. 930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.210 -0.270 0. 080 0.730 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1. 30W2-> FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20.930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.510 -0. 190 -0.270 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1. 30W2<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0.000 20. 930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0. 190 -0.510 -0.270 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1. 30W3-> FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20. 930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 370 -0.280 -0.630 -0.570 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1. 30W3<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20. 930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 570 -0. 630 -0.280 0.370 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1.30W4-> FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20. 930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0. 550 -0. 630 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D + 1. 30W4<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0. 000 20. 930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 550 -0. 870 -0. 630 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30WL^ + 0. 505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20. 930 1. 000 B 0 0 1 21 cWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0. 870 -0. 630 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1. 30WLX^ + 0.505 FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20. 930 1. 000 B 0 0 1 21 cWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0. 870 -0. 630 0. 000 0.000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0. 500 0. 000 2. 924 0. 000 4. 024 1 24 2 0. 500 0. 000 2. 924 0.000 4. 024 4 ' 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30Wl-> + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20. 930 1.000 B 0 0 1 21 cWl CW2 CW3 CW4 CW5 CW6 NDC=22 0.730 0. 080 -0.270 -0.210 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30Wl-> + 0.50SUR1-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 20.930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.730 0. 080 -0.270 -0.210 0.000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000 -7.938 -7.938 2 23 2 0. 000 25. 000 0.000 0.000 -50.568 -50.568 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1. 30Wl<- + 0.50S FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20.930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.210 -0.270 0. 080 0.730 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30Wl<- + 0.50SUL1<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 20.930 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.210 -0.270 0.080 0.730 0.000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0.000 0. 000 -50.568 -50.568 2 23 2 0. 000 25. 000 0. 000 0. 000 -7.938 -7. 938 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W2-> + 0.50S FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20. 930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.510 -0. 190 -0.270 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W2-> + 0.50SUR1-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0.000 20. 930 _ 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.510 -0. 190 -0.270 0.000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000 -7. 938 -7. 938 2 23 2 0. 000 25. 000 0. 000 0. 000 -50.568 -50.568 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1. 30W2<- + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20.930 1. 000 B 0 0 1 21 cwl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0. 190 -0.510 -0.270 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1. 30W2<- + 0.50SUL1<- FE76 0 2 0 0 1 20 UD UL Uw Omega DgnM H V KW NDC=21 3.200 0.000 20. 930 1. 000 B 0 0 1 21 cwl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0. 190 -0.510 -0.270 0. 000 0. 000 22 NSL SD1 SD2 FD1 F12 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000 -50.568 -50.568 2 23 2 0. 000 25. 000 0. 000 0.000 -7. 938 -7. 938 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W3-> + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20.930 1. 000 B 0 0 1 21 cwl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 370 -0.280 -0. 630 -0.570 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W3-> + 0. 50SUR1-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 20. 930 1. 000 B 0 0 1 21 cwl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 370 -0.280 -0. 630 -0.570 0.000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000 -7.938 -7. 938 2 23 2 0. 000 25. 000 0. 000 0. 000 -50.568 -50.568 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W3<- + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20. 930 1. 000 B 0 0 1 21 cwl CW2 CW3 CW4 cw5 CW6 NDC=22 -0. 570 -0. 630 -0.280 0.370 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W3<- + 0.50SUL1<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 20. 930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.570 -0. 630 -0.280 0.370 0.000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000 -50.568 -50.568 2 23 2 0. 000 25. 000 0. 000 0. 000 -7. 938 -7. 938 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W4-> + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26.460 20. 930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0.550 -0. 6n 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W4-> + 0.50SUR1-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0.000 20. 930 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0.550 -0. 630 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0.000 -7.938 -7 . 938 2 23 2 0. 000 25. 000 0. 000 0.000 -50.568 -50.568 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1. 30W4<- + 0.505 FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 26. 460 20. 930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.550 -0. 870 -0. 630 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + 1.30W4<- + 0.50SUL1<- FE76 0 2 0 0 - 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 20. 930 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.550 -0. 870 -0. 630 0. 000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0.000 -50.568 -50.568 2 23 2 0. 000 25. 000 0. 000 0.000 -7. 938 -7.938 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65WL^ FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52.920 10.470 1. 000 B 0 0 . 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0. 870 -0. 630 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65WLX^ FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52. 920 10.470 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.870 -0. 870 -0. 630 0. 000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0.500 0. 000 1.462 0. 000 2.012 1 24 2 0.500 0.000 1.462� 0.000 2. 012 4 24 r ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65W1-> FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52. 920 10.470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.730 0. 080 -0.270 -0.210 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0.65W1<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52.920 10. 470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.210 -0.270 0.080 0.730 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65W2-> FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52. 920 10.470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.510 -0. 190 -0.270 0.000 0. 000 22 ------------- LOAD ------------ RPT KL . ND NK NY KA NDC=20 D+C + S + 0. 65W2<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52. 920 10.470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.190 -0.510 -0.270 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65W3-> FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52. 920 10.470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.370 -0.280 -0. 630 -0.570 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65W3<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52. 920 10. 470 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 570 -0. 630 -0.280 0.37fl 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0. 65W4-> FE76 0 0 0 0 1 20 UD UL Uw Omega DgnM H V KW NDC=21 3.200 52 . 920 10.470 1. 000 B 0 0 1 21 cwl CW2 CW3 CW4 cw5 CW6 NDC=22 -0. 630 -0. 870 -0. 550 -0. 630 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + S + 0.65W4<- FE76 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 52. 920 10.470 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 550 -0. 870 -0. 630 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUL1<- + 0. 65W1<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 10.470 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.210 -0.270 0. 080 0.730 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000-101.136-101. 136 2 23 2 0. 000 25. 000 0. 000 0. 000 -15. 876 -15. 876 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUL1<- + 0. 65W2<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 10. 470 1.000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0. 190 -0. 510 -0.270 0. 000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000-101. 136-101.136 2 23 2 0. 000 25. 000 0. 000 0.000 -15. 876 -15. 876 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUL1<- + 0. 65W3<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0.000 10. 470 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.570 -0. 630 -0.280 0.370 0. 000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0,000-101.136-101. 136 2 23 2 0. 000 25. 000 0. 000 0. 000 -15. 876 -15.876 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUL1<- + 0. 65W4<- FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0.000 10.470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.550 -0. 870 -0. 630 0. 000 0.000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000-101. 136-101.136 2 23 2 0. 000 25. 000 0. 000 0.000 -15.876 -15.876 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUR1-> + 0. 65W1-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 10. 470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 730 0. 080 -0.270 -0.210 0.000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25.000 0. 000 0.000 -15. 876 -15. 876 2 23 2 0. 000 25.000 0.000 0.000-101.136-101.136 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUR1-> + 0.65W2-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 10.470 1.000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0.510 -0.190 -0.270 0.000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0.000 25. 000 0. 000 0. 000 -15. 876 -15.876 2 23 2 0. 000 25. 000 0. 000 0. 000-101. 136-101. 136 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUR1-> + 0. 65W3-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 10.470 1. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.370 -0.280 -0. 630 -0.570 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000 -15. 876 -15. 876 2 23 2 0. 000 25. 000 0. 000 0. 000-101. 136-101.136 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C + SUR1-> + 0. 65W4-> FE76 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0. 000 10.470 1. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0.550 -0. 630 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25. 000 0. 000 0. 000 -15. 876 -15. 876 2 23 2 0. 000 25. 000 0. 000 0. 000-101. 136-101. 136 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 1. 05D+C + 0.205 + 0.71E-> FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3. 360 10. 580 0. 000 3. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 15. 000 0.509 0. 000 0. 000 0. 000 1 24 2 15. 000 0.509 0. 000 0. 000 0. 000 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 1. 05D+C + 0.205 + 0.71E<- FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3. 360 10. 580 0. 000 3. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 15. 000 -0.509 0. 000 0. 000 0. 000 1 24 2 15. 000 -0.509 0. 000 0. 000 0. 000 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 1. 05D+C + 0.205 + 0.71ELX FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.360 10.580 0. 000 2. 000 B 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0.000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0.500 0. 000 1. 616 0. 000 2.225 1 24 2 0.500 0. 000 1. 616 0.000 2.225 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 0. 85D+C + 0.71E-> FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.720 0.000 0.000 3. 000 B 0 0 1 21 CW1 CW2 CW3 CW4.. CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 15. 000 0.509 0. 000 0. 000 0. 000 1 24 2 15. 000 0.509 0. 000 0.000 0. 000 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 0. 85D+C + 0.71E<- FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.720 0. 000 0. 000 3. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0.000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 15. 000 -0. 509 0. 000 0. 000 0.000 1 24 2 15. 000 -0. 509 0. 000 0. 000 0.000 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 0. 85D+C + 0.71ELX FE76 0 0 2 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.720 0. 000 0. 000 2. 000 B 0 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0.000 0. 000 0. 000 0.000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0.500 0. 000 1. 616 0. 000 2.225 1 24 2 0. 500 0. 000 1. 616 0. 000 2.225 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D+C 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 3.200 0.000 0. 000 1. 000 N 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.000 0. 000 0. 000 0.000 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 D 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 2.200 0.000 0. 000 1. 000 N 0 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 LEU-- 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 20.000 0. 000 1. 000 N 60 180 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 L 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 12. 000 0. 000 1. 000 N 60 180 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0.000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 S 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0.000 52.920 0. 000 1. 000 N 60 180 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 1 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 SUL1<- 10040 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0.000 0. 000 1.000 N 60 180 .1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0.000 0. 000 0. 000 0. 000 0. 000 22 NSL SD1 SD2 FD1 FD2 FD3 FD4 KD NDC=23 1 0. 000 25.000 0.000 0.000-101.136-101.136 2 23 2 0. 000 25.000 0.000 0.000 -15. 876 -15. 876 3 23 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 SUR1-> 10040 0 2 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 -0.270 -0.510 -0.190 -0.270 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W2<- 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0.000 16. 100 1.000 N 42 126 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.270 -0. 190 -0.510 -0.270 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W3-> 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0.000 0. 000 16. 100 1.000 N 42 126 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0.370 -0.280 -0. 630 -0. 570 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W3<- 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0. 000 16. 100 1. 000 N 42 126 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0.570 -0. 630 -0.280 0.370 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W4-> 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0.000 16. 100 1. 000 N .42 126 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0. 870 -0.550 -0. 630 0. 000 0. 000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 W4<- 10040 0 0 0 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0.000 16. 100 1.000 N 42 126 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 -0. 630 -0.550 -0. 870 -0. 630 0. 000 0.000 22 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 E-> 10040 0 0 4 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0.000 0. 000 3. 000 N 60 0 1 21 CWl CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0.000 0. 000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 15. 000 0. 027 0. 000 0. 000 0. 000 1 24 2 15. 000 0.027 0.000 0. 000 .0.000 4 24 3 15. 000 0.685 0.000 0. 000 0.000 1 24 4 15. 000 0. 685 0.000 0. 000 0.000 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 E<- 10040 0 0 4 0 1 20 UD UL UW Omega DgnM H V KW NDC=21 0. 000 0. 000 0. 000 3. 000 N 60 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 15. 000 -0. 027 0.0004 0. 000 0.000 1 24 2 15.000 -0.027 0.000 0. 000 0.000 4 24 3 15. 000 -0. 685 0.000 0.000 0. 000 1 24 4 15. 000 -0. 685 0. 000 0. 000 0.000 4 24 ------------- LOAD ------------ RPT KL ND NK NY KA NDC=20 ELX 10040 0 0 2 0 0 20 UD. UL UW Omega DgnM H V KW NDC=21 0. 000 0. 000 0. 000 2. 000 N 60 0 1 21 CW1 CW2 CW3 CW4 CW5 CW6 NDC=22 0. 000 0. 000 0. 000 0.000 0.000 0.000 22 NSL SK FK1 FK2 FK3 FK4 LK NDC=24 1 0. 500 0.000 2.263 0.000 3.115 1 24 2 �0.500 0. 000 2.263 0.000 3.115 4 24 FRAME SELF-WEIGHT AS APPLIED DEAD LOAD l ) MEMBER MEMBER WEIGHT CONNECTION WEIGHT (lbs) (lbs) 1 224.7 41. 6 2 244. 1 3 '259. 8 31.7 4 259. 8 5 244. 1 41. 6 6 224. 7 Total: 1457.2 114. 9 Job Name: C: \ABCP\FRAMES\71697301.01B 02/13/04 02:37 PM Ver. 21.0 BUILDING -- FRAME LINE 1 NON-EXPAN 71697301 MEMBER SIZES * * * WEB- OUTER FLANGE * WEB * INNER FLANGE * FLANGE * YIELD STRESS MEMBER WIDTH THICK. * THICK. * WIDTH THICK. * WELD * FLANGE WEB (in. ) (in. ) * (in. ) * (in. ) (in. ) * (in. ) * (ksi) (ksi) 1 5. 00 X 0.2500 0.1345 5. 00 X 0.3125 0.1250 55.0 55.0 2 5. 00 X 0.2500 0.1644 5. 00 X 0.2500 0. 1250 55. 0 55. 0 3 5. 00 X 0.2500 0. 1345 5. 00 X 0.2500 0. 1250 55. 0 55. 0 4 5. 00 X 0.2500 0.1345 5. 00 X 0.2500 0. 1250 55. 0 55. 0 5 5. 00 X 0.2500 0. 1644 5. 00 X 0.2500 0. 1250 55. 0 55. 0 6 5. 00 X 0.2500 0.1345 S. 00-X 0.3125 0. 1250 55. 0 55. 0 Job Name: C:\ABCP\FRAMES\71697301. 01B 02/13/04 02:37 PM Ver. 21. 0 BUILDING -- FRAME LINE 1 NON-EXPAN 71697301 FRAME SUPPORTS * BASE PLATE * ANCHOR BOLTS * THICKNESS WIDTH LENGTH * NO. DIAMETER AREA SUP. * NODE (in. ) (in. ) (in. ) * (in. ) (in2) 1 1 0.375 6. 000 11. 000 4 0. 750 1.767 2 7 0.375 6. 000 11.000 4 0.750 1.767 CONNECTION DESIGN FORCES AT SUPPORTS BOLT RESISTANCE HORIZONTAL VERTICAL MOMENT SHEAR TENSION NODE LOAD (kips) (kips) (kip-ft) (kips) (kips) 1 1 2.73 7. 06 -0.00 17. 67 35.34 2 1. 86 4. 89 0.00 17. 67 35.34 3 6.30 15.96 0.00 17. 67 34.61 4 6. 90 23.21 0. 00 17. 67 33.52 5 6. 90 11.72 0. 00 17. 67 33.52 6 -0.18 -3.54 -0.00 23.56 47.12 7 -0.18 -6.47 0.00 23.56 47.12 4. 02 (out-of-plane) 8 -2. 18 0.44 -0.00 23.56 47.12 9 1.76 1.25 -0. 00 23.56 47.12 10 0. 68 -0. 67 0.00 23.56 47.12 11 -0.22 -0.53 -0. 00 23.56 47.12 12 -2.26 -1.60 -0.00 23.56 47.12 13 1. 68 -0.79 0. 00 23.56 47.12 14 0. 60 -2.71 -0. 00 23.56 47.12 15 -0.31 -2.56 -0.00 23.56 47.12 16 2.80 3.88 0.00 23.56 47.12 17 2. 80 0.96 -0.00 23.56 47.12 4.02 (out-of-plane) 18 0. 80 7. 86 0.00 23.56 47.12 19 1. 10 5.74 -0. 00 23.56 47. 12 20 4.73 8.67 -0. 00 23.56 47.12 21 5. 04 12.30 0. 00 23.56 47.12 22 3. 66 6.75 -0.00 23.56 47.12 23 3. 96 4. 63 -0.00 23.56 47.12 24 2.75 6. 89 0. 00 23.56 47.12, 25 3. 06 10.52 -0. 00 23.56 47.12 26 0.72 5. 82 0.00 23.56 47.12 27 1.02 3.71 -0.00 23.56 47.12 28 4. 65 6. 64 0. 00 23.56 47.12 29 4.96 10.26 0. 00 23.56 47. 12 30 3.58 4.71 0.00 23.56 47.12 31 3. 88 2. 60 -0.00 23.56 47.12 32 2. 67 4. 86 -0. 00 23.56 47.12 33 2.97 8.49 0.00 23.56 47.12 34 5.98 13.49 0.00 23.56 47.12 35 5. 98 12. 03 0. 00 23.56 47.12 2. 01 (out-of-plane) 36 4. 98 15.48 0. 00 23.56 47. 12 37 6.95 15. 89 -0.00 23.56 47.12 38 6.41 14.93 -0.00 23.56 47.12 39 5. 96 15. 00 -0. 00 23.56 47. 12 40 4.94 14. 46 0. 00 23.56 47. 12 41 6.91 14. 87 0.00 23. 56 47.12 42 6.37 13.91 -0. 00 23.56 47.12 43 5. 92 13. 98 0. 00 23. 56 47. 12 44 7.56 23. 14 0.00 23.56 47. 12 45 6.57 22.25 -0. 00 23.56 47.12 46 7.52 22. 13 0.00 23. 56 47. 12 47 6.52 21.24 0. 00 23.56 47.12 48 5.59 11.25 0.00 23.56 47.12 49 7. 02 10. 69 -0. 00 23.56 47. 12 50 5.55 10.23 0.00 23.56 47.12 51 6. 98 9. 68 -0. 00 23.56 47.12 52 3. 64 12. 81 0. 00 23.56 47.12 53 6.70 14.51 -0.00 23.56 47.12 , 54 3.45 5. 88 -0.00 23.56 47.12 4.45 (out-Qf-plane) 55 -0. 01 3.71 -0. 00 23.56 47.12 56 3. 05 5.42 -0.00 23.56 47.12 57 1. 01 -0. 19 -0. 00 23.56 47.12 4.45 (out-of-plane) 7 1 -2.73 7. 06 0. 00 17. 67 35.34 2 -1. 86 4. 89 0. 00 17. 67 35.34 3 -6.30 15.-96 -0. 00 17. 67 34. 61 4 -6.90 11.72 -0.00 17. 67 33.52 5 -6. 90 23.21 0. 00 17. 67 33.52 6 0. 18 -3.54 0. 00 23. 56 47. 12 7 0.18 -6. 47 -0. 00 23.56 . 47.12 8 -1.76 1.25 -0. 00 23.56 47. 12 9 2.18 0.44 0.00 23.56 47.12 10 0.22 -0.53 -0. 00 23.56 47. 12 11 -0. 68 -0.67 -0.00 23.56 47.12 12 -1.68 -0.79 -0.00 23.56 47. 12 13 2.26 -1. 60 -0.00 23.56 47. 12 14 0.31 -2.56 0. 00 23.56 47.12 15 -0. 60 -2.71 -0. 00 23.56 47. 12 16 -2. 80 3. 88 '-0.00 23. 56 47.12 17 -2. 80 0. 96 -0.00 23.56 47.12 18 -4.73 8. 67 0. 00 23.56 47. 12 19 -5. 04 12.30 0.00 23.56 47. 12 20 -0. 80 7. 86 -0. 00 23.56 47.12 21 -1.10 5.74 -0. 00 23.56 47.12 22 -2.75 6. 89 0. 00 23.56 47.12 23 -3. 06 10.52 0. 00 23.56 47.12 24 -3. 66 6.75 0.00 23.56 47.12 25 -3.96 4. 63 0.00 23.56 47.12 26 -4 . 65 6.64 -0. 00 23.56 47.12 27 -4.96 10.26 0. 00 23.56 47.12 28 -0.72 5. 82 -0. 00 23.56 47.12 29 -1. 02 3.71 -0.00 23.56 47. 12 30 -2. 67 4. 86 -0. 00 23.56 47.12 31 -2. 97 8.49 -0.00 23.56 47. 12 32 -3.58 4.71 -0.00 23.56 47.12 33 -3. 88 2. 60 -0.00 23.56 47.12 34 -5.98 13.49 -0.00 23.56 47. 12 35 -5. 98 12.03 -0. 00 23.56 47.12 36 -6.95 15. 89 0. 00 23.56 47.12 37 -4 .98 15. 48 -0.00 23.56 47. 12 38 -5. 96 15. 00 0. 00 23.56 47. 12 39 -6. 41 14 . 93 -0. 00 23.56 47. 12 40 -6. 91 14. 87 -0. 00 23.56 47. 12 41 -4 . 94 14. 46 0.00 23.56 47. 12 42 -5. 92 13. 98 -0.00 23.56 47. 12 43 -6.37 13.91 0. 00 23.56 47. 12 44 -5. 59 11.25 -0.00 23.56 47.12 45 -7. 02 10. 69 0. 00 23.56 47. 12 46 -5.55 10.23 -0. 00 23.56 47. 12 47 -6. 98 9. 68 -0. 00 23.56 47.12 48 -7.56 23. 14 0. 00 23. 56 47. 12 49 -6.57 22.25 0. 00 23.56 47. 12 50 -7.52 22. 13 -0.00 23.56 47.12 51 -6. 52 21.24 0. 00 23.56 47.12 52 -6.70 14.51 0.00 23.56 47. 12 53 -3. 64 12. 81 -0. 00 23.56 47.12 54 -3.45 5. 88 0. 00 23.56 47.12 55 -3. 05 5.42 -0.00 23. 56 47.12 56 0. 01 3.71 -0.00 23.56 47.12 57 -1. 01 4 -0. 19 0. 00 23.56 47. 12 Connection design forces for load combination 52 include an omega of 3. 00 Connection design forces for load combination 53 include an omega of .3.00 Connection design forces for load combination 54 include an omega of 2.00 Connection design forces for load combination 55 include an omega of 3.00 Connection design forces for load combination 56 include an omega of 3.00 Connection design forces for load combination 57 include an omega of 2. 00 Job Name: C:\ABCP\FRAMES\71697301. 01B 02/13/04 02:37 PM Ver. 21.0 BUILDING -- FRAME LINE 1 NON-EXPAN 71697301 WEIGHT OF BUILT-UP MEMBERS = 1447.1 lbs WEIGHT OF W SHAPE MEMBERS = 0. 0 lbs WEIGHT OF PIPE MEMBERS = 0. 0 lbs WEIGHT OF SPLICES = 100. 9 lbs WEIGHT OF BASE PLATES = 14.0 lbs WEIGHT OF STIFFENERS = 32.2 lbs TOTAL WEIGHT = 1594.2 lbs Job Name: C:\ABCP\FRAMES\71697301. 01B 02/13/04 02:37 PM Ver. 21.0 BUILDING -- FRAME LINE 1 NON-EXPAN 71697301 IZ IZFB 1 0 2 1 3 1 4 2 5 1 6 0 7 1 8 0 9 1 10 0 11 3 12 3 13 0 14 1 15 0 16 1 17 0 18 1 19 2 20 1 21 1 22 0 Job Name: C:\ABCP\FRAMES\71697301.01B 02/13/04 02:37 PM Ver. 21. 0 BUILDING -- FRAME LINE 1 NON-EXPAN 71697301 FRAME COMPONENTS FLANGES WIDTH * THICKNESS * LENGTH (in. ) * (in. ) * (ft. ) 2. 0 0.3125 7.58 2. 0 0.3125 7.58 5. 0 0.2500 14.15 5. 0 0.2500 12.76 5. 0 0.2500 11.73 5. 0 0.2500 15. 00 5. 0 0.2500 14. 17 5. 0 0.2500 15. 00 5. 0 0.2500 14. 17 5. 0 0.2500 �12.76 5. 0 0.2500 11.73 5.0 0.2500 14.15 5. 0 0.3125 13. 15 5. 0 0.3125 13.15 5. 0 0.5000 4.03 5. 0 0.5000 3. 82 5. 0 0.5000 4. 03 6. 0 0.3750 0. 92 6. 0 0.3750 0.92 WEBS CUT DIMENSIONS THICKNESS * LENGTH * (1) * (2) * (3) * (4) (in. ) * (ft. ) * (in. ) 0. 1345 14.15 10. 00 10. 00 20.00 20.79 0.1345 15. 00 20. 00 20. 00 20. 00 20. 00 0.1345 15. 00 20.00 20. 00 20. 00 20. 00 0.1345 14. 15 20.79 20. 00 10. 00 10.00 0.1644 12.76 20. 00 20. 00 20. 00 20. 00 0. 1644 12.76 20. 00 20. 00 20.00 20. 00 Section 3 Endwalls and Rod Bracing American Buildings Company �y Plant Locations:Eufaula,AL-Birmingham,AL-El Paso,IL Carson City, NV-LaCrosse, VA Service Centers:Phenix City,AL-Pine Bluff,AR%Modesto, CA LaGrange. GA-Columbus,MS-Rocky Mount NC-Jamestown, OH ENDWALLS AND • Calculations supporting the structural integrity of the endwall framing and tension rod bracing are presented in this section. Endwall components included in the analysis are the roof beam, corner columns, interior columns and, if necessary, tension bracing. In addition, the analysis contains the designs for the roof and sidewall tension bracing. Figure 4 of this section, illustrates these members schematically, along with the loadings imposed on them. The endwall roof beam is designed for the specified load combinations using the moments for a continuous beam. The interior and corner columns are designed as pinned-end compression members under the dead plus live loading. For the horizontal wind load, the interior columns are designed as simple beams. The wind forces exerted on the sidewalls are resisted where possible by the wall diaphragm or by tension bracing. The roof bracing are tension members which transfer the wind forces on the ends of the buildings to the eave where the sidewall bracing carries the sum of the forces to the foundation.1 Figure 5 shows the forces acting on the bracing. Page 4 of this Section defines the nomenclature used in the computer,printout that follows. The printout lists the results of the stress analysis on the above building members. Included in the results are the actual and allowable stresses controlling the design of the member. The allowable stresses are based on the yield stresses being 36 KSI for Rods, 50 KSI for hot-rolled mill sections, and 55 KSI for Cold formed and factory built-up sections. . 1 SUBJECT TO CHANGE WHOUT • ••; Section 3 Page 1 American oulluings L,vmpany Plant Locations:Eufaula,AL-Birmingham,AL-El Paso, 1L Carson City, NV-LaCrosse, VA Service Centers:Phenix City,AL-Pine Bluff,AR-Modesto, CA LaGrange. GA-Columbus,MS-Rocky Mount. NC-Jamestown. OH ENDWALLS • ' BRACING LOADING RL,, RL, RL, RL, RL, RL,, RV4 RV2 RVI RV, RV2 RV, RV2 RV, RV1 RV2 LIVE + DEAD WIND + DEAD / WIND ON SIDEWALL WIND + DEAD WIND ON ENDWALL FRAM I N G �J kAM i W� �W - Z e 4Q� COLUMN FIGURE 4 COLUMN AND BEAM ENDWALL BRACING SUBJECT'TO. OUT • ... Section 3 Page 2 American Buildings Company `~- y Plant Locations:Eufaula,AL-Birmingham,AL-El Paso,IL Carson City, NV-LaCrosse, VA Service Centers:Phenix City,AL-Pine Bluff,AR-Modesto, CA LaGrange, GA-Columbus,MS-Rocky Mount,NC-Jamestown, OH ENDWALLS AND BRACING BLDG R Q RIGID FAME z V-6" T - - - - - - - - - ANG I ANG Z a _ _ _ _ - Q RIGID FRAME W _ J W I _ Q RIGID FRAME J w 1 T - X - X -T -T - RIGID FRAME 1— U) , T RW (3) RWFI (2) I RW (2) RWFI (3) PLAN ' I f I I I I I I I RWF XTANG I I T I T ENDWALL ELEVATION FIGURE 5 COLUMN AND BEAM ENDWALL ROD BRACING SUBJECT TO CHANGE WITHOUTNOTICE Section 3 Page 3 American Buildings Company ~- y Plant Locations:Eufaula,AL-Birmingham,AL-El Paso. IL Carson City, NV-LaCrosse. VA Service Centers:Phenix City.AL-Pine Bluff,AR-Modesto. CA LaGrange, GA-Columbus,MS-Rocky Mount.NC-Jamestown. OH E"WALLS NOMENCLATURE AREA - Cross-sectional area of section (inz) ANG - Angle tension bracing makes with direction of wind force. A TEN - Allowable tension force in rod or cable bracing AX F/AX FOR - Actual axial force BN MOM - Bending moment BND RAT/BN RAT - Ratio of actual to allowable bending moment CB FOR - Actual tension force in rod or cable bracing COL HT - Column Height or beam length CWCH - Torsional Warpipg of"C"Section DL - Dead Load FA - Allowable axial stress FB - Allowable bending stress FBA - Actual bending stress F-K - Foot kips H BASE - Horizontal reaction at base of column INTERACTION RATIO - Combined axial and bending K - Kips LL - Live Load LEEWARD - Side in the direction toward which the wind blows MOMT - Bending moment MNT L - Bending moment left of a point MNT R - Bending moment right of a point QCH - Effective section factor for a "C"Section ROCH - Polar radius of gyration of"C"Section about the shear center RWF - Wind force resisted by tension bracing RX - Radius of gyration of a section about the major axis RY - Radius of gyration of a section about the minor axis RYT - Radius of gyration of a "T"section composed of the compression flange and 1/3 of the compression web of a section taken about an axis in the plane of the web. SHR L - Shear force left of a point SHR R - Shear force right of a point SHR RAT/SH RATIO - Ratio of actual to allowable shear forces SL - Snow Load ST FOR - Strut force SXT - Tension section modulus about major axis SXC - Compression section modulus about major axis TCH - Thickness of a "C"Section ULX - Unbraced length along major axis ULY - Unbraced length along minor axis V BASE - Vertical reaction at base of column V TOP - Horizontal reaction at top of column VJCH - Saint Venant torsion constant of"C"section VYCH - Minor axis moment of inertia of compression area of"C"section WINDWARD - Side upon which the wind blows WL - Wind Load WN FOR - Wind force resisted by tension bracing XOCH - Distance from shear center to centeroid of"C"Section along X axis oUNIEFIT'Mas FA yhrjboiulffffej .. Section 3 Page 4 �I Column and Beam Endwall Design Ver. 21. 0 Page 1 II American Buildings Company . Eufaula, AL Fri Feb 13 16:36:41 2004 �I Job Name: 71697301 Job Part: 1 LEW II L �I BUILDING TYPE IS SYMMETRICAL SINGLE GABLE BUILDING WIDTH = _ 50.000 ft BUILDING LENGTH = 80.000 ft LEFT HEIGHT = 15. 000 ft RIGHT HEIGHT = 15. 000 ft LEFT SLOPE = 6.000 :12 RIGHT SLOPE = 6.000 : 12 BAY SPACING = 20.000 ft ROOF OVERHANG = 0.000 ft BUILDING CODE: 2002 New York State Building Code BUILDING USE CATEGORY: ■I. Buildings and other structures except those listed in categories II, III, and IV II. Buildings and other structures that represent a substantial hazard to human life in the event of failure III . Buildings and other structures designated as essential facilities IV. Buildings and other structures that represent a low hazard to human life in the event of failure SNOW EXPOSURE CATEGORY: Partially Exposed: All roofs except as indicated below ■Fully Exposed: Roofs exposed on all sides with no shelter afforded by terrain, higher structures or trees Sheltered: Roofs located tight in among conifers that qualify as obstructions ENCLOSURE CONDITION: MEnclosed Partially enclosed Open WIND EXPOSURE CATEGORY: A. Large city centers with at least 50 percent of buildings having a height in excess of 70 feet B. Urban and suburban areas, wooded areas, other terrain with obstructions MC. Open terrain with scattered obstructions D. Flat unobstructed areas exposed to wind flowing over open water for a distance of at least 1 mile COLLATERAL LOAD = 1.000 psf GROUND SNOW LOAD = 70.000 psf SNOW EXPOSURE FACTOR = 0. 900 SNOW IMPORTANCE FACTOR = 1.000 SLOPE ROOF SNOW LOAD = 52. 920 psf DESIGN WIND VELOCITY = 90.000 mph WIND IMPORTANCE FACTOR = 1.000 *** DESIGN LOAD COMBINATIONS CASE LOAD FACT GROUP => 1 1.30 W+ 2 1.30 W- 3 0.71 ELX Column and Beam Endwall Design Ver. 21.0 Page 2 II American Buildings Company Eufaula, AL Fri Feb 13 16:36:41 2004 �I Job Name: 71697301 Job Part: 1 LEW I� it *** LOADS HORIZ VERT GROUP TYPE M FM TO START psf/ psf/ MOMT END HORIZ VERT ft kips kips kip-ft ft psf psf -------- ---- - -- -- ----- ----- ---- ---- --- ----- ---- W+ UNIF C 1 1 0.000 15.82 0. 00 0.00 0. 000 15. 82 0.00 W- UNIF C 1 1 0. 000 -19.08 0.00 0. 00 0. 000 -19.08 0.00 W+ UNIF C 2 3 0.000 14 .49 0.00 0.00 0.000 14 .49 0. 00 W- UNIF C 2 3 0.000 -16.10 0.00 0.00 0. 000 -16. 10 0.00 W+ UNIF C 4 4 0.000 15.82 0.00 0.00 0. 000 15. 82 0.00 W- UNIF C 4 4 0. 000 -19.08 0.00 0.00 0. 000 -19.08 0.0.0 W+ UNIF B 1 4 0. 000 9. 86 0.00 0.00 0. 000 9. 86 0.00 W- UNIF B 1 4 0.000 -9.86 0.00 0.00 0. 000 -9. 86 0.00 ELX CONC B 1 1 14 .078 1.19 0.00 0.00 ELX CONC B 2 2 22. 139 2.21 0.00 0.00 ELX CONC B 3 3 22. 139 2.21 0.00 0.00 ELX CONC B 4 4 14 .078 1. 19 0.00 0. 00 FY COLD FORMED = 55. 0 ksi FY HOT ROLLED 50. 0 ksi FY BUILT UP = 55. 0 ksi *** ENDWALL COLUMNS MEM DESCRIPTION LOCATION BASE PLATES A BLT ROW BEND RT SHR RT CT ft in in in in --- ----------- -------- ------------------ ---------- ------- ------ -- 2 W8X10 17.500 8 0.375 12.50 2 0.75 0. 095 0.044 3 12C13 32.500 8 0.375 12.50 2 0.75 1.019 0.510 endwallType = 4 *** MAXIMUM ENDWALL REACTIONS AND DESIGN LOAD COMBINATIONS CASE M VERT M HORZ LOAD FACTOR / LOAD GROUP => kips kips ---- ------- ------- ----------- ---------- 1 0.0 -3.5 1.3 W+ 2 0.0 3. 9 1.3 W- 3 0.0 0. 0 0.7 ELX 4 0.0 -2.7 1.0 W+ 5 0. 0 3. 0 1.0 W- 6 0.0 0. 0 1.0 ELX Column and Beam Endwall Design Ver. 21.0 Page 3 American Buildings Company Eufaula, AL Fri Feb 13 16:36: 41 2004 Job Name: 71697301 Job Part: 1 LEW I� �I *** WIND BRACING DESIGN *** BRACING LOCATIONS BY BAY NUMBER *** FSW => 2 *** RSW => 2 *** ROOF => 1 -------------------------------------------------------------------------- CASE NO: 1 LOAD FACT / GROUP => 1.30 W+ *** REAR SIDEWALL BRACING DESIGN BRACED BAY 20.000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 20.000 1 BC 4 24 .722 2.192 2.709 NA 4 .439 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 17 .500 1 BC 4 27. 979 1.351 1.795 2.192 4 .439 2 15.000 2 BC 4 26. 101 0. 604 0.755 2.472 4.439 3 17.500 1 BC 4 27. 979 1.869 2.483 2.709 4. 439 *** FRONT SIDEWALL BRACING DESIGN BRACED BAY 20.000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 4 20.000 1 BC 4 24 .722 2.709 3.349 NA 4 .439 -------------------------------------------------------------------------- CASE NO: 2 LOAD FACT / GROUP => 1.30 W- *** REAR SIDEWALL BRACING DESIGN BRACED BAY 20.000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 20.000 1 BC 4 24 .722 2. 192 2.709 NA 4 .439 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft Column and Beam Endwall Design Ver. 21. 0 Page 4 �I American Buildings Company Eufaula, AL Fri Feb 13 16:36: 41 2004 I� Job Name: 71697301 Job Part: 1 LEW L NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 17.500 1 BC 4 27. 979 1.351 1.795 2.192 4 .439 2 15.000 2 BC 4 26. 101 0. 604 0.755 2.472 4 .439 3 17.500 1 BC 4 27. 979 1.869 2.483 2.709 4 .439 *** FRONT SIDEWALL BRACING DESIGN BRACED BAY 20.000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ---`--- ------ ------ ------ ----- 4 20.000 1 BC 4 24 .722 2.709 3.349 NA 4 . 439 -------------------------------------------------------------------------- CASE NO: 3 LOAD FACT / GROUP => 0.71 ELX *** REAR SIDEWALL BRACING DESIGN BRACED BAY 20.000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ - ------ ------ ----- 1 20.000 1 BC 4 24.722 1.285 3. 176 NA 4 .439 *** ROOF BRACING DESIGN BRACED BAY 20.000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 17.500 1 BC 4 27. 979 0.552 0.734 1. 402 4 . 439 2 15. 000 2 BC 4 26. 101 0.552 0. 690 1.578 4 . 439 3 17.500 1 BC 4 27. 979 1.025 1.363 1.875 4 .439 *** FRONT SIDEWALL BRACING DESIGN BRACED BAY 20.000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 4 20.000 1 BC 4 24 .722 1.719 4.249 NA 4 .439 -------------------------------------------------------------------------- CASE NO: 4 LOAD FACT / GROUP => 1.00 W+ *** ROOF BRACING DESIGN BRACED BAY 20.000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 17 .500 1 BC 4 27. 979 1.039 1.381 1. 686 3.330 2 15.000 2 BC 4 26. 101 0. 464 0.581 1. 902 3.330 Column and Beam Endwall Design Ver. 21. 0 Page 5 II American Buildings Company Eufaula, AL Fri Feb 13 16:36: 41 2004 I� Job Name: 71697301 Job Part: 1 LEW jl �I 3 17.500 1 BC 4 27. 979 1.437 1. 910 2.084 3.330 -------------------------------------------------------------------------- CASE NO: 5 LOAD FACT / GROUP => 1.00 W- *** ROOF BRACING DESIGN BRACED BAY 20.000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 17 . 500 1 BC 4 27. 979 1.039 1.381 1. 686 3.330 2 15.000 2 BC 4 26.101 0.464 0.581 1. 902 3.330 3 17 . 500 1 BC 4 27. 979 1. 437 1. 910 2.084 3.330 -------------------------------------------------------------------------- CASE NO: 6 LOAD FACT / GROUP => 1.00 ELX *** ROOF BRACING DESIGN BRACED BAY 20. 000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ - ------ ------ ----- 1 17 .500 1 BC 4 27. 979 0.773 1. 027 1. 962 3.330 2 15.000 2 BC 4 26.101 0.773 0. 966 2.209 3.330 3 17 .500 1 BC 4 27 . 979 1.436 1. 908 2. 625 3.330 (( Column and Beam Endwall Design Ver. 21.0 Page 6 I( (( American Buildings Company Eufaula, AL Fri Feb 13 16:36: 41 2004 I+ Job Name: 71697301 Job Part: 1 LEW I� �I *** MAXIMUM BRACING REACTIONS AND DESIGN LOAD COMBINATIONS CASE M FSW VERT M FSW HORZ LOAD FACTOR / LOAD GROUP => ---- ---------- ---------- ----------- ---------- 1 2.Okips 2.7kips 1.3 W+ 2 2.Okips 2.7kips 1.3 W- 3 1.2kips 1.7kips 0.7 ELX 4 1.5kips 2. 1kips 1.0 W+ 5 1.5kips 2. 1kips 1.0 W- 6 1.7kips 2. 4kips 1.0 ELX CASE M RSW VERT M RSW HORZ LOAD FACTOR / LOAD GROUP => ---- ---------- ---------- ----------- ---------- 1 1. 6kips 2.2kips 1.3 W+ 2 1. 6kips 2.2kips 1.3 W- 3 0. 9kips 1.3kips 0. 7 ELX 4 1.2kips 1.7kips 1.0 W+ 5 1.2kips 1.7kips 1.0 W- 6 1.3kips 1. 8kips 1.0 ELX II Column and Beam Endwall Design Ver. 21. 0 Page 1 II II American Buildings Company Eufaula, AL Fri Feb 13 11: 12:12 2004 Job Name: 71697301 Job Part: 1 REW BUILDING TYPE IS SYMMETRICAL SINGLE GABLE BUILDING WIDTH = 50. 000 ft BUILDING LENGTH = 80.000 ft LEFT HEIGHT = 15. 000 ft RIGHT HEIGHT = 15.000 ft LEFT SLOPE = 6. 000 : 12 RIGHT SLOPE = 6. 000 :12 BAY SPACING = 20. 000 ft ROOF OVERHANG = 0. 000 ft BUILDING CODE: 2002 New York State Building Code BUILDING USE CATEGORY: ■I. Buildings and other structures except those listed in categories II, III, and IV " II. Buildings and other structures that represent a substantial hazard to human life in the event of failure III. Buildings and other structures designated as essential facilities IV. Buildings and other structures that represent a low hazard to human life in the event of failure SNOW EXPOSURE CATEGORY: Partially Exposed: All roofs except as indicated below ■Fully Exposed: Roofs exposed on all sides with no shelter afforded by terrain, higher structures or trees Sheltered: Roofs located tight in among conifers that qualify as obstructions ENCLOSURE CONDITION: ■Enclosed Partially enclosed Open WIND EXPOSURE CATEGORY: A. Large city centers with at least 50 percent of buildings having a height in excess of 70 feet B. Urban and suburban areas, wooded areas, other terrain with obstructions ■C. Open terrain with scattered obstructions D. Flat unobstructed areas exposed to wind flowing over open water for a distance of at least 1 mile COLLATERAL LOAD = 1. 000 psf GROUND SNOW LOAD = 70.000 psf SNOW EXPOSURE FACTOR = 0.900 SNOW IMPORTANCE FACTOR = 1.000 SLOPE ROOF SNOW LOAD = 52.920 psf DESIGN WIND VELOCITY = 90.000 mph WIND IMPORTANCE FACTOR = 1.000 *** DESIGN LOAD COMBINATIONS CASE LOAD FACT GROUP => 1 1. 30 W+ 2 1.30 W- 3 0. 71 ELX II Column and Beam Endwall Design Ver. 21. 0 Page 2 II II American Buildings Company Eufaula, AL Fri Feb 13 11:12:12 2004 II II Job Name: 71697301 Job Part: 1 REW II *** LOADS HORIZ VERT GROUP TYPE M FM TO START psf/ psf/ MOMT END HORIZ VERT ft kips kips kip-ft ft psf psf -------- ---- - -- -- ----- ----- ---- ---- --- ----- ---- W+ UNIF C 1 1 0. 000 16.10 0. 00 0.00 0. 000 16. 10 0. 00 W- UNIF C 1 1 0. 000 -19. 63 0.00 0.00 0. 000 -19. 63 0. 00 W+ UNIF C 2 3 0. 000 14.46 0. 00 0.00 0. 000 14.46 0.00 W- UNIF C 2 3 0. 000 -16.07 0. 00 0.00 0. 000 -16. 07 0. 00 W+ UNIF C 4 4 0. 000 16. 10 0.00 0.00 0. 000 16.10 0.00 W- UNIF C 4 4 0. 000 -19. 63 0. 00 0. 00 0. 000 -19. 63 0. 00 W+ UNIF B 1 4 0. 000 9. 86 0. 00 0. 00 0. 000 9. 86 0. 00 W- UNIF B 1 4 0. 000 -9. 86 0. 00 0. 00 0. 000 -9. 86 0. 00 ELX CONC B 1 1 14. 078 0. 95 0. 00 0. 00 ELX CONC B 2 2 20.391 2.45 0. 00 0. 00 ELX CONC B 3 3 20.391 2.45 0. 00 0. 00 ELX CONC B 4 4 14. 078 0. 95 0. 00 0. 00 FY COLD FORMED = 55.0 ksi FY HOT ROLLED = 50. 0 ksi FY BUILT UP = 55. 0 ksi *** ENDWALL COLUMNS MEM DESCRIPTION LOCATION BASE PLATES A BLT ROW BEND RT SHR RT CT ft in in in in --- ----------- -------- ------------------ ---------- ------- ------ -- 2 12C13 14.000 8 0.375 12.50 2 0.75 0. 961 0.521 3 12C13 36.000 8 0.375 12.50 2 0.75 0. 961 0.521 endwallType = 4 *** MAXIMUM ENDWALL REACTIONS AND DESIGN LOAD COMBINATIONS CASE M VERT M HORZ LOAD FACTOR / LOAD GROUP => kips kips ---- ------- ------- --------- ---------- _ 1 0. 0 -3.6 1.3 W+ 2 0. 0 4.0 1.3 W- 3 0. 0 0. 0 0.7 ELX 4 0. 0 -2. 8 1. 0 W+ 5 0.0 3. 1 1.0 W- 6 0.0 0. 0 1.0 ELX II Column and Beam Endwall Design Ver. 21.0 Page 3 �I �I American Buildings Company Eufaula, AL Fri Feb 13 11:12:12 2004 IIJob Name: 71697301 Job Part: 1 REW I! *** WIND BRACING DESIGN *** BRACING LOCATIONS BY BAY NUMBER *** FSW => 0 *** RSW => 0 *** ROOF => 4 -------------------------------------------------------------------------- CASE NO: 1 LOAD FACT / GROUP => 1.30 W+ *** ROOF BRACING DESIGN BRACED BAY 20. 000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 14 . 000 1 BC 4 25.397 2.537 3. 097 3.209 4.439 2 22. 000 2 BC 4 31.702 0.000 0. 000 2.537 4 .439 3 14. 000 1 BC 4 25.397 2.537 3. 097 3.209 4.439 --------------------------------------------------------7----------------- CASE NO: 2 LOAD FACT / GROUP => 1.30 W- *** ROOF BRACING DESIGN BRACED BAY 20. 000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 14 . 000 1 BC 4 25.397 2.537 3.097 3.209 4.439 2 22. 000 2 BC 4 31.702 0.000 0. 000 2.537 4.439 3 14. 000 1 BC 4 25.397 2.537 3. 097 3.209 4.439 -------------------------------------------------------------------------- CASE NO: 3 LOAD FACT / GROUP => 0.71 ELX *** ROOF BRACING DESIGN BRACED BAY 20. 000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 14 .000 1 BC 4 25.397 1.747 2.133 2.427 4.439 2 22.000 2 BC 4 31.702 0. 000 0. 000 1.747 4.439 3 14. 000 1 BC 4 25.397 1.747 2.133 2.427 4.439 -------------------------------------------------------------------------- i Column and Beam Endwall Design Ver. 21.0 Page 4 II American Buildings Company Eufaula, AL Fri Feb 13 11: 12:12 2004 Job Name: 71697301 Job Part: 1 REW I� CASE NO: 4 LOAD FACT / GROUP => 1. 00 W+ *** ROOF BRACING DESIGN BRACED BAY 20. 000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 14. 000 1 BC 4 25.397 1.951 2.382 2.469 3.330 2 22. 000 2 BC 4 31.702 0. 000 0. 000 1.951 3.330 3 14 . 000 1 BC 4 25.397 1. 951 2.382 2. 469 3.330 -------------------------------------------------------------------------- CASE NO: 5 LOAD FACT / GROUP => 1.00 W- *** ROOF BRACING DESIGN BRACED BAY 20. 000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 14. 000 1 BC 4 25.397 1. 951 2.382 2.469 3.330 2 22. 000 2 BC 4 31.702 0.000 0. 000 1. 951 3.330 3 14. 000 1 BC 4 25.397 1.951 . 2.382 2.469 3.330 -------------------------------------------------------------------------- CASE NO: 6 LOAD FACT / GROUP => 1.00 ELX *** ROOF BRACING DESIGN BRACED BAY 20.000 ft NO BAY QTY SIZE LENGTH WN FOR CB FOR ST FOR A TEN ft ft kips kips kips kips -- --- --- ---- ------ ------ ------ ------ ----- 1 14 .000 1 BC 4 25.397 2.446 2. 986 3.398 3.330 2 22. 000 2 BC 4 31.702 0.000 0. 000 2.446 3.330 3 14 . 000 1 BC 4 25.397 2.446 2. 986 3.398 3.330 '-- American Buildings Company PURLIN A" U AMERICAN BUILDINGS COMPANY'S Standard Purlins and Girts are light gage 8"x 2 1/2" "Z"and"C", 9 1/2"x 3""Z"and"C" and 12"x 3 1/2""Z" and"C"sections (with stiffened flanges) cold formed from 55,000 psi yield steel. The fully braced section properties and capacities computed in accordance with 1996 AISI specifications are as follows: DIMENSIONS. PROPERTIES AND CAPACITIES 2 1/2" 3 1/2" 2 1/2" 3" 3 1/2" 7 1 1 I I� 7� -? 7/8" 1 1/16" 1 1/4" I T T T I T T T -i X- -X 8„ X- -X 91/2' X- -X 12 8"I X- -X 91/2'I X- -X 12" X- -X 50/� 50� 50L ' , !-�- 1 ,, / i '7/8" 1/16'. �11/4" 3/4� 2 1/ 1-- 1 1/i6 3 1/2"-' 2 1!2"� 3" _3 1/2" SECTION THICKNESS WEIGHT AREA Ix S� rx Iy4 S ry MAX. MAX. T in. lb./FT. (in.`) (in.4) (in. ) (in.) (in. ) (in. ) (in.) ALLOW` ALLOW' (Full) (Effective) (Full) (Effective) SHEAR MOMENT (KIPS) (KIP-FT.) 8Z16 0.060 2.86 0.84 8.09 1.73 3.10 1.22 0.32 1.20 2.50 4.77 8Z15 0.067 3.19 0.94 8.99 1.97 3.09 1.36 0.37 1.20_ 3.48 5.39 8Z 14 0.077 3.67 1.08 10.28 2.31 3.09 1.54 0.47 1.20 5.30 6.35 8Z 13 0.087 .4.14 1.22 11.55 2.74 3.08 1.73 0.56 1.19 7.66 7.51 8Z12 0.099 4.71 1.39 13.05 3.15 3.08 1.95 0.66 1.19 11.06 8.66 9.5Z15 0.064 3.70 1.09 14.88 2.57 3.69 2.43 0.57 1.49 2.52 7.04 9.5Z14 0.073 4.22 1.24 16.90 3.11 3.69 1 2.76 0.63 1.49 3.75 8.54 9.5Z13 0.079 4.57 1.34 18.23 3.39 3.69 2.97 0.69 1.49 4.75 9.29 9.5Z12 0.090 5.21 1.53 20.67 3.91 3.68 3.35 0.87 1.48 7.05 10.74 9.5Z11 0.096 5.55 1.63 21.98 4.29 3.68 3.56 0.97 1.48 8.56 11.77 12Z13 0.090 6.28 1.85 39.44 5.60 4.62 5.05 0.95 1.65 5.49 15.37 12Z12 0.105 7.32 2.15 45.75 6.67 4.61 5.84 1.20 1.65 8.74 18.31 1=11 0.120 8.37 2.46 51.99 8.02 4.60 6.61 1.46 1.64 13.08 22.02 8C 16 0.060 2.86 0.84 7.94 1.80 3.07 0.71 0.36 0.92 2.50 4.94 8C15 0.067 3.19 0.94 8.82 2.03 3.07 0.79 0.40 0.92 3.48 5.57 8C14 0.077 3.67 1.08 10.06 2.45 3.06 0.89 0.47 0.91 5.30 6.71 8C 13 0.087 4.14 1.22 11.29 2.81 3.06 0.99 0.53 0.91 7.66 7.70 8C12 0.099 4.71 1.39 12.73 3.18 3.05 1.11 0.60 0.90 11.06 8.74 9.5C15 0.064 3.70 1.09 14.38 2.58 3.66 1.31 0.54 1.10 2.52 7.09 9.5C14 0.073 4.22 1.24 16.31 3.09 3.66 1.47 0.62 1.10 3.75 8.47 9.5C13 0.079 4.57 1.34 17.59 3.30 3.65 1.58 0.67 1.10 4.75 9.07 9.5C12 0.090 5.21 1.53 19.90 3.94 3.65 1.78 0.77 1.09 7.05 10.81 9.5C11 0.096 5.55 1.63 21.15 4.30 3.64 1.89 0.82 1.09 8.56 11.79 LME4AM.30 39.04 6.01 4.59 3.06 1.09 1.28 5.49 16.48 45.21 7.21 4.58 3.52 1.29 1.28 3.74 19.79 51.30 8.51 4.57 3.96 1.47 1.27 1 13.08 23.35 *Stress Increase = 1.00 Moments and shears used in selecting"Z" and"C"sections and connections for the Purlin and Girts were found by the stiffness method of analysis. To meet varying load requirements, the"Z" and"C" members shall be of simple span or lapped 2'-0", 3'-0", 4'-0", 5-0" or 6-0"over the interior frames to form a continuous beam. The purlin sections were then designed for the maximum positive moments and for the moment and shear combination at the beginning and termination of the laps. The double"Z" and"C" sections were also checked for the maximum negative moments over the interior frames. The following pages support the section and connection used. SUBJECT70 • • 2002 Section 4 Page 1 ANTI-ROLL FORCE CALCULATIONS -VERSION 1.0 Job Number : 71697301 Engineer: QU Date: 2/13/04 Loads Dead Load (DL) = 5.0 psf Collat. Load (CL) = 1.0 psf Properties of 8Z13 Live Load (LL) = 20.0 psf Purlin Depth (d) = 8.0 in. Additional Load (LL) = 0.0 kips Purlin Flange Width (b) = 2.5 in. Snow Load (SL) = 52.9 psf Purlin Thickness (t) = 0.087 in. Additional Load (SL) = 0.0 kips Max. Weight (W) = 29.45 kips Roof Pitch = 6.000112 Building Data Width of Slope (w) = 25.0 ft. Frame Trib. (L) = 20.0 ft. 4 d = 8 in. Roof Pitch x:12 (q) = 6 t=0.087 in. No. Purlin Rows (np) = 8 Ctr= 0.87 14 01 b =2.5 in. P = C 0.053b1.88Lo-13cos0 -sin A W L— tr n 0.95d'.07t0.94 P PL = -9.39 kips (Eq D3.2.1-5 AISI 1996 w/2001 Edition Supplement No 1 ) Number of Clips = 5 down hill Snow Load Calculations Job/Quote# 71697301 -- IBC 2000 /ASCE-7 1998 / MBMA 2002 Estr./Engr. QU Version 5.0 Date 2/13/2004 Builder GFI Metal Buildings American Buildings Company Project George Hagarity 1150 State Docks Road Description RF-50'0"80'0'-15'0" Eufaula,AL ASCE 7=�'98. .,Reference Ground Snow (Pg) = 70.00 psf F' ure 7:=1 {;pa 6s-74 75)< Snow Exposure Factor(Ce) = 0.90 Table 7-2 ;spa e'82) Thermal Factor (Ct) = 1.20 Table 7`=3' (rpa e;�83), Snow Importance Factor(1) = 1.00 Table 7=4 { °age:83) Roof Slope Factor(Cs) = 1.00 Fi'ure.7-2 pa e 76) Number of Roof Slopes = 2 Building Width'= 50.00 feet Building Length-(L) = 80.00 feet Building Roof Slope = 6.00 :12 Or, 26.57 Degrees Width per Slope (W) = 25.00 feet Flat Roof Snow Load (Pf) = 52.92 psf Equ4ti66'7 1,. (page`69) Sloped Roof Snow Load (Ps) = 52.92 psf E uation 7..2° pa e.70 Rain on Snow Surcharge = 0.00 psf Secfion7 10:;(" a e 72) Snow Density (y) = 23.10 pcf Equafiori`7-4 (;pa Gable Roof Drift Parameter Equafion 7 3: 'page 71') Total "Balanced" Design Snow Load p 52.92 sf Roof Snow+ Rain,on;. now'Surcharge For (W) > 20 Feet: Windward Unbalanced Snow Load = 1,588: psf* — Leeward Unbalanced Snow (Peak) `=1'01:Q6 psf* Leeward Unbalanced Snow (Eave) _ ^:10106: psf* "N/A" Indicates that (W) is 20 feet or less, or that Unbalanced Snow Loads are not required. For(W) =20 Feet or Less: Windward Unbalanced Snow Load = NIA psf F.i ure 7=5 (pa e 79) Leeward Unbalanced Snow Load = N/A '- psf* Fi`ure 7;-5 {pa e 79) "N/A" Indicates that (W) is greater than 20 feet, or that Unbalanced Snow Loads are not required. Note tliat:unbalanced snow loads are not required on stantl alone smgle;slope;buildings Note that unbalanced snow loads are not required when roof slope(in degrees) is less than 70N1/+ 0 5 - Where unbalanced snow loads are required; they must beaapp1i d to frames, endwalls, purhris, and panels a Drifting/Sliding Snow Calculations Job/Quote# 71697301 IBC 2000/ASCE-7 1998/MBMA 2002 Estr./Engr. QU Version 5.0 Date 2/13/2004 Builder GFI Metal Buildings American Buildings Company Project George Hagarity 1150 State Docks Road Description RF-50'0"80'0'-15'0" Eufaula,AL ASCE-7'98 :•:Ref tepee Ground Snow (Pg) = 70.00 psf Snow Exposure Factor(Ce) = 0.90 Table;7-2 ( a e 82 Thermal Factor(Ct) = 1.20 Table 73 , (page:°83 Snow Importance Factor(1) = 1.00 Table 7=4 ` 64e$3) Roof Slope Factor (Cs) = 1.00 Fi` ure 7=2 pa e:,7:6) Flat Roof Snow Load (Pf) = 52.92 psf Equation_7 1;; (pa e`69) Sloped Roof Snow Load (Ps) = 52.92 psf E,quation;7 2 (pa e~70) Rain on Snow Surcharge = 0.00 psf S,ection�710; (pageF:72) Snow Density (y) = 23.10 pcf Equation 7 4 '(pa Height of Balanced Snow Load (hb) 2.29 Sect►on;77 1 a e„72) Upper Roof Dim. Perp. to Step (Lu) 80.00 feet Fi ure:7.-8� :__"(pa i�0:1) Lower Roof Dimension Perp. to Step 80.00 feet Lower Roof Dimension Along Step 50.00 feet Total Height Difference at Step 4.00 feet Dist. Between Upper/Lower Bldg (s) 0.00 feet Section 77 2; ( age:'72 Upper Roof Slope Toward Step Down 0.00 :12 Or 0.00 Degrees Lower Roof Slope 6.00 :12 Or 26.57 Degrees Height Diff. above Roof Snow (hc) 1.71 feet Fi ure:78 (pa e:81) Height of Snow Drift at Step (hd) 1.71 feet Width of Snow Drift at Step (w) 13 67 ;'feet 6t ion5 77 1 ,"page:82) Drifting Snow Surcharge at Step (Pd) 39 48 psf Section,77 1, r`°`a e'82) Drifting Snow Surcharge at a distance of 0.00 feet from step = 3948 ;: psf "N/A" Indicates that no drifting snow surcharge is required. Upper Roof Dim.sloping toward lower 0.00 Sliding Snow Slope Factor (CSD) 1.00 MBMA 2002 4 .Section 15 11 Weight of Sliding Snow (SL) N/A plf MBMA2002 Section 15 11 Width of Sliding Snow Surcharge (w) N/A feet MBMA 2002 ,;Section 1.5 11 Uniform Sliding Snow Surcharge N/A psf MBMA'2002 :Section 1_:5 11 "NIA" Indicates that no sliding snow surcharge is required. Note that any snow surcharges should be added only to the normal (bal,anced)roofspow load Note that Drifting:-Snow and'Sliding Snow surcharges should not=be combined;together n Where snow_surd harges are:r6quire. they must be applied to frames,,endwalls purlins, and panels MCE Parameters - iterminous 48 States Zip Code - 12804 Central Latitude = 43.349572 Central Longitude = -073.677666 Data are based on the 0.10 deg grid set Period SA (sec) (%g) 0.2 034.2 Map Value, Soil Factor of 1.0 1.0 010.1 Map Value, Soil Factor of 1.0 MCE Parameters x Specified Soil Factors 0.2 052.3 Soil Factor of 1.53 1.0 024.2 Soil Factor of 2.40 MCE Parameters - Conterminous 48 States Zip Code - 12804 Central Latitude = 43.349572 Central Longitude = -073.677666 Data are based on the 0.10 deg grid set Period SA " (sec) (%g) 0.2 034.2 Map Value, Soil Factor of 1.0 1.0 010.1 Map Value, Soil Factor of 1.0 MCE SPECTRUM x SOIL FACTORS Fa = 1.53 Fv = 2.40 Period SA (sec) (%g) 0.000 020.9 0.4FaSs 0.093 052.3 To 0.200 052.3 T=0.2, FaSs 0.465 052.3 Ts 0.500 048.6 0.600 040.5 0.700 034.7 0.800 030.4 0.900 027.0 1.000 024.3 T=1.0, FvS1 1 .100 022.1 1 .200 020.3 1.300 018.7 1.400 017.4 1.500 016.2 1.600 015.2 1.700 014.3 1.800 013.5 1.900 012.8 2.000 012.2 A M E R I C A N B U I L D I N G S C O M P A N Y F r o n t R o o f D e s i g n (typical) Designer: QU Version Number: Ver. 21. 0 Job Number: 71697301 Date/Time: 02/12/04 04 : 03 PM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope(F) Slope (R) No.BAYS RF 50. 000 ft 80. 000 ft 25. 000 ft 0. 000 ft 6. 000: 12 6. 000: 12 4 --------------------------------------------------------------------------- S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 15. 000 ft 0. 000 ft Left 4 S I 0. 000 ft Rear: 15. 000 ft 0. 000 ft Right 4 S I 0. 000 ft Building Code: 2002 New York State Building Code --------------------------------------------------------------------------- Category Seis_Z Expo_S Expo_W Coastal DL COLL. LL I . F C N/A 1.200psf 1. 00Opsf 20. 00Opsf --------------------------------------------------------------------------- G_Snow D_Snow WL_mph WL_psf S.Imp.Fac S. Fac W.Imp.Fac 70. 00Opsf 52. 920psf 90. 00Omph 16.100psf 1. 000 0. 900 1. 000 --------------------------------------------------------------------------- Purlin locations on slope from peak to eave. Line Dist. Design Interesting AR L.edge R.edge Weight No. (ft) Spacing Line Clip zone pkg zone pkg (lbs) ---------------------------------------------------------------------- 1 1.500 3.500 Yes 392.288 2 5. 500 4. 000 392.288 3 9. 500 4 . 000 392.288 4 13. 500 4. 000 392.288 5 17 . 500 4 . 000 Yes 392.288 6 21. 500 3. 613 392.288 7 24 .725 3.225 Yes 392.288 P A N E L Panel type: S2P24 Sx(top) = 0. 076 in3; Sx(bottom) = 0.077 in3; Fb = 30 ksi; Fy = 50 ksi ---------------------------------------------------------------------- Support purlin location (eave to ridge) : 0. 000 3.225 6.451 10.451 14.451 18.451 22.451 26.451 27.951 Applied loads and adjusted loads: 1.200 psf= 1. 073 to 1. 073 lb/ft D 18. 000 psf= 14.400 to 14.400 lb/ft L+ 20. 000 psf= 16.000 to 16. 000 lb/ft L(extraordinary)- 52. 920 psf= 42.336 to 42. 336 lb/ft S+ 99. 150 psf= 79.320 to 79.320 lb/ft S (unbalanced)- -36.709 psf= -36.709 to -36.709 lb/ft W(at eave corner) - -36.709 psf= -36.709 to -36.709- 1b/ft W(at peak corner)- -36.709 psf= -36.709 to -36.709 lb/ft W(at rake edge)- -36.709 psf= -36.709 to -36.709 lb/ft W(at eave edge)- -36.709 psf= -36.709 to -36.709 lb/ft W(at peak edge)- -17.388 psf= -17.388 to -17.388 lb/ft W(typical) - 10. 948 psf= 10. 948 to 10. 948 lb/ft W(typical)+ Load Combination: D + L+ Check By ASD; No Deflection Limit; Net uniform load of 15. 473 15.473 15.473 lb/ft Continuous spans of 4.'000 4.000 4. 000 ft Force = -24.757ft-lb; Resistance = -192. 116ft-lb; •Check Ratio = 0.129 Load Combination: D + L(extraordinary)- Check By ASD; No Deflection Limit; Net uniform load of 17.073 17. 073 17.073 lb/ft Continuous spans of 4. 000 4. 000 4. 000 ft Force = -27. 317ft-lb; Resistance = -192.116ft-lb; Check Ratio = 0.142 Load Combination: D + S+ Check By ASD; No Deflection Limit; Net uniform load of 43.409 43.409 43.409 lb/ft Continuous spans of 4. 000 4. 000 4.000 ft Force = -69. 455ft-lb; Resistance = -192.116ft-lb; Check Ratio = 0.362 Load Combination: D + S (unbalanced)- Check By ASD; No Deflection Limit; Net uniform load of 80.393 80.393 80.393 lb/ft Continuous spans of 4 .000 4. 000 4.000 ft Force = -128. 629ft-lb; Resistance = -192.116ft-lb; Check Ratio = 0. 670 Load Combination: D + 1.30W(at eave corner)- Check By ASD With 1/3 Increase; No Deflection Limit; Net uniform load of -46. 648 -46.648 lb/ft Continuous spans of 3.225 3.225 ft Force = 60. 663ft-lb; Resistance = 252.828ft-lb; Check Ratio = 0.240 S2P24 panel passed E1592. No Screws = 2; Clip : STD Load = -46. 65 psf Capacity = 52.50 psf Ck Ratio = 0. 89 Load Combination: D + 1.30W(at peak corner)- Check By ASD With 1/3 Increase; No Deflection Limit; Net uniform load of -46. 648 lb/ft On a simple span of 4.000 ft Force = -93.297ft-lb; Resistance = -256. 154ft-lb; Check Ratio = 0.364 S2P24 panel passed E1592. No Screws = 2; Clip STD Load = 0. 00 psf Capacity = 52.50 psf Ck Ratio = 0. 00 Load Combination: D + 1.30W(at rake edge)- Check By ASD With 1/3 Increase; No Deflection Limit; Net uniform load of -46. 648 -46. 648 -46. 648 lb/ft Continuous spans of 4 . 000 4 . 000 4. 000 ft Force = 74. 638ft-lb; Resistance = 252 . 828ft-lb; Check Ratio = 0.295 S2P24 panel passed E1592. No Screws = 2; Clip STD Load = -46. 65 psf Capacity = 52.50 psf Ck Ratio = 0. 89 Load Combination: D + 1. 30W(at eave edge) - Check By ASD With 1/3 Increase; No Deflection Limit; Net uniform load of -46. 648 -46. 648 lb/ft Continuous spans of 3.225 3.225 ft Force = 60. 663ft-lb; Resistance = 252. 828ft-lb; Check Ratio = 0.240 S2P24 panel passed E1592. No Screws = 2; Clip STD Load = -46. 65 psf Capacity = 52.50 p;f Ck Ratio = 0. 89 Load Combination: D + 1.30W(at peak edge)- Check By ASD With 1/3 Increase; No Deflection Limit; Net uniform load of -46. 648 lb/ft On a simple span of 4. 000 ft Force = -93.297ft-1b; Resistance = -256. 154ft-lb; Check Ratio = 0.364 S2P24 panel passed E1592. No Screws = 2; Clip STD Load = 0. 00 psf Capacity = 52.50 psf Ck Ratio = 0. 00 Load Combination: D + 1.30W(typical)- Check By ASD With 1/3 Increase; No Deflection Limit; Net uniform load of -21.532 -21. 532 -21.532 lb/ft Continuous spans of 4 . 000 4 . 000 4.000 ft Force = 34 . 451ft-lb; Resistance = 252. 828ft-lb; Check Ratio = 0. 136 S2P24 panel passed E1592. No Screws = 2; Clip STD Load = -21.53 psf Capacity = 52. 50 psf Ck Ratio = 0. 41 Load Combination: D + 1.30W(typical) + Check By ASD With 1/3 Increase; No Deflection Limit; Net uniform load of 15.306 15.306 15.306 lb/ft Continuous spans of 4. 000 4.000 4. 000 ft Force = -24. 490ft-lb; Resistance = -256.154ft-lb; Check Ratio = 0. 096 Load Combination: D + 1.30W(typical)+ + 1/2S+ Check By ASD With 1/3 Increase; No Deflection Limit; Net uniform load of 36. 474 36.474 36.474 lb/ft Continuous spans of 4. 000 4. 000 4. 000 ft Force = -58.359ft-lb; Resistance = -256.154ft-lb; Check Ratio =-0.228 Load Combination: D + S+ + 0. 65W(typical)+ Check By ASD With 1/3 Increase; No Deflection Limit; Net uniform load of 50. 526 50.526 50.526 lb/ft Continuous spans of 4. 000 4. 000 4.000 ft Force = -80. 841ft-lb; Resistance = -256.154ft-lb; Check Ratio = 0.316 Load Combination: L+ No Stress Design; L/150 Deflection Limit; Net uniform load of 14.400 14.400 14.400 lb/ft Continuous spans of 4. 000 4. 000 4. 000 ft Force = 0. 007inches; Resistance = 0.320inches; Check Ratio = 0. 022 Load Combination: L(extraordinary) - No Stress Design; L/150 Deflection Limit; Net uniform load of 16. 000 16. 000 16. 000 lb/ft Continuous spans of 4 . 000 4. 000 4. 000 ft Force = 0. 008inches; Resistance = 0.320inches; Check Ratio = 0. 025 Load Combination: S+ No Stress Design; L/180 Deflection Limit; Net uniform load of 42.336 42.336 42.336 lb/ft Continuous spans of 4 . 000 4 .000 4. 000 ft Force = 0. 021inches; Resistance = 0.267inches; Check Ratio = 0. 078 Load Combination: S (unbalanced) - No Stress Design; L/180 Deflection Limit; Net uniform load of 79. 320 79. 320 79. 320 lb/ft Continuous spans of 4 . 000 4.000 4 . 000 ft Force = 0. 039inches; Resistance = 0.267inches; Check Ratio = 0. 147 Load Combination: 0.70W(at eave corner)- No Stress Design; L/180 Deflection Limit; Net uniform load of -25. 696 -25. 696 lb/ft Continuous spans of 3.225 3.225 ft Force = -0. 004inches; Resistance = 0.215inches; Check Ratio = 0. 019 Load Combination: 0.70W(at peak corner)- No Stress Design; L/180 Deflection Limit; Net uniform load of -25. 696 lb/ft On a simple span of 4. 000 ft Force = -0. 024inches; Resistance = 0.267inches; Check Ratio = 0.089 Load Combination: 0.70W(at rake edge)- No Stress Design; L/180 Deflection Limit; Net uniform load of -25. 696 -25. 696 -25. 696 lb/ft Continuous spans of 4 . 000 4. 000 4. 000 ft Force = -0. 013inches; Resistance = 0.267inches; Check Ratio = 0. 047 Load Combination: 0.70W(at eave edge) - No Stress Design; L/180 Deflection Limit; Net uniform load of -25. 696 -25. 696 lb/ft Continuous spans of 3.225 3.225 ft Force = -0. 004inches; Resistance = 0.215inches; Check Ratio = 0. 019 Load Combination: 0.70W(at peak edge) - No Stress Design; L/180 Deflection Limit; Net uniform load of � -25. 696 lb/ft On a simple span of 4. 000 ft Force = -0. 024inches; Resistance = 0.267inches; Check Ratio = 0. 089 Load Combination: 0.70W(typical)- No Stress Design; L/180 Deflection Limit; Net uniform load of -12. 172 -12. 172 -12.172 lb/ft Continuous spans of 4. 000 4. 000 4. 000 ft Force = -0. 006inches; Resistance = 0.267inches; Check Ratio = 0. 022 Load Combination: 0.70W(typical)+ No Stress Design; L/180 Deflection Limit; Net uniform load of 7. 664 7. 664 7. 664 lb/ft Continuous spans of 4. 000 4.000 4. 000 ft Force = 0. 004inches; Resistance = 0.267inches; Check Ratio = 0. 014 P U R L I N Roof interesting purlin line 5 (Typical) analysis details. Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 4 . 000 ft B 1. 625 ft 1. 625 ft 5. 000 ft -0. 990 0. 499 -1. 648 0. 499 Roof interesting purlin line 5 (Typical) analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 D+C + L+ Check By ASD; No Deflection Limit; 2 D+C + LAFN- Check By ASD; No7Deflection Limit; 3 D+C + LANF- Check By ASD; No Deflection Limit; 4 D+C + LDFNIL- Check By ASD; No Deflection Limit; 5 D+C + LDFNXI- Check By ASD; No Deflection Limit; 6 D+C + LDFNX2- Check By ASD; No Deflection Limit; 7 D+C + LDFNX3- Check By ASD; No Deflection Limit; 8 D+C + LDFNX4- Check By ASD; No Deflection Limit; 9 D+C + LEU- Check By ASD; No Deflection Limit; 10 D+C + S+ Check By ASD; No Deflection Limit; 11 D+C + SU- Check By ASD; No Deflection Limit; 12 D+C + SEFHL- Check By ASD; No Deflection Limit; 13 D+C + SEFHR- Check By ASD; No Deflection Limit; 14 D+C + SEHFL- Check By ASD; No Deflection Limit; 15 D+C + SEHFR- Check By ASD; No Deflection Limit; 16 D+C + SDFHIL- Check By ASD; No Deflection Limit; 17 D+C + SDFHXI- Check By ASD; No Deflection Limit; 18 D+C + SDFHX2- Check By ASD; No Deflection Limit; 19 D+C + SDFHX3- Check By ASD; No Deflection Limit; 20 D+C + SDFHX4- Check By ASD; No Deflection Limit; 21 D- + 1.30W- Check By ASD With 1/3 Increase; No Deflection Limit; 22 D+C + 1.30W- Check By ASD With 1/3 Increase; No Deflection Limit; 23 D+C + 1.30W+ Check By ASD With 1/3 Increase; No Deflection Limit; 24 D+C + 1.30W+ + 1/2S+ Check By ASD With 1/3 Increase; No Deflection Limit; 25 D+C + S+ + 0. 65W+ Check By ASD With 1/3 Increase; No Deflection Limit; 26 L+ No Stress Check; L/150 Deflection Limit; 27 1/2LAFN- No Stress Check; L/150 Deflection Limit; 28 1/2LANF- No Stress Check; L/150 Deflection Limit; 29 1/2LDFNIL- No Stress Check; L/150 Deflection Limit; 30 1/2LDFNXI- No Stress Check; L/150 Deflection Limit; 31 1/2LDFNX2- No Stress Check; L/150 Deflection Limit; 32 1/2LDFNX3- No Stress Check; L/150 Deflection Limit; 33 1/2LDFNX4- No Stress Check; L/150 Deflection Limit; 34 1/2LEU- No Stress Check; L/150 Deflection Limit; 35 S+ No Stress Check; L/180 Deflection Limit; 36 SU- No Stress Check; L/180 Deflection Limit; 37 SEFHL- No Stress Check; L/180 Deflection Limit; 38 SEFHR- No Stress Check; L/180 Deflection Limit; 39 SEHFL-- No Stress Check; L/180 Deflection Limit; 40 SEHFR- No Stress Check; L/180 Deflection Limit; 41 SDFHIL- No Stress Check; L/180 Deflection Limit; 42 SDFHXI- No Stress Check; L/180 Deflection Limit; 43 SDFHX2- No Stress Check; L/180 Deflection Limit; 44 SDFHX3- No Stress Check; L/180 Deflection Limit; 45 SDFHX4- No Stress Check; L/180 Deflection Limit; 46 0. 70W- No Stress Check; L/180 Deflection Limit; 47 0.70W+ No Stress Check; L/180 Deflection Limit; Roof interesting purlin line 5 (Typical) analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest Web Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) (ft) (ft) # # --------------------------------------------------------------------------- 1L 1. 625 8Z13 0. 000 0. 000 0 1 No 11 0.758 crippling 11 L/ 60 deflection 1 18. 375 8Z13 0.000 2. 917 3 1 R.End 11 1. 022 bending 36 L/ 233 deflection 2 20. 000 8Z13 2.917 1. 417 0 1 L.End 11 1. 013 B/S Comb. 36 L/ 596 deflection 3 20. 000 8Z13 1.417 2. 917 0 1 R.End 11 1.013 B/S Comb. 36 L/ 596 deflection 4 18.375 BZ13 2.917 0. 000 3 1 L.End 11 1. 022 bending 36 L/ 233 deflection 4R 1. 625 8Z13 0.000 0. 000 0 1 No 11 0.758 crippling 11 L/ 60 deflection Total design weight per run = 392.288 lbs. Maximum stress ratio = 1. 022. Roof interesting purlin line 5 (Typical) analysis details . Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # lb/ft(kips) feet lb/ft feet --------------------------------------------------------------------------- 1 UNIF D- ALL 4.293 0.000 4.293 0. 000 2 UNIF D+C ALL 7.493 0. 000 7.493 0. 000 3 UNIF L+ ALL 57. 600 0.000 57. 600 0. 000 4 UNIF LAFN- 1L 57. 600 0.000 57. 600 1. 625 J 5 UNIF LAFN- 1 57. 600 0.000 57. 600 18.375 6 UNIF LAFN- 3 57. 600 0. 000 57. 600 20. 000 7 UNIF LANF- 2 57. 600 0.000 57. 600 20. 000 8 UNIF LANF- 4 57. 600 0. 000 57. 600 18.375 9 UNIF LANF- 4R 57. 600 0.000 57. 600 1. 625 10 UNIF LDFNIL- 1L 57. 600 0.000 57. 600 1. 625 11 UNIF LDFNIL- 1 57. 600 0. 000 57. 600 18.375 12 UNIF LDFNXI- 1L 57. 600 0.000 57. 600 1. 625 13 UNIF LDFNX1- 1 57. 600 0. 000 57. 600 18. 375 14 UNIF LDFNX1- 2 57. 600 0.000 57. 600 20. 000 15 UNIF LDFNX2- 2 57. 600 0. 000 57. 600 20. 000 16 UNIF LDFNX2- 3 57. 600 0. 000 57. 600 20. 000 17 UNIF LDFNX3- 3 57. 600 0.000 57. 600 20. 000 18 UNIF LDFNX3- 4 57. 600 0. 000 57. 600 18.375 19 UNIF LDFNX3- 4R 57. 600 0. 000 57. 600 1. 625 20 UNIF LDFNX4- 4 57. 600 0. 000 57. 600 18.375 21 UNIF LDFNX4- 4R 57. 600 0.000 57 . 600 1. 625 i 22 UNIF LEU- ALL 64. 000 0. 000 64. 000 0. 000 ^" 23 UNIF S+ ALL 169.344 0.000 169.344 0. 000 24 UNIF SU- ALL 323. 635 0. 000 323. 635 0. 000 25 UNIF SEFHL- 1L 169.344 0.000 169.344 1. 625 26 UNIF SEFHL- 1 169.344 0. 000 169.344 18. 375 27 UNIF SEFHL- 2 84. 672 0. 000 84 . 672 20. 000 28 UNIF SEFHL- 3 84. 672 0.000 84 . 672 20. 000 29 UNIF SEFHL- 4 84. 672 0.000 84. 672 18. 375 30 UNIF SEFHL- 4R 84. 672 0. 000 84. 672 1. 625 31 UNIF SEFHR- 1L 84. 672 0.000 84. 672 1. 625 32 UNIF SEFHR- 1 84. 672 0. 000 84. 672 18.375 33 UNIF SEFHR- 2 84. 672 0.000 84 . 672 20. 000 34 UNIF SEFHR- 3 84. 672 0. 000 84. 672 20. 000 35 UNIF SEFHR- 4 169.344 0. 000 169.344 18.375 36 UNIF SEFHR- 4R 169.344 0.000 169.344 1. 625 37 UNIF SEHFL- 1L 84. 672 0. 000 84. 672 1. 625 38 UNIF SEHFL- 1 84.672 0. 000 84. 672 18.375 39 UNIF SEHFL- 2 169.344 0.000 169.344 20. 000 40 UNIF SEHFL- 3 169.344 0.000 169.344 20. 000 41 UNIF SEHFL- 4 169.344 0. 000 169.344 18.375 42 UNIF SEHFL- 4R 169.344 0. 000 169.344 1. 625 43 UNIF SEHFR- 1L 169.344 0.000 169.344 1. 625 44 UNIF SEHFR- 1 169.344 0. 000 169. 344 18.375 45 UNIF SEHFR- 2 169.344 0. 000 169.344 20. 000 46 UNIF SEHFR- 3 169.344 0.000 169.344 20. 000 47 UNIF SEHFR- 4 84. 672 0. 000 84. 672 18.375 48 UNIF SEHFR- 4R 84. 672 0. 000 84. 672 1. 625 49 UNIF SDFHIL- 1L 84. 672 0. 000 84. 672 1. 625 50 UNIF SDFH1L- 1 84. 672 0. 000 84 . 672 18.375 51 UNIF SDFHIL- ALL 84. 672 0. 000 84. 672 0. 000 52 UNIF SDFHXI- 11, 84. 672 0. 000 84. 672 1. 625 53 UNIF SDFHX1- 1 84. 672 0. 000 84. 672 18.375 54 UNIF SDFHX1- 2 84. 672 0. 000 84. 672 20.000 55 UNIF SDFHXI- ALL 84. 672 0. 000 84. 672 0. 000 56 UNIF SDFHX2- 2 84. 672 0. 000 84. 672 20. 000 57 UNIF SDFHX2- 3 84. 672 0. 000 84. 672 20. 000 58 UNIF SDFHX2 ALL 84. 672 0. 000 84. 672 0. 000 59 UNIF SDFHX3- 3 84 . 672 0.000 84. 672 20. 000 60 UNIF SDFHX3- 4 84. 672 0. 000 84. 672 18.375 61 UNIF SDFHX3- 4R 84. 672 0. 000 84. 672 1.625 62 UNIF SDFHX3- ALL 84. 672 . 0.000 84 . 672 0. 000 63 UNIF SDFHX4- 4 84. 672 0. 000 84. 672 18.375 64 UNIF SDFHX4- 4R 84. 672 0. 000 84. 672 1. 625 65 UNIF SDFHX4- ALL 84. 672 0. 000 84. 672 0. 000 66 UNIF W- 1L -106. 124 0. 000 -106. 124 1. 625 67 UNIF W- 1 -106. 124 0. 000 -106. 124 3.375 68 UNIF W- 1 -63.738 3.375 -63.738 18.375 69 UNIF W- 2 -63.738 0. 000 -63.738 20. 000 70 UNIF W- 3 -63.738 0. 000 -63.738 20.000 71 UNIF W- 4 -63.738 0. 000 -63.738 15. 000 72 UNIF W- 4 -106.124 15. 000 -106. 124 18.375 73 UNIF W- 4R -106. 124 0. 000 -106.124 1. 625 74 UNIF W+ ALL 32.161 0. 000 32. 161 0. 000 Roof interesting purlin line 7 (At eave edge) analysis details. Design Z Left Right Edge --Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- r 3.225 ft B 1. 625 ft 1. 625 ft 5. 000 ft -1.713 0.518 -1.713 0.518 1 Roof interesting purlin line 7 (At eave edge) analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 D+C + L+ Check By ASD; No Deflection Limit; 2 D+C + LAFN- Check By ASD; No Deflection Limit; 3 D+C + LANF- Check By ASD; No Deflection Limit; 4 D+C + LDFNIL- Check By ASD; No Deflection Limit; 5 D+C + LDFNXI- Check By ASD; No Deflection Limit; 6 D+C + LDFNX2- Check By ASD; No Deflection Limit; 7 D+C + LDFNX3- Check By ASD; No Deflection Limit; 8 D+C + LDFNX4- Check By ASD; No Deflection Limit; 9 D+C + LEU- Check By ASD; No Deflection Limit; 10 D+C + S+ Check By ASD; No Deflection Limit; 11 D+C + SU- Check By ASD; No Deflection Limit; 12 D+C + SEFHL- Check By ASD; No Deflection Limit; 13 D+C + SEFHR- Check By ASD; No Deflection Limit; 14 D+C + SEHFL- Check By ASD; No Deflection Limit; 15 D+C + SEHFR- Check By ASD; No Deflection Limit; 16 D+C + SDFHIL- Check By ASD; No Deflection Limit; 17 D+C + SDFHXI- Check By ASD; No Deflection Limit; 18 D+C + SDFHX2- Check By ASD; No Deflection Limit; 19 D+C + SDFHX3- Check By ASD; No Deflection Limit; 20 D+C + SDFHX4- Check By ASD; No Deflection Limit; 21 D- + 1.30W- Check By ASD With 1/3 Increase; No Deflection Limit; 22 D+C + 1.30W- Check By ASD With 1/3 Increase; No Deflection Limit; 23 D+C + 1.30W+ Check By ASD With 1/3 Increase; No Deflection Limit; 24 D+C + 1.30W+ + 1/2S+ Check By ASD With 1/3 Increase; No Deflection Limit; 25 D+C + S+ + 0. 65W+ Check By ASD With 1/3 Increase; No Deflection Limit; 26 L+ No Stress Check; L/150 Deflection Limit; 27 1/2LAFN- No Stress Check; L/150 Deflection Limit; 28 1/2LANF- 1 No Stress Check; L/150 Deflection Limit; 29 1/2LDFNIL- No Stress Check; L/150 Deflection Limit; 30 1/2LDFNXI- No Stress Check; L/150 Deflection Limit; 31 1/2LDFNX2- No Stress Check; L/150 Deflection Limit; 32 1/2LDFNX3- No Stress Check; L/150 Deflection Limit; 33 1/2LDFNX4- No Stress Check; L/150 Deflection Limit; 34 1/2LEU- No Stress Check; L/150 Deflection Limit; 35 S+ No Stress Check; L/180 Deflection Limit; 36 SU- No Stress Check; L/180 Deflection Limit; 37 SEFHL- No Stress Check; L/180 Deflection Limit; 38 SEFHR- No Stress Check; L/180 Deflection Limit; 39 SEHFL- 1 No Stress Check; L/180 Deflection Limit; 40 SEHFR- No Stress Check; L/180 Deflection Limit; 41 SDFHIL- No Stress Check; L/180 Deflection Limit; 42 SDFHXI- No Stress Check; L/180 Deflection Limit; 43 SDFHX2- No Stress Check; L/180 Deflection Limit; 44 SDFHX3- No Stress Check; L/180 Deflection Limit; 45 SDFHX4- No Stress Check; L/180 Deflection Limit; 46 0.70W- No Stress Check; L/180 Deflection Limit; 47 0.70W+ No Stress Check; L/180 Deflection Limit; Roof interesting purlin line 7 (At eave edge) analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest Web Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) (ft) (ft) # # --------------------------------------------------------------------------- 1L 1. 625 8Z13 0. 000 0. 000 0 1 No 11 0. 612 crippling 11 L/ 74 deflection 1 18.375 8Z13 0. 000 2. 917 3 1 R.End 11 0. 826 bending 36 L/ 288 deflection 2 20. 000 8Z13 2. 917 1. 417 0 1 L.End 11 0. 819 B/S Comb. 36 L/ 737 deflection 3 20. 000 8Z13 1.417 2. 917 0 1 R.End 11 0. 819 B/S Comb. 36 L/ 737 deflection 4 18.375 8Z13 2.917 0. 000 3 1 L.End 11 0. 826 bending 36 L/ 288 deflection 4R 1. 625 8Z13 0.000 0. 000 0 1 No 11 0.612 crippling 11 L/ 74 deflection f � Total design weight per run = 392.288 lbs. Maximum stress ratio = 0. 826. Roof interesting purlin line 7 (At eave edge) analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group #' lb/ft (kips) feet lb/ft feet --------------------------------------------------------------------------- 1 UNIF D- ALL 3.462 0. 000 3.462 0. 000 2 UNIF D+C ALL 6. 042 0. 000 6.042 0. 000 3 UNIF L+ ALL 46.446 0. 000 46.446 0. 000 4 UNIF LAFN- 1L 46.446 0.000 46. 446 1. 625 5 UNIF LAFN- 1 46.446 0. 000 46.446 18.375 6 UNIF LAFN- 3 46.446 0.000 46.446 20. 000 7 UNIF LANF- 2 46.446 0.000 46. 446 20. 000 8 UNIF LANF- 4 46.446 0.000 46.446 18.375 9 UNIF LANF- 4R 46.446 0.000 46.446 1.625 10 UNIF LDFNIL- 1L 46.446 0.000 46.446 1. 625 11 UNIF LDFN1L- 1 46.446 0.000 46. 446 18.375 12 UNIF LDFNXI- 1L 46.446 0. 000 46.446 1. 625 13 UNIF LDFNXI 1 46.446 0. 000 46.446 18.375 14 UNIF"LDFNXI- 2 46.446 0. 000 46.446 20.000 15 UNIF LDFNX2- 2 46.446 0. 000 46.446 20. 000 16 UNIF LDFNX2- 3 46.446 0. 000 46.446 20. 000 17 UNIF LDFNX3- 3 46. 446 0. 000 46. 446 20. 000 18 UNIF LDFNX3- 4 46.446 0.000 46.446 18.375 19 UNIF LDFNX3- 4R 46.446 0. 000 46.446 1.625 20 UNIF LDFNX4- 4 46.446 0.000 46.446 18.375 21 UNIF LDFNX4- 4R 46.446 0. 000 46. 446 1. 625 22 UNIF LEU- ALL 51. 607 0. 000 51. 607 0.000 23 UNIF S+ ALL 136.552 0. 000 136.552 0. 000 24 UNIF SU- ALL 260.965 0. 000 260. 965 0. 000 25 UNIF SEFHL- 1L 136.552 0. 000 136.552 1. 625 26 UNIF SEFHL- 1 136.552 0. 000 136.552 18.375 27 UNIF SEFHL- 2 68.276 0. 000 68.276 20. 000 28 UNIF SEFHL- 3 68.276 0. 000 68.276 20. 000 29 UNIF SEFHL- 4 68.276 0. 000 68.276 18.375 30 UNIF SEFHL- 4R 68.276 0. 000 68.276 1.625 31 UNIF SEFHR- 1L 68.276 0.000 68.276 1. 625 32 UNIF SEFHR- 1 68.276 0. 000 68.276 18.375 33 UNIF SEFHR- 2 68.276 0. 000 68.276 20. 000 34 UNIF SEFHR- 3 68.276 0. 000 68.276 20.000 35 UNIF SEFHR 4 136.552 0. 000 136.552 18.375 36 UNIF SEFHR- 4R 136.552 0. 000 136.552 1.625 37 UNIF SEHFL- 1L 68.276 0.000 68.276 1.625 38 UNIF SEHFL- 1 68.276 0. 000 68.276 18.375 39 UNIF SEHFL- 2 136,.552 0. 000 136.552 20. 000 40 UNIF SEHFL- 3 136.552 0. 000 136.552 20. 000 41 UNIF SEHFL- 4 136.552 0. 000 136.552 18.375 42 UNIF SEHFL- 4R 136.552 0.000 136.552 1. 625 43 UNIF SEHFR- 1L 136.552 0. 000 136.552 1.625 44 UNIF SEHFR- 1 136.552 0. 000 136.552 18.375 45 UNIF SEHFR- 2 136.552 0. 000 136.552 20.000 46 UNIF SEHFR- 3 136.552 0. 000 136.552 20.000 47 UNIF SEHFR- 4 68.276 0. 000 68.276 18.375 48 UNIF SEHFR- 4R 68.276 0. 000 68.276 1. 625 49 UNIF SDFHIL- 1L 68.276 0. 000 68.276 1.625 50 UNIF SDFHIL- 1 68.276 0. 000 68.276 18.375 51 UNIF SDFHIL- ALL 68.276 0. 000 68.276 0.000 52 UNIF SDFHXI- 1L 68.276 0. 000 68.276 1. 625 53 UNIF SDFHX1- 1 68.276 0. 000 68.276 18.375 54 UNIF SDFHX1- 2 68.276 0. 000 68.276 20.000 55 UNIF SDFHXI- ALL 68.276 0. 000 68.276 0.000 56 UNIF SDFHX2- 2 68.276 0. 000 68.276 20. 000 57 UNIF SDFHX2- 3 68.276 0. 000 68.276 20. 000 58 UNIF SDFHX2- ALL 68.276 0. 000 68.276 0. 000 59 UNIF SDFHX3- 3 68.276 0. 000 6B.276 20. 000 60 UNIF SDFHX3- 4 68.276 0. 000 68.276. 18.375 61 UNIF SDFHX3- 4R 68.276 0. 000 68.276 1. 625 62 UNIF SDFHX3- ALL 68.276 0. 000 68.276 0.000 63 UNIF SDFHX4-- 4 68.276 0. 000 68.276 18.375 64 UNIF SDFHX4 4R 68.276 0. 000 68.276 1. 625 65 UNIF SDFHX 4 ALL 68.276 0.000 68.276 0. 000 66 UNIF W- ALL -88.971 0. 000 -88.971 0.000 67 UNIF W+ ALL 26. 904 0. 000 26.904 0. 000 Roof interesting purlin line 1 (At peak edge) analysis details. Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 3.500 ft B 1. 625 ft 1. 625 ft 5.000 ft -1. 688 0.511 -1. 688 0.511 Roof interesting purlin line 1 (At peak edge) analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 D+C + L+ Check By ASD; No Deflection Limit; 2 D+C + LAFN- Check By ASD; No Deflection Limit; 3 D+C + LANF- Check By ASD; No Deflection Limit; 4 D+C + LDFNIL- Check By ASD; No Deflection Limit; 5 D+C + LDFNXl - Check By ASD; No Deflection Limit; 6 D+C + LDFNX2- Check By ASD; No�Deflection Limit; 7 D+C + LDFNX3- Check By ASD; No Deflection Limit; 8 D+C + LDFNX4- Check By ASD; No Deflection Limit; 9 D+C + LEU- Check By ASD; No Deflection Limit; 10 D+C + S+ Check By ASD; No Deflection Limit; 11 D+C + SU- Check By ASD; No Deflection Limit; 12 D+C + SEFHL- Check By ASD; No Deflection Limit; 13 D+C + SEFHR- Check By ASD; No Deflection Limit; 14 D+C + SEHFL- Check By ASD; No Deflection Limit; 15 D+C + SEHFR- Check By ASD; No Deflection Limit; 16 D+C + SDFHIL- Check By ASD; No Deflection Limit; 17 D+C + SDFHXI- -' Check By ASD; No Deflection Limit; 18 D+C + SDFHX2- Check By ASD; No Deflection Limit; 19 D+C + SDFHX3- Check By ASD; No Deflection Limit; 20 D+C + SDFHX4- Check By ASD; No Deflection Limit; 21 D- + 1.30W- Check By ASD With 1/3 Increase; No Deflection Limit; 22 D+C + 1.30W- Check By ASD With 1/3 Increase; No Deflection Limit; 23 D+C + 1.30W+ ! Check By ASD With 1/3 Increase; No Deflection Limit; 24 D+C + 1.30W+ + 1/2S+ Check By ASD With 1/3 Increase; No Deflection Limit; 25 D+C + S+ + 0.65W+ Check By ASD With 1/3 Increase; No Deflection Limit; 26 L+ No Stress Check; L/150 Deflection Limit; 27 1/2LAFN- No Stress Check; L/150 Deflection Limit; 28 1/2LANF- No Stress Check; L/150 Deflection Limit; 29 1/2LDFNIL- No Stress Check; L/150 Deflection Limit; 30 1/2LDFNXI- No Stress Check; L/150 Deflection Limit; 31 1/2LDFNX2- No Stress Check; L/150 Deflection Limit; 32 1/2LDFNX3- No Stress Check; L/150 Deflection Limit; 33 1/2LDFNX4- No Stress Check; L/150 Deflection Limit; 34 1/2LEU- No Stress Check; L/150 Deflection Limit; 35 S+ No Stress Check; L/180 Deflection Limit; 36 SU- No Stress Check; L/180 Deflection Limit; 37 SEFHL- No Stress Check; L/180 Deflection Limit; 38 SEFHR- No Stress Check; L/180 Deflection Limit; 39 SEHFL- No Stress Check; L/180 Deflection Limit; 40 SEHFR- No Stress Check; L/180 Deflection Limit; 41 SDFHIL- No Stress Check; L/180 Deflection Limit; 42 SDFHXI- No Stress Check; L/180 Deflection Limit; 43 SDFHX2- No Stress Check; L/180 Deflection Limit; 44 SDFHX3- No Stress Check; L/180 Deflection Limit; 45 SDFHX4- No Stress Check; L/180 Deflection Limit; 46 0.70W- No Stress Check; L/180 Deflection Limit; 47 0. 70W+ No Stress Check; L/180 Deflection Limit; Roof interesting purlin line 1 (At peak edge) analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest Web Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) (ft) (ft) # # --------------------------------------------------------------------------- 1L 1. 625 8Z13 0. 000 0. 000 0 1 No 11 0. 664 crippling 11 L/ 68 deflection 1 18 .375 8Z13 0.000 2. 917 3 1 R.End 11 .0. 895 bending 36 L/ 266 deflection 2 20. 000 8Z13 2.917 1.417 0 1 L.End 11 0. 888 B/S Comb. 36 L/ 680 deflection 3 20. 000 8Z1.3 1.417 2. 917 0 1 R.End 11 0. 888 B/S Comb. 36 L/ 680 deflection 4 18.375 8Z13 2. 917 0. 000 3 1 L.End 11 0. 895 bending 36 L/ 266 deflection 4R 1. 625 8Z13 0.000 0.000 0 1 No 11 0. 664 crippling 11 L/ 68 deflection Total design weight per run = 392.288 lbs. Maximum stress ratio = 0. 895. Roof interesting purlin line 1 (At peak edge) analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # lb/ft (kips) feet lb/ft feet ------------------------------------------------------------ -------------- 1 UNIF D- ALL 3. 757 0.000 3.757 0.000 2 UNIF D+C ALL 6.557 0. 000 6.557 0.000 3 UNIF L+ ALL 50.400 0. 000 50.400 0.000 4 UNIF LAFN- 1L 50. 400 0.000 50.400 1. 625 5 UNIF LAFN- 1 50. 400 0.000 50.400 18.375 6 UNIF LAFN- 3 50.400 0.000 50.400 20.000 7 UNIF LANF- 2 50. 400 0. 000 50. 400 20.000 8 UNIF LANF- 4 50.400 0.000 50. 400 18.375 9 UNIF LANF- 4R - 50.400 0.000 50.400 1. 625 10 UNIF LDFNIL- 1L 50.400 0.000 50.400 1.625 11 UNIF LDFNIL- 1 50.400 0.000 50. 400 18.375 12 UNIF LDFNXI- 1L 50. 400 0. 000 50. 400 1. 625 13 UNIF LDFNXI 1 50.400 0.000 50.400 18.375 14 UNIF LDFNXI 2 50.400 0. 000 50.400 20. 000 15 UNIF LDFNX2- 2 50.400 0. 000 50.400 20. 000 16 UNIF LDFNX2- 3 50.400 0. 000 50.400 20.000 17 UNIF LDFNX3- 3 50.400 0. 000 50.400 20. 000 18 UNIF LDFNX3- 4 50. 400 0.000 50.400 18.375 19 UNIF LDFNX3- 4R 50.400 0.000 50.400 1.625 20 UNIF LDFNX4- 4 50.400 0.000 50.400 18. 375 21 UNIF LDFNX4- 4R 50.400 0. 000 50.400 1. 625 22 UNIF LEU- ALL 56.000 0. 000 56. 000 0. 000 23 UNIF S+ ALL 148. 176 0.000 148.176 0. 000 24 UNIF SU- ALL 283. 181 0. 000 283. 181 0. 000 25 UNIF SEFHL- 1L 148.176 0. 000 148. 176 1. 625 26 UNIF SEFHL 1 148. 176 0.000 148 .176 18. 375 27 UNIF SEFHL 2 74. 088 0. 000 74.088 20. 000 28 UNIF SEFHL- 3 74.088 0. 000 74 . 088 20. 000 29 UNIF SEFHL 4 74.088 0. 000 74. 088 18.375 30 UNIF SEFHL 4R 74.088 0. 000 74 . 088 1. 625 31 UNIF SEFHR- 1L 74.088 0.000 74. 088 1. 625 32 UNIF SEFHR- 1 74.088 0.000 74.088 18.375 33 UNIF SEFHR- 2 74.088 0. 000 74.088 20.000 34 UNIF SEFHR- 3 74. 088 0. 000 74.088 20. 000 35 UNIF SEFHR- 4 148.176 0. 000 148. 176 18.375 36 UNIF SEFHR- 4R 148.176 0.000 148. 176 1. 625 37 UNIF SEHFL- 1L 74.088 0.000 74. 088 1.625 38 UNIF SEHFL- 1 74.088 0. 000 74.088 18.375 39 UNIF SEHFL- 2 148.176 0. 000 148.176 20. 000 40 UNIF SEHFL- 3 148. 176 0. 000 148.176 20. 000 41 UNIF SEHFL- 4 148.176 0. 000 148.176 18.375 42 UNIF SEHFL- 4R 148.176 0.000 148.176 1. 625 43 UNIF SEHFR- 1L 148.176 0.000 148. 176 1. 625 44 UNIF SEHFR- 1 148.176 0.000 148. 176 18.375 45 UNIF SEHFR 2 148.176 0.000 148. 176 20.000 46 UNIF SEHFR 3 148.176 0. 000 148.176 20. 000 47 UNIF SEHFR 4 74. 088 0. 000 74.088 18.375 48 UNIF SEHFR 4R 74.088 0. 000 74.088 1. 625 49 UNIF SDFHIL- 1L 74.088 0.000 74. 088 1. 625 50 UNIF SDFH1L- 1 74.088 0.000 74 . 088 18.375 51 UNIF SDFHIL ALL 74.088 0. 000 74. 088 0. 000 52 UNIF SDFHXI- 1L 74. 088 0. 000 74.088 1.625 53 UNIF SDFHXI 1 74.088 0.000 74. 088 18.375 54 UNIF SDFHXI 2 74 . 088 0. 000 74.088 20. 000 55 UNIF SDFHXI ALL 74. 088 0. 000 74. 088• 0.000 56 UNIF SDFHX2- 2 74. 088 0.000 74. 088 20.000 57 UNIF SDFHX2- 3 74. 088 0. 000 74. 088 20.000 58 UNIF SDFHX2- ALL 74. 088 0.000 74.088 0.000 59 UNIF SDFHX3- 3 74:088 0. 000 74. 088 20.000 60 UNIF SDFHX3- 4 74. 088 0. 000 74.088 18.375 61 UNIF SDFHX3- 4R 74 .088 0.000 74. 088 1. 625 62 UNIF SDFHX3- ALL 74. 088 0. 000 74. 088 0.000 63 UNIF SDFHX4- 4 74. 088 0. 000 74. 088 18.375 64 UNIF SDFHX4- 4R 74. 088 0.000 74. 088 1. 625 65 UNIF SDFHX4- ALL 74. 088 0.000 74. 088 0.000 66 UNIF W- ALL -95. 146 0.000 -95.146 0.000 67 UNIF W+ ALL 28.795 0. 000 28.795 0. 000 A M E R I C A N B U I L D I N G S C O M P A N Y Front Side Wall Girt Design (typical) Designer: QU Version Number: Ver. 21. 0 Job Number: 71697301 Date/Time: 02/12/04 10:27 AM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope (F) Slope(R) No.BAYS RF 50.000 ft 80. 000 ft 25. 000 ft 0. 000 ft 6. 000: 12 6.000:12 4 --------------------------------------------------------------------------- S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 15. 000 ft 0. 000 ft Left 4 S I 0.000 ft Rear: 15.. 000 ft 0.000 ft Right 4 S I 0.000 ft Building Code: 2002 New York State Building Code --------------------------------------------------------------------------- Category Seis_Z Expo_S Expo_W Coastal DL COLL. LL I. F C N/A 1.200psf 1. 00Opsf 20. 00Opsf --------------------------------------------------------------------------- G_Snow D_Snow WL_mph WL_psf S.Imp.Fac S.Fac W.Imp.Fac 70. 00Opsf 52. 920psf 90. 00Omph 16. 100psf 1.000 0. 900 1.000 --------------------------------------------------------------------------- Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 5. 000 ft I 1. 625 ft 1. 625 ft 5.000 ft -1.103 1. 003 -1.227 1.003 Standalone wall girt line design details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 1. 30W- Check By ASD With 1/3 Increase; No- Deflection Limit; 2 1.30W+ Check By ASD With 1/3 Increase; No Deflection Limit; 3 0. 70W- No Stress Check; L/120 Deflection Limit.- 4 0.70W+ No Stress Check; L/120 Deflection Limit; Standalone wall girt line design details. Design Data - Summary Span Length Mark Left Right Brace Nest Web Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) (ft) (ft) # # --------------------------------------------------------------------------- 1 18.375 8Z14 0. 000 0. 000 0 1 No 1 0. 883 bending 3 L/ 415 deflection 2 20. 000 8Z13 0. 000 0. 000 0 1 No 1 0. 889 bending 3 L/ 365 deflection 3 20. 000 BZ13 0. 000 0.000 0 1 No 1 0. 889 bending 3 L/ 365 deflection 4 18.375 8Z14 0.000 0.000 0 1 No 1 0. 883 bending 3 L/ 415 deflection Total design weight per run = 300. 011 lbs. Maximum stress ratio = 0. 889. Standalone wall girt line design details. 1 Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # lb/ft(kips) feet lb/ft feet --------------------------------------------------------------------------- 1 UNIF W- 1 -98.764 0. 000 -98.764 3.375 2 UNIF W- 1 -86. 828 3.375 -88. 828 18.375 3 UNIF W- 2 -68. 828 0.000 -88. 828 20. 000 4 UNIF W- 3 -88. 828 0. 000 -88. 828 20.000 5 UNIF W- 4 -88.828 0. 000 -88.828 15.000 6 UNIF W- 4 -98.764 15.000 -98.764 18.375 7 UNIF W+ ALL 80.778 0. 000 80.778 0. 000 1 I i A M E R I C A N B U I L D I N G S C O M P A N Y Rear Side Wall Girt Design (typical) Designer: QU Version Number: Ver. 21. 0 Job Number: 71697301 Date/Time: 02/12/04 10:27 AM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope(F) Slope(R) No.BAYS RF 50. 000 ft 80. 000 ft 25. 000 ft 0. 000 ft 6.000: 12 6. 000:12 4 --------------------------------------------------------------------------- S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 15. 000 ft 0. 000 'ft Left 4 S I 0. 000 ft Rear: 15. 000 ft 0. 000 ft Right 4 S I 0.000 ft Building Code: 2002 New York State Building Code --------------------------------------------------------------------------- Category Seis_Z Expo_S Expo_W Coastal DL COLL. LL I. F C N/A 1.200psf 1.00Opsf 20. 00Opsf ------------------------------------Y"-------------------------------------- G_Snow D_Snow WL mph WL_psf S.Imp.Fac S.Fac W.Imp.Fac 70. 00Opsf 52. 920psf 90:OOOmph 16.100psf 1. 000 0. 900 1. 000 --------------------------------------------------------------------------- _ Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure ----------------------------'----------------------------------------------- 5. 000 ft I 1. 625 ft 1. 625 ft 5.000 ft -1.103 1. 003 -1.227 1. 003 Standalone wall girt line design details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 1,.30W- Check By ASD With 1/3 Increase; No Deflection Limit; 2 1.30W+ Check By ASD With 1/3 Increase; No Deflection Limit; 3 0.70W- No Stress Check; L/120 Deflection Limit; 4 0.70W+ No Stress Check; L/120 Deflection Limit; Standalone wall girt line design details. Design Data - Summary Span Length Mark Left Right Brace Nest Web Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio_ Check (ft) (ft) (ft) # # --------------------------------------------------------------------------- 4 18.375 8Z14 0. 000 0. 000 0 1 No 1 0. 883 bending 3 L/ 415 deflection 3 20. 000 SZ13 0. 000 0. 000 0 1 No 1 0. 889 bending 3 L/ 365 deflection 2 20. 000 8Z13 0.000 0.000 0 1 No 1 0. 889 bending 3 L/ 365 deflection 1 18.375 8Z14 0. 000 0.000 0 1 No 1 0. 883 bending 3. L/ 415 deflection Total design weight per run = 300.011 lbs. Maximum stress ratio = 0. 889. Standalone wall girt line design details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # lb/ft (kips) feet lb/ft feet --------------------------------------------------------------------------- 1 UNIF W- 4 -98.764 0.000 -98.764 3.375 2 UNIF W- 4 -88. 828 3.375 -88. 828 18. 375 3 UNIF W- 3 -88. 828 0. 000 -88. 828 20. 000 4 UNIF W- 2 -88. 828 0. 000 -88. 828 20. 000 5 UNIF W- 1 -88. 828 0. 000 -88. 828 15. 000 6 UNIF W- 1 -98.764 15. 000 -98.764 18.375 7 UNIF W+ ALL 80. 778 0. 000 80.778 0. 000 ti A M E R I C A N B U I L D I N G S C O M P A N Y Left End Wall Girt Design (typical) Designer: QU Version Number: Ver. 21. 0 Job Number: 71697301 Date/Time: 02/12/04 02: 03 PM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope (F) Slope(R) No.BAYS RF 50. 000 ft 80.000 ft 25. 000 ft 0.000 ft 6. 000:12 6. 000:12 4 --------------------------------------------------------------------------- S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 15. 000 ft 0. 000 ft Left 4 S I 0. 000 ft Rear: 15. 000 ft 0. 000 ft Right 4 S I 0. 000 ft Building Code: 2002 New York State Building Code --------------------------------------------------------------------------- Category Seis_Z Expo_S Expo_W Coastal DL _ COLL. LL I. F C N/A 1.200psf 1. 00Opsf 20. 00Opsf ------------------------------------ -------------------------------------- G_Snow D_Snow WL_mph WL psf S.Imp.Fac S.Fac W.Imp.Fac 70. 00Opsf 52. 920psf 90.00Omph 16.100psf 1. 000 0.900 1. 000 --------------------------------------------------------------------------- Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 6. 000 ft I 0.000 ft 0. 000 ft 5. 000 ft -1. 103 1. 003 -1.227 1.003 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 1. 30W- Check By ASD With 1/3 Increase; No Deflection Limit; 2 1. 30W+ Check By ASD With 1/3 Increase; No Deflection Limit; 3 0. 70W- No Stress Check; L/120 Deflection Limit; 4 0.70W+ No Stress Check; L/120 Deflection Limit; Standalone wall girt line analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest Web Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio Check (ft) (ft) (ft) # # --------------------------------------------------------------------------- 1 17.500 8Z14 0.000 0. 000 0 1 No 1 0.911 bending 3 L/ 396 deflection 2 15. 000 8Z16 0.000 0. 000 0 1 No 1 0. 945 bending 3 L/ 505 deflection 3 17. 500 8Z14 0.000 0. 000 0 1 No 1 0. 971 bending 3 L/ 396 deflection Total design weight per run = 171.341 lbs. Maximum stress ratio = 0. 971. Standalone wall girt line analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # lb/ft(kips) feet lb/ft feet --------------------------------------------------------------------------- 1 UNIF W- 1 -118.517 0.000 -118.517 5. 000 2 UNIF W- 1 -106.594 5.000 -106.594 17.500 3 UNIF W- 2 -106.594 0. 000 -106.594 15. 000 4 UNIF W- 3 -106.594 0. 000 -106.594 12.500 5 UNIF W- 3 -118. 517 12.500 -118.517 17.500 6 UNIF W+ ALL 96. 933 0.000 96. 933 0. 000 A M E R I C A N B U I L D I N G S C O M P A N Y Right End Wall Girt Design (typical) Designer: QU Version Number: Ver. 21. 0 Job Number: 71697301 Date/Time: 02/12/04 02: 06 PM --------------------------------------------------------------------------- Type Width Length Ridge Dist R.Col.Elev Slope(F) Slope (R) No.BAYS RF 50. 000 ft 80.000 ft 25. 000 ft 0.000 ft 6.000: 12 6. 000: 12 4 --------------------------------------------------------------------------- S.Wall Eave Ht. Lean-To Width E.Wall Type Col_Spc. Girt Type Overhang Front: 15. 000 ft 0. 000 ft Left 4 S I 0. 000 ft Rear: 15. 000 ft 0. 000 ft Right 4 S I 0. 000 ft Building Code: 2002 New York State Building Code --------------------------------------------------------------------------- Category Seis_Z Expo_S Expo_W Coastal DL COLL. LL I. F C N/A 1.200psf 1. 00Opsf 20. 00Opsf ---------------------------------------------------------------------------- G_Snow D_Snow WL_mph WL_psf S.Imp.Fac S.Fac W.Imp.Fac 70. 00Opsf 52. 920psf 90. 00Omph 16.100psf 1. 000 0.900 1.000 --------------------------------------------------------------------------- Design Z Left Right Edge -Int. Zone Coef- -Ext. Zone Coef- Spacing Cond Inset Inset Strip Suction Pressure Suction Pressure --------------------------------------------------------------------------- 6. 000 ft I 0. 000 ft 0. 000 ft 5.000 ft -1.103 1. 003 -1.227 1.003 Standalone wall girt line analysis details. Design Data - Load Combinations No. Load Case Description --------------------------------------------------------------------------- 1 1. 30W- Check By ASD With 1/3 Increase; No Deflection Limit; 2 1. 30W+ Check By ASD With 1/3 Increase; No Deflection Limit; 3 0. 70W- No Stress Check; L/120 Deflection Limit; 4 0.70W+ No Stress Check; L/120 Deflection Limit; Standalone wall girt line analysis details. Design Data - Summary Span Length Mark Left Right Brace Nest Web Load Check Control ID No. Lap Lap Pts Mem Clip Case Ratio-Check (ft) (ft) (ft) # # --------------------------------------------------------------------------- 1 14. 000 8Z16 0. 000 0. 000 0 1 No 1 0. 847 bending 3 L/ 602 deflection 2 22. 000 BZ13 0. 000 0. 000 3 1 No 1 0. 909 bending 3 L/ 228 deflection 3 14. 000 8Z16 0. 000 0. 000 0 1 No 1 0. 847 bending 3 L/ 602 deflection Total design weight per run = 171.225 lbs. Maximum stress ratio = 0. 909. Standalone wall girt line analysis details. Design Data - Applied loads No. Load Load Span Intensity From Intensity To Type Group # lb/ft(kips) feet lb/ft feet --------------------------------------------------------------------------- 1 UNIF W- 1 -118.517 0. 000 -118.517 5. 000 2 UNIF W- 1 -106.594 5. 000 -106.594 14. 000 3 UNIF W- 2 -106.594 0.000 -106.594 22. 000 4 UNIF W- 3 -106.594 0. 000 -106.594 9. 000 5 UNIF W- 3 -118.517 9. 000 -118.517 14. 000 6 UNIF W+ ALL 96. 933 0.000 96. 933 0. 000 1 i American Buildings Company PANEL PROFILES (LONGSPAN 111) i;,'i III j I ,'• ��,•'� III �I', } ttu• 50'f 30 i L 3@: 3- �11 1314j 1 17/32' PANEL PROFILE PARTIAL CROSS SECTION i FAgi[ieering Properties of American's Long Span ill Panei Base Total Panel Top Bottom Designated Gage Metal Thickness Weight In Compression In Compression Fy/1.67 iJ of Steel Thickness (Inches) (Ibs./ft.2) Ix Sx Ix Sx (ksi) (Inches) (In'/ft.) (In'/ft.) (in41ft.) (In'/ft.) 29 Gage 0.0137 0.0153 0.75 0.030 0.025 0.026 0.036 36 26 Gage 0.0177 0.0193 0.94 0.043 0.039 0.036 0.047 36 24 Gage .0.0225 .0.0241 .1.17 . 0.060 0.054 0.048 0.060 36 22 Gage 0.0300 0.0316 1.54 0.083 0.084 0.070 1 0.082 30 Designated Gage Number Macimum;Total Uniform Load tn,PSF . of Steel of Spans L=3'-0" 3'-6" 4'-0" 4'-6" 5'-0" 6-0" 7'-0" 7'-6" 1 67/-95 50/-64 38/-43 30/-30 24/-22 15/-13 9/-8 7/-7 29.Gage 2 95/-67 70/-50 53/-38 42/-30 34/-24 24/-17 17/-12 15/-11 3 -119/-84 87/-62 67/-47 53/-37 43/-30 27/-21 17/-15 14/-12 4 111 /-79 81 /-58 62/-44. 49/-35 40/-28 28/-20 18/-14 15/-13 1 105/-124 77/-87 59/-58 47/-41 36/-30 21 /-17 13/-11 11 /-9 26 Gage 2 124/-105 91 /-77 70/-59 55/-47 45/-38 31 /-26 23/-19 20/-17 3 156/-131 114/-96 88/-74 69/-58 56/-47 39/-33 25/-21 20/-17 4 145/-122 107/-90 82/-69 65/-54 52/-44 36/-31 26/-22 21 /-18 1 145/-160 107/-117 82/-78 65/--55 50/-40 29/-23 18/-15 15/-12 24 Gage '2 160/-145 118/-107 90/-82 1 71 /-65 58/-52 40/-36 29/-27 26/-23 3 . 200/-181 147/-133 113/-102 89/-81 72/-65 50/-44 34/-28 28/-22 4 187/-169 137/-124 105/-95 83/-75 67/-61 47/-42 34/-29 30/-24 1 188/-182 138/-134 106/-102 83/-81 68/-59 40/-34 25/-21 21 /-17 22 Gage 2 182/-188 134/-138 102/-106 81 /-83 65/-68 .45/-47 33/-34 29/-30 3 227/-235 167/-172 128/-132 101 /-104 82/-84 57/-59 42/-40 36/-33 4 212/-219 156/-161 119/-123 94/-97 76/-79 53/-55 39/-40 i 34/-35 1.Section properties have been calculated in accordance with the AISI Specification for the Design of Cold-Formed Steel Structural Members, 1996 Edition, including Supplement No. 1(1999). 2. Minimum yield strength of 29,26 and 24 gage steel is 80.000 psi. Minimum yield strength of 22 gage steel is 50,000 psi. 3.Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness shown in the minimum design thickness and was used in determining section properties. 4. Positive load is downward load applied to the top of the panel cross section as shown above. Negative load is opposite. 5.The loads shown are limited by the more critical of Span/150 deflection or the allowable bending moment with no stress increase. SUBJECT TO CHANGE WITHOUT • REVISED -- 00 Section 5 Page 1 American Buildings Company PANEL P . O (ARCHITECTURAL 4" 4" 4" 30* 7/32" 50't 318" , ' ! 3/8" 1 17/32" PANEL PROFILE PARTIAL CROSS SECTION Engineering Properties:of Amencan'sEArchitecturai 111 Panel .< : . ., Base Total Panel Top Bottom Designated Gage Metal Thickness Weight In Com ression In Compression Fy/1.67 of Steel Thickness (Inches) (Ibs./ft.`) Ix Sx Ix Sx (ksi) t (Inches) (In4/ft.) (In''/ft.) (In 4/ft.) (Ins/ft.) 29 Gage 0.0137 0.0153 0.75 0.026 0.036 0.030 0.025 36 26 Gage 0.0177 0.0193 0.94 0.036 0.047 0.043 0.039 36 24 Gage 0.0225 0.0241 1.17 0.048 0.060 0.060 0.054 36 22 Gage 0.0300 0.0316 1.54 0.070 0.082 0.083 0.084 30 Designated Gage Number Maximum Total Uniform Load in PSF of Steel of Spans L 33'-0" 3'-6" 4'-0" 4'-6" 5'-0" 6'-0" 7'-0" 7'-6" 1 95/-67 70/-50 53/-38 38/-30 28/-24 16/-17 10/-11 8/-9 29.Gage 2 67/-95 50/-70 38/-53 30/-42 24/-34 17/-24 12/-17 11 /-15 3 84/-119 62/-87 47/-67 37/-53 30/-43 21 /-30 15/-22 13/-18 4 79/-111 58/-81 44/-62 35/-49 28/-40 20/-28 14/-20 113 1-18 1 124/-105 91 /-77 70/-59 51 /-47 37/-38 22/-26 14/-16 11 /-13 26 Gage, 2 105/-124 77/-91 59/-70 47/-55 38/-45 26/-31 19/-23 17/-20 3 131 /-156 96/-114 74/-88 58/-69 47/-56 33/-39 24/-29 21 /-25 4 122/-145 90/- 07 69/-82 54/-65 44/-52 31 /-36 221 27 1 20/-23 1 160/-145 118/-107 90/-82 69/-65 50/-52 29/-36 18/-23 1 15/-19 24 Gage 2 145/-160 107/ml 18 82/-90 65/-71 52/-58 36/-40 27/-29 23/-26 3 181 /-200 133/-147 102/-113 81 /-89 65/-72 45/-50 33/-37 28/-32 4 169/-187 124/-137 95/-105 75/-83 61 /-67 42/-47 31 /-34 27/-30 1 182/-188 134/-138 102/-106 81 /-83 65/-68 42/-47 27/-32 22/-26 22 Gage 2 188/-182 138/-134 106/-102 831-81 68/-65 47/-45 34/-33 30/-29 3 235/-227 172/-167 132/-128 104/-101 84/-82 59/-57 43/-42 38/-36 4 219/-212 161 /-156 123/-119 97/-94 1 79/-76 1 55/-53 1 40/-39 35/-34 1. Section properties have been calculated in accordance with the AISI Specification for the Design of Cold-Formed Steel Structural Members. 1996 Edition.including Supplement No. 1 (1999). 2. Minimum yield strength of 29,26 and 24 gage steel is 80,000 psi. Minimum yield strength of 22 gage steel is 50,000 psi. 3. Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness shown in the minimum design thickness and was used in determining section properties. 4. Positive load is downward load applied to the top of the panel cross section as shown above. Negative load is opposite. 5. The loads shown are limited by the more critical of Span/120 deflection or the allowable bending moment with no stress increase. • CHANGEA4qTHOUT NOTICEREVISED APRIL 1,2003 Section 5 Page 2 American Buildings Company PANEL-PROFILES (ARCHITECTURAL 1 7 PANEL PROFILE PARTIAL CROSS SECTION Engineering;t?ropertiesof-American's Architectuirat"U ,12ils.t?anel Base Total Panel Rib Flat Designated Gage Metal Thickness Weight- In Compression In Compression Fy/1.67 of Steel Thickness (Inches) (lbs.ft'l.. Ix Sx Ix Sx (ksi) .(Inches) (In4lft.) (In-/ft.) (In4/ft.) (In'/ft.) 29 Gage 0.0137 0.0153 0.75 0.024 1 0.032 0.024 0.028 36 26 Gage 0.0177 0.0193 0.94 0.033 0.043 0.033 0,040 36 24 Gage 0.0225 0.0241 1.17 0.043 1 0.056 0.043� 0.053 36 22 Gage 0.0300 0.0316 1.54 0.060 0.076 0.057 0,074 30 Designated Gage Number Maximum.Total Uniform Load�n PSF of Steel of Spans L=3-0" 3-6" 4'-0" 4-6" 5'-0" 6'-0" 7'-0" /'-6" 1 86/-75 63/-55 49/-42 35/-33 26/-26 15/-15 9/-9 8/-8 29 Gage 2 75/-86 55/'-63 42/-49 33/-38 27/-31 19/-22 14/-16 12/-14 3• 94 1-108 69/-79 531-61 421-48 341-39 23/-27 171-18 14/-14 4 87/-101 64/-74 49/-57 39/-45 31 /-36 22/-25 16/-19 14/-15 1 115/-106 84/-78 65/-60 47/-47 35/-35 20/-20 13/-13 10/-10 2 106/-115 78/-84 60/-65 47/-51 38/-41 27/-29 20/-21 17/-18 26 Gage 3 1331-143 981-105 75/-81 59/-64 48/-52 331-36 24/-24 19,-20 4 124/-1341 91 1-98 70/-75 551-60 451-48 31 /-33 23/-25 20/-21 _ 1 150/-142 110/-105 84/-80 62/-62 45/-45 26/-26 17/-17 13/-13 24 Gage 2 142/-150 105/-110 80/-84 63/-66 51 /-54 36/-37 26/-27 23/-24 3 178/-187 131 /-137 100/-105 79/-83 64/-67 44/-47 31 /-31 25/-25 4 166 1-174 122/-12B 93/-98 741-78 60/-63 42/-44 31 /-32 27/-27 1 170/-164 125/-121 95/-92 75/-73 61 /-59 36/-34 23/-22 .19/-18 22 Gage 2 164!-170 121 /-125 92/-95 73/-75 59/-61 41 /-42 30/-31 . 26/-27 3 205/-212 151 /-156 115/-119 91 /-94 74/-76 1 51 /-53 1 38/-39 33/-33 4 11921-198 141 /-146 108/-111 85/-88 69/-71 1 48/-50 1 351-36 31 /-32 1. Section properties have been calculated in accordance with the AISI Specification for the Design of Cold-Formed Steel Structural Members. 1996 Edition, including Supplement No. 1 (1999). 2. Minimum yield strength of 29,26 and 24 gage steel is 80,000 psi. Minimum yield strength of 22 gage steel is 50,000 psi. 3. Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness shown in the minimum design thickness and was used in determining section properties. 4. Positive load is downward load applied to the top of the panel cross section as shown above. Negative load is opposite. 5.The loads shown are limited by the more critical of Span/120 deflection or the allowable bending moment with no stress increase. Section 5 Page 2b _ American Buildings Company PANEL PROFILES (STA"ING SEAM 11) 24" l%jii ,,, it / i \ 2 29/32", I 3" l2 u / y ` 4916' S1H6' 51/16' 49116" 2 3/8" 19 1/4' 2 3/8' PANEL PROFILE CROSS SECTION Engirteertcg Proerfies"of Anteraan's Standitag Seam II Parcel Base Total Panel Top Bottom Designated Cage Metal Thickness Weight In Cc m ression In Compression Fy/1.67 of Steel Thickness (Inches) (Ibs./ft.2) Ix Sx Ix Sx (ksi) (Inches) (In 4/ft.) (In'/ft.) (In 4/ft.) (In'/ft.) 24 Gage 0.0225 0.0241 1.21 0.277 0.116 0.140 0.086-1 30 22 Gage 0.0300 0.0316 1.58 0.371 0.159 0.198 0.117. 30 Designated Gage Number Maximum Total Uniform Loasi m PSF of Steel of Spans L=2'-6" 3'-0" 3'-4" 4-0" 4'-6 5'-01, 1 372 258" 209 145 115 93 24 Gage 2 274 190 154 107 85 69 3 343 238 193 134 106 86 4 320 222 180 125 99 80 1 508 353 286 198 157 127 22 Gage 2 376 261 211 147 116 94 3 1 469 326 264 183 145 117 4 438 304 247 171 135 110 1. Section properties have been calculated in accordance with the AISI specifications for the Design of Cold-Formed Steel Structural Members, 1996 Edition, including Supplement No. 1 (1999) 2. Minimum yield strength of steel is 50,060 psi. 3. Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness shown is the minimum design thickness and was used in determining section properties. 4. Positive load is downward load applied to the top of the panel cross section as shown above. 5. The loads shown are limited by the more critical of Span/150 deflection or the allowable bending moment with no stress increase. SUBJECT TO • • ��Section 5 Page 3 American Buildings Company PROFILES (STANDING SEAM . I 24" \\ 2 29/32' i 13• 2„ 4 9116' 5 1116' 5 1/16' 4 9/16' 314' 2 318' 19 1/4' 2 3/8' PANEL PROFILE CROSS SECTION En t g.neertng Properties of American s Startdtng Seam360 Panel :.. -Base Total Panel Top Bottom Designated Gage Metal Thickness Weight In Compression In Compression Fy/1.67 of Steel Thickness (Inches) (lbs./ft.2) Ix Sx Ix " • Sx (ksi) _(Inches) (In4/ft.) (In'/ft.) (In4/ft.) (I Oft.) E22 Gage 0.0225 0.0241 1.21 0.277 0.116 0.140 0.086 30 Ga e 0.0300 0.0316 1.58 0.371 .0.159 0.198 0.117 30. Designated Gage Number `'( Maximum Toial Ut 06': Load in;PSF of Steel of Spans L=2'-6" 3'-0" 3'-.4" 4 0" 4'-6' 5 01, 1 372 258 209 145 115 93 24 Gage 2 274 190 154 107 85 69 3 343 238 193 134 106 86 4 320 222 180 125 99 80 1 508 353 286 198 157 127 22 Gage 2 376 261 211 147 116 94 3 469 326 264 183 145 117 4 438 304 247 171 135 110 / 1. Section properties have been calculated in accordance with the AISI specifications for the Design of Cold-Formed Steel Structural Members. 1996 Edition, including Supplement No. 1 (1999) 2. Minimum yield strength of steel is 50,000 psi. 3. Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness shown is the minimum design thickness and was used in determining section properties. 4. Positive load is downward load applied to the top of the panel cross section as shown above. 5. The loads shown are limited by the more critical of Span/150 deflection or the allowable bending moment with no stress increase. SUBJECT TO WITHOUT • / • f/ Section 5 Page 3a American buti n 16"wrrcovsn^ss 215116"1 - zmr -- vr PANEL PROFILE Designated Gage Metal Thickness Weight In Compression In Compression Fy/1.67 Base Total Panel Top BottomCROSS SECTION (Inches) r(In (10ft.) (In4ft) (10ft.) 282 Designated Gage Number 1. Section properties have been calculated in accordance with the AISI specifications for the Design of Cold-Formed Steel Structural Members, 1996 Edition, including Supplement No. I (1999) 2. Minimum yield strength of steel is 50,000 psi. � ` - 3\ Steel panels are either aluminum-zinc alloy urG'Q0coated. The base metal thiokneoeohnwnis the minimum design thickness and was used in determining section properties. 4. Positive load is downward load applied to the top of the panel cross section as shown above. Negative load ,- isuppooite. ' 5. The loads shown are limited by the more critical of Span/120 deflection or the allowable bending moment with nu stress increase. Section 5 Page 4 7 American Buildings Company P . it LOC-SEAM LOC-SEAM 360 163/64" 2 16" PANEL PROFILE CROSS SECTION EngineertngRroperttes of<r4mencan's t:6"Loc=Seam!LocSeam 360 Rare! , Base Total Panel Top Bottom Designated Gage Metal Thickness Weight In Compression In Compression Fy/1.67 Of Steel Thickness (Inches) (lbs./ft.z) Ix Sx Ix Sx (ksi) (Inches) (In 4/ft.) (In'/ft.) (in 4/ft.) (In"/ft.) 24 Gage 0.0225 0.0241 1.35 0.152 0. 779 0.071 0.060 30 22 Gage 0.0300 0.0316 1.77 0.213 0.127 0.106 0.092 30 Designated Gage Number MaxtmumTotat Uniform Load m PSF Of Steel of Spans L=2-6" 3-0" 3-6" 4'-0" 4-6" 5'-0" 1 254 177 .130 99 78 64 24 Gage 2 192 133 98 75 59 48 3 240 1.67 122 94 74 60 4 224 156 114 88 69 56 1 405 281 207 158 125 101 22 Gage 2. 295 205 150 115 91 74 3 368 256 188 144 114 92 4 344 239 175 134 1 106 86 1. Section properties have been calculated in accordance with the A/S/specifications for the Design of Cold-Formed Steel Structural Members, 1996 Edition, including Supplement No. 1 (1999) 2. Minimum yield strength of steel is 50,000 psi. 3. Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness shown is the minimum design thickness and was used in determining section properties. 4. Positive load is downward load applied to the top of the panel cross section as shown above. 5. The loads shown are limited by the more critical of Span/150 deflection or the allowable bending moment with no stress increase. SUBJECT TO-CHANGE • • 00 Section 5 Page 5 American Buildings Company PANEL PROFILES (1211360) i } LOC-SEAM LOC-SEAM 360 h. 15 1 �— .i 163164 Z" 12" PANEL PROFILE CROSS SECTION Engiiieersng Pirojierfies.of American's #2"LacSeam It" '.Se'a-m Paaei Base Total Panel Top Bottom Designated Gage Metal Thickness Weight In Compression In Compression Fy/1.67 Of Steel Thickness (Inches) (Ibs./ft.z) Ix Sx Ix Sx (ksi) (Inches) (In°/ft.) (In'/ft.) (In"/ft.) (In'/ft.) 24 Gage 0.0225 0.0241 1.47 0.189 0.108 0.095 0.080 30 22 Gage 0.0300 0.0316 1.93 0.265 0.166 0.141 0.122 30 Designated Gage Number Maximum 7otai,l�niform Leatl�n,PSF .f,,,= ..... Of Steel of Spans L=2'-6" 3-0" 3'-6" 4'-0" 4'-6" 5'-0" 1 345 239 176 135 106 86 24 Gage 2 255 177 130 100 79 64 3 319 222 163 125 99 80 4 298 207 152 116 92 75 1 532 369 271 208 164 133 22 Gage 2 391 272 200 153 121 98 3 489 339 249 191 151 122 4 456 317 233 178 141 114 1. Section properties have been calculated in accordance with the AISI specifications for the Design of Cold-Formed Steel Structural Members, 1996 Edition, including Supplement No. 1 (1999) 2. Minimum yield strength of steel is 50,000 psi. 3. Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness shown is the minimum design thickness and was used in determining section properties. 4. Positive load is downward load applied to the top of the panel cross section as shown above. 5. The loads shown are limited by the more critical of Span/150 deflection or the allowable bending moment with no stress increase. SUBJECT TO CHANGE WITHOUTWOTICE00 Section 5 Page 6 American Buildings Company PANEL PROFILES (MULTI-RIB) 6" 3/4" 1" ". 3 11T .3/4"1r,12 3/4 . PANEL PROFILE PARTIAL CROSS SECTION fngineenng P:roperfes ofAmerican's Mulct Rib Panel Base Total Panel Top Bottom Designated Gage Metal Thickness Weight In Com ression In Compression Fy/1.67 of Steel Thickness (Inches) (lbs./ft.z) . Ix Sx Ix Sx (ksi) (Inches) (In4/ft.) (In3ft) (In4/ft.) (I0ft.) 29 Gage 0.0137 0.0153 0.75 0.016 0.026 0.011 0.024 36 26 Gage 0.0177 0.0193 0.94 0.022 0.038 0.015 0.034 36 24 Gage 0.0225 0.0241 1.17 0.029 0.053 0.021 0.048 36 22 Gage 0.0300 0.0316 1.54 0.040 0.076 0.033 0.070 30 Designated Gage Number Maxmum'To tall,U,t►tfartrtLoad in PSF r. of Steel of Spans L=2'-0" 2'-6" 3'-0" 3'-6" 4'-0"_ 4 6" 5 0" _ 1 156/-140 100/-72 61 /-41 38/-26 26/.-17 18/-12 13/-9 29 Gage 2 140/-156 91 /-100 63/-69 46/-51 36/-39 28/-30 23/-22 3 178/-195 114/-124 79/-78 58/,-49 44/-33 35/-23 25/-17 4 166/-182 106/-116 74/-81 54/-52 41 /-35 33/-25 26/-18 1 229/-197 147/-101 85/-58 54/-37 36/-25 25/-17 18/-13 26 Gage 2 204/-229 131 /-147 91 /-102 67/-75 51 /-57 40/-42 33/-30 3 255/-287 163/-183 113/-110 83/-69 64/-46 48/-33 35/-24 4 238/-268 153/-171 106/-117 78/-74 60/-49 47/-35 37/-25 1 . 315/-275 197/-1411 114/-82 72/ '51 48/-34' 34/-24 25/-18 � 2 290/-315 186/-202 129/-140 95/-103 73/-79 57/-58 46/-42� 24 Gage 3 363/-394 232/-252 161 /-154 118/-97 91 /-65 64/-46 46/-33 .4 338/-368 217/-235 150/-163 Ill /-103 .85/-69 67/-48 49/-35 1 . 382/-352 244/-224 155/-129 98/-82 66/-55 46/-38 34/-28 22 Gage 2 352/-382 225/-244 156/-170 115/125 88/-95 69/-75 56/-61 3 440/-477 281 /-305 195/-212 144/-124 110/-103 87/-72 63/-53 4 410/-445 263/-285 182/-198 134/-145 103/-109 81 /-77 1 66/-56 1. Section properties have been calculated in accordance with the AISI Specification for the Design of Cold-Formed Steel Structural Members, 1996 Edition, including Supplement No. 1 (1999). 2. Minimum yield strength of 29, 26 and 24 gage steel,is 80,000 psi. Minimum yield strength of 22 gage steel is 50,000 psi. 3. Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness shown in - the minimum design thickness and was used in determining section properties. 4. Positive load is downward load applied to the top of the panel cross section as shown above. Negative load is opposite 5. The loads shown are limited by the more critical of Span/l50 deflection or the allowable bending moment with no stress increase. SUBJECT TO CHANGE WITHOUT • • , - 00 Section 5 Page 7 American Buildings Company .'PANIEL-PROFILESi(SEAM , 0.3300"INSIDE 0.0625"INSIDE 1.7500.Z'115;-Till 0.9261" 1.630D" \ 12".16"or 18"NET COVERAGE PANEL PROFILE CROSS SECTION Engineering Properties oP::A'mencan's seam Lac Panel Panel Base Total Panel Top Bottom Designated Gage Width Metal Thickness Weight In Compression In Compression Fy/1.67 of Steel (Inches) Thickness (Inches) (Ibs./ft.`) Ix Sx Ix Sx (ksi) (Inches) (In°/ft.) (In"/ft.) (In°/ft.) (In"/ft.) 18 1.31 0.086 0.055 0.039 0.038 24 Gage 16 0.0225 0.0241 1.35 0.095 0.062 0.044 0.043 30 12 1 1.47 0.118 0.083 0.058 0.057 18 1.72 0.112 0.075 0.057 0.053 22 Gage 16 0.0300 0.0316 1.77 0.123 0.084 0.065 0.060 30 12 1.93 0.154 0.109 1 0.086 0.079 Designated Gage Panel Number MaX>Imeth7 Total Un�form'Load m PSF of Steel Width of Spans (Inches) L=2'-6" L=3'-0" 3'-6" 4'-0 4-6" 5-0" 1 175 122 89 69 54 44 18 2 121 84 62 47 37 30 3 152 105 77 59 47 38 4 142 98 72 55 44 35 1 198 138 101 77 61 50 24 Gage 16 2 136 95 70 53 42 1 �4 3 170 118 87 67 53 43 4 159 110 81 62 49 40 1 264 184 135 103 82 66 12 2 181 126 93 71 56 45 r 3 227 158 116 89 70 57 4 212 147 108 83 65 53 1 241 168 123 94 74 60 18 2 169 118 86 66 52 42 3 212 147 108 83 65 53 4 198 137 101 77 61 49 1 269 187 137 105 83 67 22 Gage 16 2 190 132 97 74 59 48 3 238 165 121 93 73 60 4 222 154 113 87 69 56 1 350 243 178 137 108 87 12 2 253 176 129 99 78 63 3 317 220 162 124 98 79 4 296 205 151 116 91 1 74 1. Section properties have been calculated in accordance with the AISI specifications for the Design of Cold-Formed Steel Structural Members. 1996 Edition, including Supplement No. 1 (1999). 2. Minimum yield strength of steel is 50,000 psi. 3. Steel panels are either aluminum-zinc alloy or G-90 coated. The base metal thickness shown is the minimum design thickness and was used in determining section properties. 4. Positive load is downward load applied to the top of the panel cross section as shown above. 5. The loads shown are limited by the more critical of Span/150 deflection or the allowable bending moment with no stress increase. Section 5 Page 8 Section 6 Miscellaneous STANDARD SPECIFICATION S AMERICAN BUILDINGS COMPANY CONTENTS 1.GENERAL 3.2. SECONDARY FRAMING STEEL............................................ 6 3.2.1. Rolled Formed Sections................................................6 1.1. SCOPE............................................................................3 3.2.2. Rolled Formed Sections(Galvanized)......................... .....6 1.1.1. Intent......................................................................3 3.3. ROOF AND WALL PANEL MATERIAL....................................6 1.1.2. Performance ............................................................3 3.3.1. 26 Gage Material—Zinc-Coated(Galvanized)..:................ 6 1.1.3. Product Change........................................................3 3.3.2. 24 Gage Material—Zinc-Coated(Galvanized)....................6 1.2. BUILDING DESCRIPTION...................................................3 3.3.3. 26 Gage Material—Aluminum-Zinc Alloy-Coated............... 6 1.2.1. LRF........................................................................3 3.3.4. 24 Gage Material—Aluminum-Zinc Alloy-Coated............... 6 1.2.2.RF..........................................................................3 3.3.5. 24 Gage Material—Aluminum-Zinc Alloy-Coated............... 6 1.2.3. LRF-M.....................................................................3 3.3.6. 22 Gage Material—Aluminum-Zinc Alloy-Coated............... 6 1.2.4.RF-M..........................................................:............3 1.2.5. GC..........................................................................,3 4.STRUCTURAL FRAMING 1.2.6. GC-M.....................................................................3 1.2.7. LT..........................................................................3 4.1. GENERAL.........................................................................6 1.2.8.LP2.........................................................................3 4.1.1. Field Bolt Assembly.....................................................6 1.2.9. LP2-M.....................................................................3 4.1.2. Shop Connections....................................................... 6 1.2.10. LP4........................................................................3 4.1.3. Identification Mark....................................................... 6 1.2.11.LP4-M....................................................................3 4.1.4. Visual Inspection.........................................................6 1.2.12. LSS.......................................................................3 4.2. PRIMARY FRAMING...........................................................6 1.2.13, LSS-M....................................................................3 4.2.1. Rigid Frame............................................................... 6 1.2.14. SSF.......................................................................3 4.2.2. Endwall Frames.......................................................... 6 1.2.15. SSF-M....................................................................4 4.2.3. Plates, Stiffeners. etc.......I........................................... 6 1.3. BUILDING NOMENCLATURE...............................................4 4.2.4. Bolt Holes..................................................................6 1.3.1. Roof Slope...............................................................4 4.3. SECONDARY FRAMING......................................................6 1.3.2. Width.......................................................................4 4.3.1. Purlins and Girts......................................................... 6 1.3.3. Eave Height..............................................................4 4.3.2. Eave Struts................................................................ 6 1.3.4. Length..................................................................... 4 4.3.3. Base Angle................................................................ 6 1.3.5. Bay Spacing (Standard)..............................................4 4.4. BRACING...........................................................................6 1.3.6. Bay Spacing(Shadow Panel).......................................4 4.4.1. Diagonal Bracing.........................................................6 1.4. DRAWINGS AND CERTIFICATION.......................................4 4.4.2. Flange Bracing............................................................7 1.4.1. Drawings.............................................:....................4 4.4.3. Special Bracing........................................................... 7 1.4.2. Certifications.............................................................4 i 1.4.3.AISC Certification.......................................................4 5. ROOF AND WALL COVERING 2. STRUCTURAL STEEL DESIGN 5.1. GENERAL.........................................................................7 5.1.1. Wall Panel..................................................................7 2.1. GENERAL........................................................................4 5.1.2. Roof Panel.................................................................7 2.1.1. Structural Mill Sections................................................4 5.1.3.Liner and Soffit Panel...................................................7 2.1.2. Cold Formed Sections................................................4 5.1.4. Facade Fascia Panel.................................................. 7 2.2. DESIGN LOADS................................................................4 5.1.5. Long Span 111 Panel..............:......................................7 2.2.1. Loading Criteria.........................................................4 5.1.6.Architectural 111 Panel...................................................7 2.2.2. Most Severe Conditions...............................................4 5.1.7.Architectural"V"Rib Panel............................................7 2.2.3. Load Projections........................................................5 5.1.8. Multi-Rib Liner Panel...................................................7 2.2.4. Special Loads...........................................................5 5.1.9. Long Span Liner Panel................................................. 7 2.3. DESIGN POLICY...............................................................5 5.1.10. Shadow Panel...........................................................7 2.3.1. Standard Design Practices...........................................5 5.1.11. Soffit Liner Panel........................................................ 7 2.3.2. Rigid Frame Design....................................................5 5.1.12. Standing Seam Panel.................................................7 5.1.13. Loc Seam Panel,....................................................... 7 3.BASIC MATERIAL SPECIFICATIONS 5.1.14. Mansard Fascia Panel................................................7 5.1.15. Seam Loc Panel........................................................ 8 3.1. PRIMARY FRAMING STEEL................................................5 5.2. PANEL DESCRIPTION.........................................................8 3.1.1. Mill-Rolled Sections....................................................5 5.2.1. Long Span 111 Panel......................................................8 3.1.2. Built-Up Sections.......................................................5 5.2.2.Architectural Ill Panel....................................................8 3.1.3. Endwall"C"Sections..................................................6 5.2.3.Architectural"V"Rib Panel........................................... 8 SS(ABC)-Rev.II2/03.Amcrirm Buildings Company 1 F>I IIoo o, STANDARD SPECIFICATIONS AMERICAN BUILDINGS COMPANY 5.2.4. Multi-Rib Panel..........................................................8 7.4. PREMIUM 70M COATED PANELS.......................................... 11 5.2.5. Shadow Panel...........................................................8 7.4.1. Base Metal.................................................................11 5.2.6. Soffit Liner Panel........................................................8 7.4.2. Prime Coat................................................................. 11 5.2.7. Standing Seam Panel..................................................8 7.4.3. Exterior Coat............................................................... 11 5.2.8. Loc Seam Panel........................................................ 8 7.4.4. Interior Finish...............................................................12 5.2.9. Mansard Fascia Panel................................................8 5.2.10. Seam Loc Panel......................................................8 8.ACCESSORIES 5.2.11. Panel Length...........................................................8 5.2.12. Endwall Edge Cuts................................................... 8 8.1.WINDOWS.......................................................................... 12 5.2.13. Oilcanning...............................................................8 8.1.1. Standard Windows.......................................................12 8.1.2. Narrow Light Windows.................................................. 12 6.MISCELLANEOUS MATERIAL SPECIFICATIONS 8.1.3. Thermal Barrier Windows.............................................. 12 8.2. PERSONNEL DOORS...........................................................12 6.1. FASTENERS.....................................................................8 8.2.1. Standard Doors.................................................7",..." 12 6.1.1. Structural Bolts.......................................................... 8 8.2.2. Door Frames...............................................................12 6.1.2. Fasteners for Roof Panels............................................8 8.2.3.Locksets.....................................................................V 6.1.3. Fasteners for Roof Panel Side Laps...............................9 8.2.4. Panic Devices............................................................. 13 6.1.4. Fasteners for Roof Panels and Flashing......................... 9 8.3. PRE-ASSEMBLED PERSONNEL DOORS...............................13' 6.1.5. Fasteners for Roof Panel Clips......................................9 8.3.1. Standard Doors........................................................... 13 6.1.6. Fasr hers for Wall Panels........................................... 9 8.3.2. Door Frames...............................................................13 6.1.7. Fasteners for Wall Panel Side Laps................................9 8.3.3.Locksets.....................................................................13 6.1.8. Fas ners for Shadow Panels.......................................9 8.3.4. Panic Devices............................................................. 13 6.1.9. Blind Fasteners(Rivets)...............................................9 8.3.5. Threshold...................................................................13 6.2. PANEL CLIPS....................................................................9 8.4. OVERHEAD DOOR FRAMING...............................................13 6.2.1. Standing Seam II Panel Clips........................................9 8.4.1. Support Framing..........................................................13 6.2.2. Loc Seam Panel Clips..................................................9 8.5. GRAVITY VENTILATORS..............................I...................... 13 6.2.3. Mansard Fascia Panel Clips.......................................... 10 8.5.1. Ridge Ventilator...........................................................13 6.2.4. Standing Seam 360 Panel Clips.....................................10 8.5.2. 20°Round Ventilator.................................................... 13 6.2.5. Seam Loc Panel Clips..................................................10 8.6. LOUVERS..........................................................................13 6.3. CLOSURES AND SEALANTS.............................................. 10 8.6.1. Standards................................................................... 13 6.3.1. Closure Strips.............................................................10 8.7. SKYLIGHTS....................................................................... 13 6.3.2. Metal Closures...........................................................10 8.7.1. Roof Panels..................,............................................. 13 6.3.3. Sealer:Long Span and Multi-Rib Panels......................... 10 8.7.2. Wall Panels................................................................. 14 6.3.4. Sealer:Standing Seam. Loc Seam&Seam Loc...............10 8.8. INSULATION.......................................................................I. 6,3.5. Sealer:Standing Seam and Loc Seam Panels................ 10 8.8.1. Standards...................................................................14 \1 6.3.6. Caulk....................................................................... 10 8.8.2. Facings.......................................................................14 6.4. GUTTER, FLASHINGS AND DOWNSPOUTS..........................10 8.8.3. Thermal Blocks............................................................14 6.4.1. Gutters. and Flashings................................................. 10 8.8.4. Rigid Foam Insulation....................................................14 6.4.2. Downspouts............................................................... 10 8.9. ROOF CURBS.................................................................. 14 8.9.1. Standards................................................................. 14 7.PAINTING 8,10. PIPE FLASHING................................................................14 8.10.1. Standards.........................:.......................................14 7.1. STRUCTURAL PAINTING.................'".........................".....10 7.1.1. Shop Applied Primers..........................................."""10 9.ERECTION AND INSTALLATION.............................................14 7.1.2. Pre-painted Cold Formed Materials............................... 10 7.1.3.Abrasions After Handling............................................. 11 10.BUILDING ANCHORAGE AND FOUNDATION.........................14 7.2. LONG LIFE COATED PANELS..............................................11 7.2.1. Base Metal............................................................... 11 11.WARRANTIES.................................................................... 15 7.2.2. Prime Coat............................................................... 11 7.2.3. Exterior Coat.............................................................11 7.2.4. Interior Finish.............................................................11 7.3. PREMIUM 70 COATED PANELS...........................................11 7.3.1. Base Metal............................................................... 11 7.3.2. Prime Coat............................................................... 11 7.3.3. Exterior Coat............................................................. 11 7.3.4. Interior Finish.............................................................11 SS(ABC')-Rev.02/03.American Buildings Company FA10(10115 STANDARD SPECIFICATIONS AMERICAN BUILDINGS COMPANY 1 GENERAL usually have the same standard roof slope and girt design 1.1 SCOPE as the building to which they are attached. 1.2.8 LP2 Low Profile, Clear Span is a continuous frame building 1.1.1 The attached specifications cover the standard materials with a standard roof slope of 1/2:12. The primary frames and components used in the design and fabrication of have tapered rafters and uniform depth columns. The American Buildings Company's metal building systems, bottom flange of the tapered rafter is horizontal. Simple span sidewall girts are inset into the column line. 1.1.2 These specifications are an outline of performance to insure that the architect, engineer, builder and/or owner 1.2.9 LP2-M Low Profile, Interior Column is a continuous frame understand the basis for design, manufacture and building with a standard roof slope of 1/2:12. The primary application of all American Buildings Company's metal frames have tapered rafters, uniform depth columns and building systems. have one or more interior columns. Simple span sidewall girts are inset into the column line. 1.1.3 Due to a continuing program of research and development, specifications in this manual are subject to change without 1.2.10 LP4 Low Profile, Clear Span is a continuous frame building notice. with a standard roof slope of 1/4:12. The primary frames have uniform depth columns and tapered or uniform depth 1.2 BUILDING DESCRIPTION rafters. Simple span sidewall girts are inset into the column line. Due to the lower profile, LP4 buildings require 1.2.1 LRF Rigid Frame (Low Profile) Clear Span is a continuous the use of American Buildings Company's Standing Seam frame building with a standard roof slope of 1:12. The Il,Standing Seam 360 or Loc Seam Roof System. primary frames have tapered columns and rafters, and the continuous sidewall girts bypass the column. 1.2.11 LP4-M Low Profile, Interior Column is a continuous frame building with a standard roof slope of 1/4:12. The primary 1.2.2 RF Rigid Frame (High Profile) Clear Span is a continuous frames have tapered rafters, uniform depth columns and frame building with a standard roof slope of 4:12. The have one or more interior columns. Simple span sidewall primary frames have tapered columns and rafters, and the girts are inset into the column line. Due to the lower profile, continuous sidewall girts bypass the column. LP4-M buildings require the use of American Buildings Company's Standing Seam II, Standing Seam 360 or Loc 1.2.3 LRF-M Rigid Frame (Low Profile) Interior Column is a Seam Roof System. continuous frame building with a standard roof slope of 1.2.12 LSS Low Profile, Single Slope is a continuous frame, clear 1:12. The primary frames have tapered columns and span building with a standard roof slope of 1/4:12. The rafters, and have one or more interior columns. primary frames have tapered columns and rafters, and the Continuous sidewall girts bypass the columns, continuous sidewall girts bypass the columns . Due to the 1.2.4 RF-M Rigid Frame (High.Profile) Interior Column is a low profile, LSS buildings require the use of American continuous frame building with a standard roof slope of Buildings Company's Standing Seam II, Standing Seam 4:12. The primary frames have tapered columns and 360 or Loc Seam Roof System. . rafters, and have one or more interior columns. 1.2.13 LSS-M Low Profile, Single Slope, Interior Column is a Continuous sidewall girts bypass the columns. continuous frame building with a standard roof slope of 1.2.5 GC Girder Column, Clear Span is a continuous frame 1/4:12. The primary frames have tapered columns and building with a standard roof slope of 1:12. The primary rafters and have one or more interior columns. The frames have tapered rafters and uniform depth columns. continuous sidewall girts bypass the columns. Due to the The bottom flange of the tapered rafter is horizontal. low profile, LSS-M buildings require the use of American Simple span sidewall girts are inset into the column line. Buildings Company's Standing Seam Il, Standing Seam 360or Loc Seam Roof System. 1.2.6 GC-M Girder Column, Interior Column is a continuous 1.2.14 SSF Single Slope, is a continuous frame, clear span frame building with a standard roof slope of 1:12. The building with a standard roof slope of 1/4:12. The primary primary frames have tapered rafters, uniform depth frames have uniform depth columns and uniform depth or columns and have one or more interior columns. Simple tapered rafters. Simple span sidewall girts are inset into span sidewall girts are inset into the column line. the column line. Due to the low profile, SSF buildings require the use of American Buildings Company's Standing 1.2.7 LT Lean-To is a single slope extension to a primary Seam Il, Standing Seam 360 or Loc Seam Roof System. structure which provides structural support. These units SS(ABC}Key.02103.American Buildings Company F111111005 i "' "'` --- - STANDARD SPECIFICATIONS a AMERICAN BUILDINGS COMPANY 1.2.15 SSF-M Single Slope, Interior Columns, is a continuous 1.4.3 AISC Certification, Category MB: All American Buildings frame, clear span building with a standard roof slope of Company's buildings systems shall be engineered and 114:12. The primary frames have uniform columns and fabricated to meet the AISC certification standard for tapered rafters. Simple span sidewall girls are inset into Category MB. the column line. Due to the low profile, SSF-M buildings require the use of American Buildings Company's Standing 2 STRUCTURAL STEEL DESIGN Seam II, Standing Seam 360 or Loc Seam Roof System. 2.1 GENERAL 1.3 BUILDING NOMENCLATURE 2.1.1 All structural mill sections or welded built-up plate sections 1.3.1 Standard Roof Slope shall be designed in accordance with the AISC "Specification for Structural Steel Buildings," Allowable a) V of rise for each 12" of horizontal run (LRF, LRF-M, Stress Design and Plastic Design,June 1, 1989. GC). 2.1.2 All Cold-Formed steel structural members shall be b) 4"of rise for each 12"of horizontal run(RF, RF-M). designed in accordance with the AISI "Specification for V Design of Cold-Formed Steel Structural Members," 199r c) 1/2" of rise for each 12" of horizontal run (LP2, LP2- edition. M). 2.2 DESIGN LOADS d) 114"of rise for each 12"of horizontal run(LP4, LP4-M, LSS, LSS-M, SSF, SSF-M). 2.2.1 The design loads for the building shall be, in addition to their own dead load, the live,wind,snow and seismic loads 1.3.2 Building "Width" is measured from outside to outside of required of the following as specified: sidewall girts except Shadow Panel which is outside to outside of panels. a) Standard Building Code, by the Southern Building Code Congress International, Inc. 1.3.3 Building "Eave Height' is a nominal dimension measured from the bottom of the base plate on the column to the b) The BOCA National Building Code, by the Building intersection of the roof and sidewall sheets. Officials and Code Administrators, Inc. 1.3.4 Building "Length" is measured from outside to outside of c) Uniform Building Code, by the International endwa(l girts except Shadow Panel which is outside to Conference of Building Officials. outside of panels. d) International Building Code, by the International Code' 1.3.5 Standard "Bay Spacing" shall be 20', 25' or 30' between Council, frame centerlines (except at end bays), unless otherwise specified, for buildings with Architectural III (A3P) or Long e) National Building Code of Canada, by the National Span III(L3P)walls panels. Research Council of Canada. 1.3.6 Standard "Bay Spacing" shall be 20', 24' or 28' between f) Low Rise Building Systems Manual, by the Metal frame centerlines (except at end bays) for buildings with Building Manufacturers Association. Shadow Panel (HFP)walls. 2.2.2 The building components shall be designed to meet the 1.4 DRAWINGS AND CERTIFICATION most severe conditions of load combinations set by the specified building code, but in no case be less than that 1.4.1 Drawings: American Buildings Company shall furnish produced by the following load combinations: complete erection drawings for the proper identification and assembly of all building components. These drawings will A. Building dead load plus roof live load(or snow) show anchor bolt settings, transverse cross sections, sidewall, endwall and roof framing, flashing, and sheeting B. Building dead load plus wind load and accessory installation details. 1.4.2 Certifications: Standard drawings and design analysis shall bear the seal of a registered professional engineer upon request. SS(AIICI-Rev.02103.American Buildings Cmmpans STANDARD SPECIFICATIONS AMERICAN BUILDINGS COMPANY 2.2.3 Roof live and snow loads shall be applied on the horizontal supporting metal wall U120 roof projection. Wind loads shall be assumed to act supporting masonry wall U240< 1 1/2" horizontally and shall be applied as pressure and suction perpendicular to the building surfaces. Frame **10 Yr. Design Wind Pressure supporting metal wall H/60 2.2.4 Where local jurisdiction dictates, designs based on other supporting masonry wall H/100 than above listed loads, combinations of loads, or method Crane Lateral Load or**10 of load application may be obtained upon request. Yr. Wind Pressure: pendant operated crane H/100 @ Runway 2.3 DESIGN POLICY cab operated crane H/240<2"@ Runway Crane 2.3.1 American Buildings Company's standard design practices Runways Crane Lateral Load U400 incorporate Serviceability Limits from the 1996 MBMA Manual (reprinted from AISC Steel Design Guide Series Spandrel #3, "Serviceability Design Considerations for Low-Rise Beams **10 Yr. Design Wind Pressure U240 Buildings"). Owner requirements that exceed these considerations must be included in the building order The following serviceability limits of American Buildings Company documents. The applicable building code may also provide are also used for project design. deflection limitations. Vertical Deflections: Vertical Deflections: *Roof Snow=Factored 50 Yr.Ground Snow Roof Panels Roof or Live Snow Load U150 Purlins Roof Live or*Snow Load supporting metal roof only U150 Expansion and Contraction: supporting ceiling tiles U240 supporting plaster/drywall ceiling U360 Longitudinal Expansion Joint every 1000 feet Rafters Roof Live or*Snow Load Transverse Expansion Joint every 200 feet supporting metal roof only L/150 supporting ceiling tiles U240 2.3.2 It is the policy of American Buildings Company to design supporting plaster/drywall ceiling U360 rigid frames for the increased loading associated with two- Floor joist/ span continuous purlins and girts. This applies to all loads Beams Floor Live Load with a load path through a purlin or girt. An increase of supporting concrete slabs L/360 25%is normally associated with two equal bays. _ supporting plywood deck,etc. U240 This is not applicable to the frame loading when purlins or girts are Crane designed as"single-span" Runway Crane Vertical Static Load Top Running Cranes: 3 BASIC MATERIAL SPECIFICATIONS CMAA Classes A, B, C U600 CMAA Class D U800 3.1 PRIMARY FRAMING STEEL CMAA Classes E, F U1000 Underhung and Monorail Cranes: 3.1.1 Steel for mill rolled structural sections shall conform to the CMAA Classes A, B, C U450 requirements of ASTM specification A 36 or ASTM A 572 Grade 50 or 55 as applicable. Jib Crane Crane Vertical Load L/225 3.1.2 Steel for all built-up sections shall meet as applicable the Lintel Beams Total Load L/600<0.3" physical and chemical properties of: A. ASTM A 1011, Grade 55. Horizontal Deflections: **10Yr.=50yr.X 75% B. ASTM A 572,Grade 55. Wall Panels **10 Yr. Design Wind Pressure U120 C. ASTM A 529, Grade 55. Girts **10 Yr. Design Wind Pressure 3.1.3 Steel for all endwall "G' sections shall meet the physical and chemical properties of ASTM A 1011,Grade 55. tiSl:\IS�-Rey'.112/03.American Buildima'z Company 5 1'\IIIIIIf115 y - STANDARD SPECIFICATIONS AMERICAN BUILDINGS COMPANY 3.2 SECONDARY FRAMING STEEL applicable. Certification of welder qualification will be furnished when required and specified at order entry. 3.2.1 Steel used to form purins, girts, eave struts and "C" sections shall meet the physical and chemical properties of 4.1.3 All framing members where necessary shall carry an easily ASTM A 1011,Grade 55. visible identifying mark, 3.2.2 Steel used to form zinc-coated (galvanized) purlins and 4.1.4 Visual inspection methods will be used for verification of girts shall meet the physical and chemical properties of weld quality as outlined by the AWS Structural Steel ASTM A 653, Grade 50, 55 ksi minimum yield and G90 Welding Code, Visual Inspection Acceptance Criteria, Coating designation as described in ASTM A 924. Table 6.1. 3.3 ROOF AND WALL PANEL MATERIAL 4.2 PRIMARY FRAMING Exterior panels shall conform to one of the following: 4.2.1 Rigid Frame: All rigid frames shall be welded, built-up "I" sections or mill-rolled structural sections. The columns and 3.3.1 Panel material as specified shall be 26 gage zinc-coated the rafters may be either uniform depth or tapered. (galvanized) steel, coating designation G90, conforming to the requirements of ASTM A 653, Grade 80. Minimum 4.2.2 Endwall Frames: All endwall roof beams and endwell, -- yield strer:;:h shall be 80,000 psi. columns shall be cold-formed "C" sections, mill-rolle' structural sections, or built-up "I" sections as required by 3.3.2 Panel material as specified shall be 24 gage zinc-coated design. (galvanized) steel, coating designation G90, conforming to the requirements of ASTM A 653, Grade 80, Minimum 4.2.3 Plates, Stiffeners, etc.: All base plates, splice plates, cap yield strength shall be 80,000 psi. plates, and stiffeners shall be factory welded into place on the structural members. 3.3.3 Panel material as specified shall be 26 gage aluminum- zinc alloy-coated steel, conforming to the requirements of 4.2.4 Bolt Holes, etc.: All base plates and flanges shall be shop ASTM A 792, Grade 80. Minimum yield strength shall be fabricated to include bolt connections holes. Webs shall be 80,000 psi. shop fabricated to include cable brace or rod brace holes and flange brace holes. 3.3.4 Panel material as specified shall be 24 gage aluminum- 4.3 SECONDARY FRAMING zinc alloy-coated steel, conforming to the requirements of ASTM A 792, Grade 80. Minimum yield strength shall be 4.3.1 Purins and Girls: Purlins and girts shall be cold-formed 80,000 psi. or "C" sections with stiffened flanges. They shall be pr. 3.3.5 Panel material as specified shall be 24 gage aluminum- punched at the factory to provide for field bolting to the zinc alloy-coated steel, conforming to the requirements of primary framing. They shall be simple or continuous spar ASTM A 792, Grade 50, Class 2. Minimum yield strength as required by design. shall be 50,000 psi. 4.3.2 Eave Struts: Eave Struts shall be unequal flange, cold- formed"C"sections. 3.3.6 Panel material as specified shall be 22 gage aluminum- zinc alloy-coated steel, conforming to the requirements of 4.3.3 Base Angle: A base member will be supplied by which the ASTM A 792, Grade 50, Class 2. Minimum yield strength base of the wall covering may be attached to the perimeter shall be 50,000 psi. of the slab. This member shall be secured to the concrete slab with concrete anchors as shown on the drawings. 4 STRUCTURAL FRAMING 4.4 BRACING 4.1 GENERAL 4.4.1 Diagonal Bracing: Diagonal bracing in the roof and sidewall 4.1.1 Framing members shall be shop fabricated for field bolted shall be used to remove longitudinal loads (wind, crane, assembly. The surfaces of the bolted connections shall be etc.) from the structure. This bracing will be furnished to smooth and free from burrs or distortions. length and equipped with bevel washers, cut washers and nuts at each end. It may consist of rods threaded at each 4.1.2 All shop connections shall be in accordance with the end or galvanized cable with suitable threaded end American Welding Society(AWS)Code for Building anchors. Construction or the Canadian Welding Bureau(CWB),as SS AM-Rey'.U2103.amerirm Buildings Company 6 F\IIIIIIIUS STANDARD SPECIFICATIONS- AMERICAN BUILDINGS COMPANY 4.4.2 Flange Braces: The compression flange of all primary have American Buildings Company's Premium 70 Plus framing shall be braced laterally with angles connecting to (Kynar 5000) Finish. An embossed finish is available as the webs of purlins or girls so that the flange compressive an option. stress is within allowable limits for any combination of loadings. 5.1.8 American Buildings Company's Multi-Rib (MRP) liner panels as specified shall be 29, 26 or 24 gage (nominal) 4.4.3 Special Bracing: When diagonal bracing is not permitted in pre-painted G90 zinc-coated (galvanized) steel, pre- the sidewall, a rigid frame type portal, fixed base columns, painted AZ50 aluminum-zinc alloy-coated or 26 gage or wall diaphragm must be used. Wind bracing in the roof perforated steel. Panels shall have American Buildings and/or walls need not be fumished where it can be shown Company's Reflective White Long Life Finish. that the diaphragm strength of the roof and/or wall covering is adequate to resist the applied wind forces. 5.1.9 American Buildings Company's Long Span III (L3P) liner panels as specified shall be 29 gage 80,000 psi(22 gage is 5 ROOF AND WALL COVERING 50,000 psi) either G90 zinc-coated (galvanized) or AZ50 aluminum-zinc alloy-coated or 26 gage perforated steel. '.1 GENERAL Panels shall have American Buildings Company's 1.1 Wall panels shall be either American Buildings Company's Reflective White Long Life Finish. Long Span III Panel (L3P), Architectural III Panel (A3P), 5.1.10 American Buildings Company's Shadow Panels (HFP) Architectural"V"Rib(AVP)or Shadow Panel(HFP), shall be embossed 24 gage 50,000 psi either G90 zinc- coated (galvanized) or AZ50 aluminum-zinc alloy-coated 5.1.2 Roof panels shall be either American Buildings Company's steel. Panels shall have American Buildings Company's Long Span III Panel (L3P), Standing Seam II Panel (S2P), Premium 70 Plus(Kynar 5000)Finish. Standing Seam 360 Panel (SY), Loc Seam Panel (LOC) or Seam Loc Panel(SLC). 5.1.11 American Buildings Company's Soffit Liner Panels (SLP) shall be 24 gage 50,000 psi either G90 zinc-coated 5.1.3 Liner and soffit panels shall be either American Buildings (galvanized) or AZ50 aluminum-zinc alloy-coated steel. Company's Multi-Rib Panel (MRP), Long Span III Panel Panels shall have American Buildings Company's Premium (L3P), Architectural III Panel (A3P) or Soffit-Liner Panel 70 Plus(Kynar 5000) Finish. (SLP). 5.1.12 American Buildings Company's Standing Seam II (S2P) 5.1.4 Facade fascia panels shall be either American Buildings and Standing Seam 360 (S3P) Roof Panels as specified Company's Long Span III Panel (L3P), Architectural III shall be 24 or 22 gage 50,000 psi either G90 zinc-coated Panel (A3P), Shadow Panel (HFP), Mansard Fascia Panel (galvanized) or AZ50 aluminum-zinc alloy-coated steel. (MFP)or Seam Loc Panel(SLC). Pre-painted panels shall have American Buildings Company's Premium 70 Plus(Kynar 5000) Finish. 5.1.5 American Buildings Company's Long Span III (L3P) roof and wall panels as specified shall be 29, 26, or 24 gage 5.1.13 American Buildings Company's Loc Seam Panels(LOC)as 80,000 psi (22 gage is 50,000 psi) either G90 zinc-coated specified shall be 24 or 22 gage 50,000 psi either G90 (galvanized) or AZ50 aluminum-zinc alloy-coated steel. zinc-coated (galvanized) or AZ50 aluminum-zinc alloy- Pre-painted panels shall have American Buildings coated steel. Pre-painted panels shall have American Company's Premium 70 Plus (Kynar 5000) Finish. An Buildings Company's Premium 70 Plus (Kynar 5000) embossed finish is available as an option. Finish. 5.1.6 American Buildings Company's Architectural III (A3P) wall 5.1.14 _ American Buildings Company's Mansard Fascia Panels panels as specified shall be 29, 26, or 24 gage 80,000 psi (MFP) as specified shall be 24 gage 50,000 psi either (22 gage 50,000 psi) either G90 zinc-coated (galvanized) G90 zinc-coated(galvanized)or AZ50 aluminum-zinc alloy- or AZ50 aluminum-zinc alloy-coated steel. Panels shall coated steel. Pre-painted panels shall have American have American Buildings Company's Premium 70 Plus Buildings Company's Premium 70 Plus (Kynar 5000) (Kynar 5000) Finish. An embossed finish is available as Finish. an option. 5.1.15 American Buildings Company's Seam Loc Panels(SLC)as 5.1.7 American Buildings Company's Architectural"V' (AVP)wall specified shall be 24 or 22 gage 50,000 psi either G90 panels as specified shall be 29,26,or 24 gage 80,000 psi zinc-coated (galvanized) or AZ50 aluminum-zinc alloy- (22 gage 50,000 psi) either G90 zinc-coated (galvanized) coated. Pre-painted panels shall have American Buildings or AZ50 aluminum-zinc alloy-coated steel. Panels shall Company's Premium 70 Plus(Kynar 5000) Finish. SS(ABQ-Rev.02103.American Buildings Company F\I110005 7 STANDARD SPECIFICATIONS AMERICAN BUILDINGS COMPANY 5.2 PANEL DESCRIPTION 5.2.9 American Buildings Company's Mansard Fascia Panel (MFP) shall have a flat surface with a male and female 5.2.1 American Buildings Company's Long Span III Panel (L3P) interlocking 1" seam. Panels shall have a 10-3/16" or 18- shall have major ribs 1 1/4" high, spaced 12" on center for 5/8" net coverage in width. A solid 3/8" minimum plywood an even shadowed appearance. The panels are reinforced decking or equivalent with a minimum 3:12 slope is between the ribs for added strength. Each panel shall required. provide 36" net coverage in width. All roof panel side laps shall be at least one major rib and shall have a purlin 5.2.10 American Buildings Company's Seam Loc Panel (SLC) bearing leg on the bottom section of the lap. shall have a flat surface with a male and female interlocking 1 3/4" seam. The female panel seam shall 5.2.2 American Buildings Company's Architectural III Panel have factory applied sealant. Panels shall have a 12", 16" (A3P) shall have a configuration consisting of ribs 1 1/4" or 18" net coverage in width. A minimum 3:12 slope is deep spaced 12"on center producing a decorative smooth required. shadow-line with semi-concealed fasteners. Architectural III panels shall provide a 36"net coverage in width. 5.2.11 Panel Length: All wall panels shall be continuous from sill to roof line and all roof panels shall be continuous fro- 5.2.3 American Buildings Company's Architectural 'V" Panel eave to ridge except where length becomes prohibitive ; (AVP) shall have a configuration consisting of ribs 1 5/16" handling purposes. Roof panel end laps shall be deep spaced 12" on center producing a sculptured minimum 6"for Standing Seam and Loc Seam panels and appearance with semi-concealed fasteners. Architectural a minimum 4" for Long Span III panels. Wall panel end "V"rib panels shall provide a 36"net coverage in width. laps shall be a minimum 3". 5.2.4 American Buildings Company's Multi-Rib Panel (MRP) 5.2.12 Endwall Edge Cuts: All endwall panels for buildings with shall have a configuration consisting of ribs 3/4" deep. 1:12 or less roof slope shall be square out. All endwall spaced 6" on center. Each panel shall provide 36" net panels for buildings with a roof slope over 1 1/2:12 shall be coverage in width. bevel cut. 5.2.13 A certain amount of waviness called"oilcanning" may exist 5.2.5 American Buildings Company's Shadow Panel (HFP) shall in the flat portion of the panel. Minor waviness of the panel have a configuration 16"wide and 3"deep with a center rib is not sufficient cause for rejection. Oilcanning does not 6" wide and 1 1/2" deep producing contrasting shadow affect the structural integrity of the panel. patterns with concealed fasteners. Each panel shall provide 16"net coverage in width. 6 MISCELLANEOUS MATERIAL SPECIFICATIONS 5.2.6 American Buildings Company's Soffit Liner Panel (SLP) 6.1 FASTENERS shall have a configuration consisting of V interlocking ribs. The interlocking ribs are designed to conceal the panel 6.1.1 Structural Bolts: All bolts used in primary splices and fasteners. The Soffit Liner Panel shall provide a net secondary framing connections shall be ASTM A325 as coverage of 12"in width. required by design. 5.2.7 American Buildings Company's Standing Seam II (S2P) 6.1.2 Fasteners for Roof Panels: All roof panels shall be and Standing Seam 360 (S3P) Roof Panel shall have a attached to secondary framing members by the following: configuration consisting of 2" high (Y including seam) by 4 A. Premium roof fasteners shall be No. 12 X 1 1/4"or No. 3/4" wide rib, spaced on 24" centers. Panels shall be 14 X 1"self-drilling carbon steel screws with a molded joined at the side laps with an interlocking seam standing zinc alloy or capped stainless steel cupped hex 1"above the major rib. Each panel shall provide 24"net washer head. Roof fasteners shall be assembled with coverage in width. The female panel seam shall have an EPDM washer. Premium roof fasteners shall be factory applied sealant. used on all pre-painted or warranted roofs. 5.2.8 American Buildings Company's Loc Seam Panel (LOC) B. Standard roof fasteners shall be No. 12 X 1 1/4" or shall have a configuration 16" or 12" wide with 2" high No. 14 X V self-drilling carbon steel screws with an vertical male and female ribs offering a flat profile with integral hex washer head. Roof fasteners shall be optional pencil ribs. The female seam shall have factory assembled with an EPDM washer. Standard roof applied sealant. The panel seam shall be interlocked by a fasteners shall have a corrosive resistant coating over specially designed electric seaming machine. zinc plating. Standard fasteners shall be used on unwarranted aluminum-zinc alloy-coated roofs only. S31ABC)-Rev.U2/OJ.Amo ic:n Building.Compam t:\IIIIIIIII5 8 O STANDARD SPECIFICATIONS AMERICAN BUILDINGS COMPANY 6.1.3 Fasteners for roof panel side laps and flashing 6.1.6 Fasteners for Wall Panels and Liner Panels: All Long Span connections: Long Span III Roof Panel side laps and III, Architectural III, Architectural "V' or Multi-Rib Panels flashing connections shall be stitched by the following: shall be attached to the secondary framing members by means of self-drilling carbon steel screws, No. 12 X 1 1/4" A. Premium roof fasteners shall be No. 14 X 7/8" self- hex washer head, cadmium or zinc plated. The fasteners drilling carbon steel screws with a molded zinc alloy or shall be color coordinated with a premium coating system capped stainless steel cupped hex washer head. which protects against corrosion and weathering. The Roof fasteners shall be assembled with an EPDM fasteners are applicable for use with fiberglass blanket washer. Premium roof fasteners shall be used on all insulation up to 4" (6"for Architectural III and Architectural pre-painted orwarranted roofs. "V' Panels)in thickness. B. Standard roof fasteners shall be No. 14 X 7/8" self- 6.1.7 Fasteners for Wall Panel side laps and Liner Panel side drilling carbon steel screws with an integral hex laps:All Long Span III, Architectural III, Architectural "V'or washer head. Roof fasteners shall be assembled with Multi-Rib Panel side laps shall be stitched by means of an EPDM washer. Standard roof fasteners shall have self-drilling carbon steel screws, No. 14 X 7/8"cadmium or a corrosive resistant coating over zinc plating. zinc plated. The fasteners shall be color coordinated with a Standard fasteners shall be used on unwarranted premium coating system which protects against corrosion aluminum-zinc alloy-coated roofs only. and weathering. 6.1.4 Fasteners for roof panel to flashing connections: Loc 6.1.8 Fasteners for Shadow Panels: These fasteners shall be Seam and Standing Seam roof systems shall be the carbon steel,yellow chromate over zinc plate finish, No. 12 following: X 1" self-drilling hex-head screws with a special 1/2" X 1" rectangular locking nut. A. Premium roof fasteners shall be No. 14 X 1" self- drilling carbon steel screws with a molded zinc alloy or 6.1.9 Blind Fasteners: All blind fasteners shall be 1/8"diameter, capped stainless steel cupped hex washer head. high strength 6052 painted aluminum rivets as Roof fasteners shall be assembled with an EPDM manufactured by USM POP or equal. washer. Premium roof fasteners shall be used on all 6.2 PANEL CLIPS pre-painted or warranted roofs. 6.2.1 Panel clips (SSPC series) for the Standing Seam II Roof B. Standard roof fasteners shall be No. 14 X 1" self- Panel shall be of a two part assembly. The tab portions drilling carbon steel screws with an integral hex are 2 1/2" wide, die formed SAE 1050 high carbon spring washer head. Roof fasteners shall be assembled with steel and heat treated to Rockwell 45C to 50C, with an EPDM washer. Standard roof fasteners shall have fluorocarbon coating for corrosion resistance, or 301 a corrosive resistant coating over zinc plating. stainless steel. The base portion of the clip shall be 2 114" Standard fasteners shall be used on unwarranted or 3 1/4" (for thermal blocks) in height. The base shall be aluminum-zinc alloy-coated roofs only. die formed from 12 gage, zinc-coated (galvanized) steel. Total expansion capability of the clip assembly shall be 2 6.1.5 Fasteners for the Roof Panel Clips: All Standing Seam and 1/2° Loc Seam Panel Clips shall be attached to the purlins by the following: 6.2.2 Panel clips(LSEC series)for the Loc Seam Panel shall be of a two part assembly. The tab portion shall-be a nominal A. Self-drilling screws for attaching expansion clips shall 2 3/8" or 3 1/8" (for thermal blocks) in height and 3" in be carbon steel No. 12 X 1 1/4"hex-head,cadmium or width, die formed from 24 gage aluminum coated steel. zinc plated. The fasteners are applicable for use with The base shall be die formed from 18 gage, zinc-coated fiberglass blanket insulation with thicknesses up to (galvanized) steel. Total expansion capability of the clip and including 6 inches. assembly shall be 1 1/4". B. Self-drilling screws for attaching expansion-clips on 6.2.3 Panel clips (MFPC series) for the Mansard Fascia panel bar joists shall be carbon steel No. 12 X 1 114" Tek 4 shall be a nominal 1" height and 1 1/2" in width. The clip or No. 12 X 1 1/2" Tek 5 hex-head, cadmium or zinc shall be die formed from 26 gage zinc-coated(galvanized) plated. The fasteners are applicable for use with steel,or aluminum-zinc alloy-coated steel. fiberglass blanket insulation with thicknesses up to and including 6 inches. 6.2.4 Panel clips(S3PC series)for the Standing Seam 360 panel is a two part assembly. The tab portion is die formed.031 thick aluminum-zinc alloy-coated steel. The base shall be SS(A110-Rev.02/03.American Buildings Company F1I011005 9 STANDARD SPECIFICATIONS ;N AMERICAN BUILDINGS COMPANY t die formed from 12 gage,zinc-coated(galvanized) material exceed the requirements of Federal Specification TT-S- 2 1/4" or 3 1/4" (for thermal blocks) high and 6" long. The 00230C,Type II, Class A. expansion capability is 2 112". For higher uplift values requirements, optional panel clips (S3PC--R) consists of 6.4 GUTTER, FLASHING AND DOWNSPOUT panel clip (S3PC--) with an additional panel to clip fastening base which is 16 gage, zinc-coated (galvanized) 6.4.1 Gutters and Flashings: All standard exterior gutters are 26 material. - gage G90 zinc-coated(Galvanized)or AZ50 aluminum-zinc alloy-coated steel with a pre-painted finish in White or 6.2.5 Panel clips (SLPC series) for the Seam Loc panel are a Burnished Slate. Standard rake flashing is 26 gage G90 nominal 1 3/4" in height and 3 3/4" in width (UL90) and 1 zinc-coated (galvanized);or AZ50 aluminum-zinc alloy- 3/4" in height and 2" in width (Standard) die formed 18 coated steel with a pre-painted finish in Reflective White or gage zinc-coated(galvanized)steel. Burnished Slate. All other gutter and flashings shall be a 6.3 CLOSURES AND SEALANTS .. minimum 26 gage steel. 6.3.1 Closure Strips:The corrugations of the roof and wall panels 6.4.2 Downspouts: All downspouts shall be 29 gage zinc-coated shall be filled with pre-formed closed cell non-shrinking, (galvanized) or aluminum-zinc alloy-coated steel with co' laminated polyethylene closures along the eave, ridge and coordinated,pre-painted finish, rectangular in shape, rake when required for weathertightness. 7 PAINTING 6.3.2 Metal Closures: The corrugations and pan area of the Standing Seam II and Standing Seam 360 Roof Panel shall ASTM testing is performed on specifically and carefully be filled with formed metal closures. The closures shall be prepared test coupons. These tests are designed to formed from 20 gage steel to the shape of the accurately compare varying products in a controlled configuration. The closure exterior finish shall be AZ55 environment and may or may not be indicative of actual aluminum-zinc alloy-coated. field results. 6.3.3 Sealant: Long Span Panel roof side laps, end laps, roof 7.1 STRUCTURAL PAINTING flashing laps, ridges and eave shall be sealed with 1/2" X 1/8" tape mastic. Sika Sika-Tape TC-95 or equal. The Primer systems are not intended as finish coat paint material shall be non-staining, non-corrosive, non-toxic, systems and do not offer the uniformity of appearance, and non-volatile. Composition shall be 100% solid durability or corrosion resistance of a top coat applied over ethylene propylene copolymer tape. Service terperature a primer. Primers are designed to promote the :jetting shall be from-607 to+212°F. action and adhesion of a top coat and offer only short-ter- corrosion protection from ordinary atmospheric exposure. 6.3.4 Sealant: American Buildings Company's Standing Seam, Loc Seam and Seam Loc Roof Panels side laps shall have 7.1.1 Shop Applied Primers — All uncoated structural steel factory applied mastic, SikaLastomer-511 or equal. Its members shall be cleaned of all foreign matter and loose composition shall be 85% solids by weight. Service mill scale as per requirements of the Structural Steel temperature range shall be from-607 to+220°F. Painting Council cleaning specification SSPC-SP2 and SSPC-SP1 as required. Structural steel members will then 6.3.5 Sealant: All American Buildings Company's Standing receive a one mill coat of American Buildings Company's Seam and Loc Seam Roof end laps, roof flashing laps, red oxide primer. Primer meets or exceeds the ridges and eave shall be sealed with tape mastic, Sika performance requirements of the specification SSPC-15, Sika-Tape TC-95 or equal. The material shall be non- for Type 1 Red Oxide Paint. Primer is not intended as a staining, non-corrosive, non-toxic, and non-volatile. finish coat and is compatible only for top coating with Composition shall be 100% solid ethylene propylene solvent based alkyd and modified alkyd top coat paints. copolymer tape. Service temperature shall be from -60°F to+212°F 7.1.2 Pre-painted Cold Formed Materials—At American's option, cold formed secondary structural framing may use pre- 6.3.6 Caulk: Eaves, endlaps, ridge and eave closures are sealed painted coil stock which eliminates the need for shop with non-skinning butyl caulk, SikaLastomer-511 or equal. applied primer. Primer will be applied in a thickness of Its composition is 85% solids by weight. Service 0.45 — 0.55 mils. Primer is not intended as a finish coat. temperature range is -607 to +2207. All gutter and Due to lubricants used to aid the roll forming process, the downspout joints, roof accessories, doors, windows, and application of the tie coat must be used prior to application louvers shall be sealed with polyurethane caulk, Sika, of a topcoat. SikaFlex 219LM or approved equal. It shall meet or SS(ARC)-Rev.02/03.Ameriean Ruildingc Compum 1"',101IIIII5 � 10 � - -�-= STANDARD SPECIFICATIONS AMERICAN BUILDINGS COMPANY 7.1.3 Abrasions caused by handling after painting as well as the 0.90 mils minimum. The total dry film thickness shall be flaking of tight mill scale are to be expected. American 1.05 mils minimum. Excellent weatherability and resistance Buildings shall furnish primer to allow for touch-up of these to coating deterioration shall be evident when subject to the areas by the contractor, following tests: 7.2 LONG LIFE COATED PANELS Test Test Method Performance Specular Gloss ASTM D 523 Low Gloss,5-10 at 60 7.2.1 Base Metal shall be 29, 26 or 24 gage G90 zinc-coated Degrees (galvanized)orAZ50 aluminum-zinc alloy-coated steel. Dry Film Hardness ASTM D 3363 F minimum Film Adhesion ASTM D 3359 Excellent/No Removal 7.2.2 Prime Coat: The base shall be pretreated and then primed Direct Impact ASTM D 2794 Excellent/No Removal with an epoxy or urethane type primer for superior Reverse Impact ASTM D 2794 Excellent/No Removal adhesion and superior resistance to corrosion. The dry film Abrasion Resistance ASTM D 968 Exceeds 60 liters thickness shall be 0.2 mils. - Chemical Resistance ASTM D 1308 Excellent/No Removal Salt Spray Resistance ASTM B 117 Passes 1000 hours -.2.3 Exterior Coat:After priming, the exterior side shall be given Humidity Resistance ASTM D 2247 Passes 1000 hours a Long Life coating, baked in excess of 500°F to a Color Retention ASTM D 2244 No objectionable controlled dry film thickness of 0.7 to 0.8 mils. Excellent change. Max.4 Delta weatherability and resistance to coating deterioration shall E units(Hunter)Color be evident when subject to the following tests: Change Chalk Resistance ASTM D 659 No objectionable Test Test Method Performance change. Minimum rating of 9 Specular Gloss ASTM D 523 25-35 degrees on a std.Arner 60 deg. 7.3.4 Roof panels with the Premium 70 Plus finish must have a Meter minimum 1/2:12 roof slope to qualify for Material Warranty. Dry Film ASTM D 3363 F-2H Interior Finish: The interior finish shall have a parchment or Hardness gray polyester topcoat or backer over an epoxy, urethane, Q.U.V. ASTM G 53 Passes 300 hours, no or water base primer. The dry film thickness shall be 0.4 Weatherometer objectionable color mils. change,chalking or blistering 7.4 PREMIUM 70M COATED PANELS Humidity ASTM D 2247 Passes 1000 hours Resistance 7.4.1 Base metal shall be 29, 26, 24, or 22 gage G90 zinc- Salt Spray ASTM B 117 Passes 750 hours coated (galvanized) or AZ50 aluminum-zinc alloy-coated Resistance steel. Reverse Impact ASTM D 2794 Passes No Removal Microbial Attack ASTM G 22 Passes 7.4.2 Prime Coat: The base metal shall be pretreated and then primed with an approved epoxy, urethane, or water base 7.2.4 Interior Finish: The interior finish shall have a parchment or primer. The dry film thickness of the primers shall be 0.4 gray polyester topcoat over an epoxy or urethane primer. mils minimum. The dry film thickness shall be 0.3 mils. 7.4.3 Exterior Coat:After priming, the exterior side shall be given 7.3 PREMIUM 70 PLUS COATED PANELS a finish coat of a 70% minimum Kynar 5000 (PVDF) formulation. The dry film thickness of the topcoat shall be 7.3.1 Base Metal shall be 29. 26, 24 or 22 gage G90 zinc-coated 1.0 mils minimum. The total dry film thickness shall be 1.4 (galvanized)orAZ50 aluminum-zinc alloy-coated steel. mils minimum. Excellent weatherability and resistance to coating deterioration shall be evident when subject to the 7.3.2 Prime Coat: The base metal shall be pretreated and then following tests: primed with an approved epoxy, urethane, or water base primer. The dry film thickness of the primers shall be 0.25 mils minimum. 7.3.3 Exterior Coat:After priming, the exterior side shall be given a finish coat of a 70%. minimum Kynar 5000 (PVDF) formulation. The dry film thickness of the topcoat shall be SS(All(TRer.02l113.American Buildings Company FNI0011115 t t STANDARD SPECIFICATIONS AMERICAN BUILDINGS COMPANY Test Test Method Performance self flashing to American Buildings Company's Specular Gloss ASTM D 523 Medium Gloss,30-40 Architectural III, Architectural V' Rib and Long Span III at 60 degrees wall panels. A 2'-0" X 6-0" fixed glass unit is available. Dry Film Hardness ASTM D 3363 F minimum They shall be furnished with a 5/8" insulated glass and a Film Adhesion ASTM D 3359 Excellent/No Removal polyurethane thermal barrier. Direct Impact ASTM D 2794 Excellent/No Removal Reverse Impact ASTM D 2794 Excellent/No Removal 8.2 PERSONNEL DOORS Abrasion Resistance ASTM D 968 Exceeds 100 liters Chemical Resistance ASTM D 1308 Excellent/No Removal 8.2.1 Standard personnel doors shall be 3-0" X 7'-0"and 1 3/4" Salt Spray Resistance ASTM B 117 Passes 1000 hours manufactured from 20 gage zinc-coated(galvanized) steel. Humidity Resistance ASTM D 2247 Passes 2000 hours Doors shall have a textured finish and shall be painted Color Retention ASTM D 2244 No objectionable white. Doors shall meet Federal Specification RR-D-575b change. Max.4 Delta and Commercial Standards CS-242-62 and PS4-66. Doors E units(Hunter)Colof. shall be one of the following: Change Chalk Resistance ASTM D 659 No objectionable A. "Premium" Republic DL Series, (honey comb cor change. Minimum finish painted or equal. rating of 9 B. "Economy' Republic DL Series, (honey comb con prime painted or equal. Roof Panels with the Premium 70M finish must have a minimum 1/2:12 roof slope to qualify for Material Warranty. 1. Doors shall have square edges for non-hand installation. 7.4.4 Interior Finish: The interior finish shall have a parchment or 2. Doors shall be flush and have vertical seams gray polyester topcoat or backer over an epoxy, urethane reinforced with continuous 16 gage channels. or water base primer. The dry film thickness of the backer 3. - Doors shall be provided with top and bottom inverted shall be 0.4 mils minimum. 16 gage galvanized steel channels spot-welded within the door. 8 ACCESSORIES 4. Doors "A" and "B" shall be reinforced, stiffened, and sound deadened with impregnated kraft honeycomb 8.1 WINDOWS core completely filling the inside faces of the door and laminated to the inside faces of the panels. 8.1.1 Standard windows shall be horizontal slide units with a 5. Doors shall be reinforced for applicable hardware. bronze finish. 3'-0" X 3-0" and 4'-0"X 3-0" in Architectural III, Architectural'V" Rib and Long Span III Panel Walls and 8.2.2 Door frames shall be 16 gage zinc-coated (galvanizE 4'-0" X 3-0" in Shadow Panel Walls. They shall be steel,painted white and shall be one of the following: furnished complete with 7/16" hermetically sealed double glass, hardware and half screen. Windows shall be self- A. "Premium" Republic FE Series,finish painted having a flashing to American Buildings Company's wall panels, jamb depth of 5 3/4"with a 16 gage jamb retainer. B They shall comply with the performance requirements of B. Economy' FE Series, prime painted having a jamb AAMA/NWWDA 101/I.S. 2-97 for a Performance Class of depth of 5 3/4". HS-R25. 1. Door jambs shall_ be constructed for non-hand 8.1.2 Narrow light Windows shall be wall units 2'-0" X 7' having , installation. 2 Door frame "A" shall have factory applied weather dark bronze aluminum frames 1 3/4" X 4" and 1" solar stripping. bronze annealed insulated glass. The glazing stop shall 3. Door frame "B" shall have weather-stripping provided snap on using stainless steel spring clips. There shall be for field installation. no exposed screws on the Glazing Bead. The glass shall 4. Door frames shall be shipped as a package, one pair be set against the fin using Butyl Tape and sealed on of jambs (hinge and strike for single openings or 2 interior and exterior with silicone to insure a watertight seal hinge jambs for double openings), heads, sill plate, and to enable truck shipment without damage or glass jamb retainers, girt anchors, weather-strip, threshold, slippage. hinges and fasteners. 8.1.3 The Thermal Barrier Windows shall be horizontal slide 8.2.3 Standard Locksets shall be on of the following: units with a bronze finish. They are available in 3-0"X 3- 0",4'-0"X 3-0",4'-0"X 4'-0"and 6-0"X 3-0"size that are A. Yale CRE 8722 Mortise Lockset, US26D finish, or equal. SS(ABC}Rrc.02103.American Buildings Company F\IIIII110, 12 STANDARD SPECIFICATIONS AMERICAN BUILDINGS COMPANY B. CAL-ROYAL TS-00 26D Lever Handle Lockset or 8.5.2 Ventilators shall be equipped with standard bird screens equal. and riveted end caps. Ventilators shall be 10' long and have a 9"or 12"throat. 8.2.4 Exit devices shall be one of the following: 8.5.3 20" round ventilators shall be 24 gage and shall have an A. Yale 7100 Styline series rim device with a stainless adjustable base for ridge mounting or a pitched base for steel finish. on-slope mounting. 8.2.5 Door threshold shall be aluminum, supplied with flat head 8.6 LOUVERS screws and expansion shields for attachment to masonry floor. 8.6.1 Louvers shall be manufactured from 20 gage zinc-coated (galvanized) steel, painted white, and shall be self-framing 8.3 PRE-ASSEMBLED PERSONNEL DOORS and self-flashing. They shall be equipped with adjustable ` dampers unless otherwise specified. Nominal size shall be 8.3.1 Pre-assembled personnel doors when specified shall be 3'- 3-0"X 4'-0"for Long Span III (L3P), Architectural III (A3P) 0"X T-0"X 1 3/4" manufactured from 20 gage zinc-coated and Architectural "V" (AVP) walls and 4'-0" X 4'-0" for (galvanized)steel with Standard White or Bronze baked on Shadow Panel(HFP)walls. primed finish. Doors are insulated Polyurethane Core (R14.5). 8.7 SKYLIGHTS 8.3.2 Door frames shall be 16 gage zinc-coated (galvanized) 8.7.1 Roof skylight panels shall be translucent fiberglass steel with Standard White or Bronze baked on primed reinforced panels made in the same configuration as the finish, metal panels. They shall be manufactured with a 2 ounce woven fiberglass cloth reinforcement in addition to random 8.3.3 Standard Lockset shall be one of the following: strand mat or cut glass fibers for structural strength. They shall meet or exceed applicable requirements of ASTM A. Entry lock with lever handles will be on both sides. D3841-80 Type 1, and ICBO Research Report No. 1412. Key-in-knob on exterior side and thumb turn push Material weight shall not be less than 8 ounces per square button on interior side. Shall be Yale AU5407LN. foot. Meets ANSI 156.2 series 4000 Grade 1 requirements. Impact Test: Skylights shall resist penetration when'subject B. Mortise lock with lever handles on both sides. Shall to a 100 pound cylindrical weight with a 5 3/4"diameter(26 be Yale AU8722GL Grade 1. Meets ANSI A156.13 square inches) dropped from a height of 70". Flammability series 1000 requirements. rate of material shall be no greater than 2 in/min when tested under ASTM D635. Coefficient of teat transmission 8.3.4 Exit device shall be Dorma 8000 Series or equal. (U-factors)shall be no greater than 0.8 BTU/Hr/Sq.ft. 8.3.5 Thresholds are constructed of aluminum alloy #6063-T5 degree F. Available insulated skylights shall have a light with mill finish, ADA compliant. All fasteners and anchors transmitting foam sandwiched between a standard weight included for complete installation. exterior panel and a 4 ounce nominal weight interior panel. Skylight panels shall be equivalent to STRONGLIGHT 8.4 OVERHEAD DOOR FRAMING panels as manufactured by Lasco Industries,or equal. 8.4.1 Overhead door support framing shall be designed to resist ENGINEERING PROPERTIES applicable horizontal wind loads and shall consist of (STRONGLIGHT Skylight) channel jambs with a channel header at the top of the opening. 26 gage steel, color coordinated flashing shall be Property Test Method Nominal Value provided to conceal panel edges at the opening unless Shear Strength ASTM D 732 11,000 psi otherwise specified. Bearing Strength ASTM D 953 A 13,400 psi 8.5 GRAVITY VENTILATORS Tensile Strength ASTM D 638 19,000 psi 8.5.1 Gravity ridge ventilators shall be manufactured from galvanized steel and painted white. The ventilator body shall be 24 gage and the skirt shall be adjustable to match the roof slope. Chain operated damper will be furnished. SS(ABC)-Rev.02103.American Buildings Company B100005 13 STANDARD SPECIFICATIONS µ AMERICAN BUILDINGS COMPANY 8.9 ROOF CURBS 8.7.2 Wall sidelight panels shall be translucent fiberglass panels made in the same configuration as the wall panels. They 8.9.1 Roof curbs shall be manufactured from minimum 18 gage shall meet or exceed applicable requirements of ASTM AZ55 aluminum-zinc alloy-coated steel. Curbs shall have D3841-80 Type 1, and ICBO Research Report No. 1412. an integral cricket type water diverter. The minimum curb Material weight shall not be less than 6 ounces per square height shall be 8". foot. 8.10 PIPE FLASHING 8.8 INSULATION 8.10.1 Pipe flashing shall be of a one piece construction and 8.8.1 Fiberglass Blanket Insulation shall be available in 2", 3", 4" fabricated from an EPDM membrane and shall have an and 6" thicknesses. (Other roof insulation systems are aluminum base that can be field conformed to any panel available with thickness up to 12 inches). Maximum configuration. Pipe flashings shall be flexible for mounting application thicknesses are as follows: on any roof slope. Service temperature ranges shall be 4 from-30°F to +2507. Three standard flashing sizes shall Panel Tv '"5"la'i°" Panel el accommodate pipe sizes from 1/4" diameter up to 13" Thickness' 1P'` ThermaLBEcxk'- �tandin:,,A.m11L;61 ",I,r.lrnum vrl diameter. Stanrlln;Haan,11.;60 b"'.lammum I,rr�)-am l_,., .u.,rl,;6t1 6"%mmm%1.1\4num - '•I„" 9 ERECTION AND INSTALLATION yN,,m Ln, �eari 6"�la�imum Tall , 1�10nt`.tural III 6"'.lammuln n.a rill �.rl'hll^C[Urd L..\la\Illlll 111 n.-a Ila The erection of the metal building and the installation of Inr,fit•m III - '.ta�inulrn u.a n., accessories shall be performed in accordance with the American Buildings Company's erection manuals and the 8.8.2 Fiberglass Insulation Facings shall be laminated on one building erection drawings. The erection shall be side with one of the facings as shown in chart below. performed by a qualified erector using proper tools and Facings other than those shown in the chart below are equipment. In addition, erection practices shall conform to available upon request. Section 6, Common Industry Practices found in the "Low FACINGS Rise Building Systems Manual,"MBMA 1996. There shall be no field modifications to primary structural COLOR WHITE WMP- WMP-VINYL VR 10 FSK WMP-F members except as authorized and specified by American Flame Spread* 25 10* 10* 5* 10' Buildings Company. Perm Rating 1.0 .09 .02 .02 .02 SAFETY DURING ERECTION CANNOT BE Service Tem. Min. 01 -400 -400 -400 -400 OVER-EMPHASIZED! *All laminated or composite flame spreads are 25. The white vinyl 10 BUILDING ANCHORAGE AND FOUNDATION flame spread rating is only available based on composite testing. 8.8.3 Rigid Foam Thermal Blocks shall be cut from high density The building anchor bolts shall resist the maximum column reactions resulting from the specified combinations of extruded polystyrene board stock, having a UL 25 flame spread rating. Thermal Blocks shall have a minimum loadings.The quantities and diameters shall be specified by American Buildings Company. Anchor bolt embedment thickness of 3/4 inch and shall be a minimum of 3 inches in width. Thermal Block material shall be Dow Styrofoam designs and the anchor bolts are to be supplied by others, NOT American Buildings Company. Anchor bolt (Blue Board)or equal. embedment and foundations shall be adequately designed 8.8.4 Foil-faced rigid insulation(Thermax0)has a glass fiber by a qualified foundation engineer to support the building reactions and other loads which may be imposed by the reinforced polyisocyanurate foam core. The foam core has building use. The design shall be based on the specific soil a uniform,closed-cell structure which is resistant to the flow of heat. Aluminum foil facers laminated to each side conditions of the building site. The foundation engineer shall be retained by other than American Buildings of the product provide an effective moisture barrier. Rigid Company. American Buildings Company assumes no insulation products are available in thicknesses from 1/2"to responsibility of the integrity of the foundation. 4". Rigid insulation shall be Thermax by Celotex or approved equal. SSIA BC)-Rev.112/113.Anwrican Buildins Contjmnc P\IIIIIIIII? 14 STANDARD SPECIFICATIONS AMERICAN BUILDINGS COMPANY 11 WARRANTIES American Buildings Company offers a variety of warranties for panel coatings, roof. systems weathertightness, purchased products, and manufactured material. For specific warranty details and costs contact American Buildings Company at 334-687-2032. �l SSIABC)-Rev.02/03.Americin Ruildingx Companp 15 F'\IU1111115 I Design Calculations Pamphlet Information Page Technical Information Release TIR.03.2003 April 1, 2003 The following "Design Calculations Pamphlet" pages have been revised or added effective April 1, 2003. Contents • Revised Contents Eliminated Section 5, pages 1a and 2a. Section 5 (Panel Profiles) • Revised Page 1 Revised weights and total thickness. Page 2 Revised weights and total thickness. Page 2b Revised weights and total thickness. Page 3 Revised weights and total thickness. Page 3a Revised weights and total thickness. Page 4 Revised weights and total thickness. Page 5 Revised weights and total thickness. Page 6 Revised weights and total thickness. Page 7 Revised weights and total thickness. Page 8 Revised weights and total thickness. • Voided Page l a Long Span Panel Page 2a Architectural Panel _ Section 6 (Miscellaneous) • Revised Standard Specifications. relc rencc: TIR.03.2003 D('1'In%ormation.doc Page 1 0/I i Mr. George Hagerty 10/15/03 287 Dix Ave. Queensbury, NY 12804 By:GFI 6/12 NEW 17, F� "existing wood building" clear inside. 11t - - - ITO 321 50 .. S133HS OOZ b 1/8"bL-ZZ ObtjGl/b�� S133HS OOL ZVt-ZZ Sl'3:iHS OS LhL-ZZ Tuesday, January 27, 2004 From: GFI-Metal Building Sales. Concrete Specifications: George Hagerty, NY 12804 BuildinL, Sizes is 50' x 80' x 15'. Concrete All concrete will be Glens Falls Portland Cement. Footers: 3000 psi. 2281f. of-16" x 12", with three rows of number#4 bars continuous. Number#4 bars vertical every 24" by 4'. Frostwalls: 3000 psi. 2281f. of- 8" x 60", with 3 rows of number#4 rebar, horizontally. Slab: 3500 psi.50'x 80' x 4" %vith 6/6-10/10 mesh. Steel trowel finish. The slab is to lay to the frost wall. Thicken slab at opening. See drawing. Fiberglass fabric may be used in place of wire mesh. FF is 12" below the height of the Frost wall. Pi:rs: 3000 psi. %vith 4rr4 hairpins and #4 rebar wire cage x 4'. Corners (4) 24"x 18" x 60". Footer- 36" x 24" x 12". ylain Frame (6) 12" x 18" x 60". Footer- 36" x 36" x 12". Endwall Col. (3) 8" x 15" x 60". Footer- 16" x 27" x 12". Center (0) 18" x 18"x 00". Footer- 54" x 54" x 24". Footer for Piers: With 44 rebar mats and a horizontal cage of 94 bars. Anchor bolts required are, 52-3/4", supplier by the mason. . 2'- lnsulation board around the perimeter of the building. Aprons: 1-Approx. 41f. x 6" x 18' and 1-4' x 4'. Note: The site Nyork contractor is responsible for compacted clear& level site, and the finial grade plus or minus a half inch. Co-ordinate concrete with mechanical trades. Pier si-:es may change at the direction of an Engineer. Changes could effect the cost. No additives to concrete or Temp. heat, no floor treatment is included. If this is required, the expense will be paid for by the owner. Sire work has been included Allo,,vance of$5000.00 . Standard Rock clause.. -1- PROPOSED FLOOR PLAN EXISTING BUILDING RENOVATIONS Q L s 1 09 09 - cry a c � cn • � k N NNe-�u 4� V'Vb1�J�N nnnmmN ��NUlyy p�yE[y CCSmT<N SSTm= mmNr.�r�� jr yL m _ � NNNNNN OOD000 DC >➢C n' �s�M =� IN n-V - D � 1-►Q�2 'ti �� ^= �n N;�S^X o� fVpl...`��rl'i�, � -